1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qemu/main-loop.h" 25 #include "qapi/error.h" 26 #include "hw/sysbus.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/i386/pc.h" 32 #include "hw/i386/apic-msidef.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "sysemu/dma.h" 37 #include "sysemu/sysemu.h" 38 #include "hw/i386/apic_internal.h" 39 #include "kvm/kvm_i386.h" 40 #include "migration/vmstate.h" 41 #include "trace.h" 42 43 /* context entry operations */ 44 #define VTD_CE_GET_RID2PASID(ce) \ 45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) 46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ 47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) 48 49 /* pe operations */ 50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) 51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) 52 53 /* 54 * PCI bus number (or SID) is not reliable since the device is usaully 55 * initalized before guest can configure the PCI bridge 56 * (SECONDARY_BUS_NUMBER). 57 */ 58 struct vtd_as_key { 59 PCIBus *bus; 60 uint8_t devfn; 61 uint32_t pasid; 62 }; 63 64 struct vtd_iotlb_key { 65 uint64_t gfn; 66 uint32_t pasid; 67 uint16_t sid; 68 uint8_t level; 69 }; 70 71 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 73 74 static void vtd_panic_require_caching_mode(void) 75 { 76 error_report("We need to set caching-mode=on for intel-iommu to enable " 77 "device assignment with IOMMU protection."); 78 exit(1); 79 } 80 81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 82 uint64_t wmask, uint64_t w1cmask) 83 { 84 stq_le_p(&s->csr[addr], val); 85 stq_le_p(&s->wmask[addr], wmask); 86 stq_le_p(&s->w1cmask[addr], w1cmask); 87 } 88 89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 90 { 91 stq_le_p(&s->womask[addr], mask); 92 } 93 94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 95 uint32_t wmask, uint32_t w1cmask) 96 { 97 stl_le_p(&s->csr[addr], val); 98 stl_le_p(&s->wmask[addr], wmask); 99 stl_le_p(&s->w1cmask[addr], w1cmask); 100 } 101 102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 103 { 104 stl_le_p(&s->womask[addr], mask); 105 } 106 107 /* "External" get/set operations */ 108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 109 { 110 uint64_t oldval = ldq_le_p(&s->csr[addr]); 111 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 113 stq_le_p(&s->csr[addr], 114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 115 } 116 117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 118 { 119 uint32_t oldval = ldl_le_p(&s->csr[addr]); 120 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 122 stl_le_p(&s->csr[addr], 123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 124 } 125 126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 127 { 128 uint64_t val = ldq_le_p(&s->csr[addr]); 129 uint64_t womask = ldq_le_p(&s->womask[addr]); 130 return val & ~womask; 131 } 132 133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 134 { 135 uint32_t val = ldl_le_p(&s->csr[addr]); 136 uint32_t womask = ldl_le_p(&s->womask[addr]); 137 return val & ~womask; 138 } 139 140 /* "Internal" get/set operations */ 141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 142 { 143 return ldq_le_p(&s->csr[addr]); 144 } 145 146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 147 { 148 return ldl_le_p(&s->csr[addr]); 149 } 150 151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 152 { 153 stq_le_p(&s->csr[addr], val); 154 } 155 156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 157 uint32_t clear, uint32_t mask) 158 { 159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 160 stl_le_p(&s->csr[addr], new_val); 161 return new_val; 162 } 163 164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 165 uint64_t clear, uint64_t mask) 166 { 167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 168 stq_le_p(&s->csr[addr], new_val); 169 return new_val; 170 } 171 172 static inline void vtd_iommu_lock(IntelIOMMUState *s) 173 { 174 qemu_mutex_lock(&s->iommu_lock); 175 } 176 177 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 178 { 179 qemu_mutex_unlock(&s->iommu_lock); 180 } 181 182 static void vtd_update_scalable_state(IntelIOMMUState *s) 183 { 184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 185 186 if (s->scalable_mode) { 187 s->root_scalable = val & VTD_RTADDR_SMT; 188 } 189 } 190 191 static void vtd_update_iq_dw(IntelIOMMUState *s) 192 { 193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG); 194 195 if (s->ecap & VTD_ECAP_SMTS && 196 val & VTD_IQA_DW_MASK) { 197 s->iq_dw = true; 198 } else { 199 s->iq_dw = false; 200 } 201 } 202 203 /* Whether the address space needs to notify new mappings */ 204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 205 { 206 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 207 } 208 209 /* GHashTable functions */ 210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2) 211 { 212 const struct vtd_iotlb_key *key1 = v1; 213 const struct vtd_iotlb_key *key2 = v2; 214 215 return key1->sid == key2->sid && 216 key1->pasid == key2->pasid && 217 key1->level == key2->level && 218 key1->gfn == key2->gfn; 219 } 220 221 static guint vtd_iotlb_hash(gconstpointer v) 222 { 223 const struct vtd_iotlb_key *key = v; 224 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) | 225 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT | 226 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT; 227 228 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU)); 229 } 230 231 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2) 232 { 233 const struct vtd_as_key *key1 = v1; 234 const struct vtd_as_key *key2 = v2; 235 236 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) && 237 (key1->pasid == key2->pasid); 238 } 239 240 /* 241 * Note that we use pointer to PCIBus as the key, so hashing/shifting 242 * based on the pointer value is intended. Note that we deal with 243 * collisions through vtd_as_equal(). 244 */ 245 static guint vtd_as_hash(gconstpointer v) 246 { 247 const struct vtd_as_key *key = v; 248 guint value = (guint)(uintptr_t)key->bus; 249 250 return (guint)(value << 8 | key->devfn); 251 } 252 253 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 254 gpointer user_data) 255 { 256 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 257 uint16_t domain_id = *(uint16_t *)user_data; 258 return entry->domain_id == domain_id; 259 } 260 261 /* The shift of an addr for a certain level of paging structure */ 262 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 263 { 264 assert(level != 0); 265 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 266 } 267 268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 269 { 270 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 271 } 272 273 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 274 gpointer user_data) 275 { 276 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 277 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 278 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 279 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 280 return (entry->domain_id == info->domain_id) && 281 (((entry->gfn & info->mask) == gfn) || 282 (entry->gfn == gfn_tlb)); 283 } 284 285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 286 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 287 */ 288 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 289 { 290 VTDAddressSpace *vtd_as; 291 GHashTableIter as_it; 292 293 trace_vtd_context_cache_reset(); 294 295 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 296 297 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 298 vtd_as->context_cache_entry.context_cache_gen = 0; 299 } 300 s->context_cache_gen = 1; 301 } 302 303 /* Must be called with IOMMU lock held. */ 304 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 305 { 306 assert(s->iotlb); 307 g_hash_table_remove_all(s->iotlb); 308 } 309 310 static void vtd_reset_iotlb(IntelIOMMUState *s) 311 { 312 vtd_iommu_lock(s); 313 vtd_reset_iotlb_locked(s); 314 vtd_iommu_unlock(s); 315 } 316 317 static void vtd_reset_caches(IntelIOMMUState *s) 318 { 319 vtd_iommu_lock(s); 320 vtd_reset_iotlb_locked(s); 321 vtd_reset_context_cache_locked(s); 322 vtd_iommu_unlock(s); 323 } 324 325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 326 { 327 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 328 } 329 330 /* Must be called with IOMMU lock held */ 331 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 332 uint32_t pasid, hwaddr addr) 333 { 334 struct vtd_iotlb_key key; 335 VTDIOTLBEntry *entry; 336 int level; 337 338 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 339 key.gfn = vtd_get_iotlb_gfn(addr, level); 340 key.level = level; 341 key.sid = source_id; 342 key.pasid = pasid; 343 entry = g_hash_table_lookup(s->iotlb, &key); 344 if (entry) { 345 goto out; 346 } 347 } 348 349 out: 350 return entry; 351 } 352 353 /* Must be with IOMMU lock held */ 354 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 355 uint16_t domain_id, hwaddr addr, uint64_t slpte, 356 uint8_t access_flags, uint32_t level, 357 uint32_t pasid) 358 { 359 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 360 struct vtd_iotlb_key *key = g_malloc(sizeof(*key)); 361 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 362 363 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 364 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 365 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 366 vtd_reset_iotlb_locked(s); 367 } 368 369 entry->gfn = gfn; 370 entry->domain_id = domain_id; 371 entry->slpte = slpte; 372 entry->access_flags = access_flags; 373 entry->mask = vtd_slpt_level_page_mask(level); 374 entry->pasid = pasid; 375 376 key->gfn = gfn; 377 key->sid = source_id; 378 key->level = level; 379 key->pasid = pasid; 380 381 g_hash_table_replace(s->iotlb, key, entry); 382 } 383 384 /* Given the reg addr of both the message data and address, generate an 385 * interrupt via MSI. 386 */ 387 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 388 hwaddr mesg_data_reg) 389 { 390 MSIMessage msi; 391 392 assert(mesg_data_reg < DMAR_REG_SIZE); 393 assert(mesg_addr_reg < DMAR_REG_SIZE); 394 395 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 396 msi.data = vtd_get_long_raw(s, mesg_data_reg); 397 398 trace_vtd_irq_generate(msi.address, msi.data); 399 400 apic_get_class(NULL)->send_msi(&msi); 401 } 402 403 /* Generate a fault event to software via MSI if conditions are met. 404 * Notice that the value of FSTS_REG being passed to it should be the one 405 * before any update. 406 */ 407 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 408 { 409 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 410 pre_fsts & VTD_FSTS_IQE) { 411 error_report_once("There are previous interrupt conditions " 412 "to be serviced by software, fault event " 413 "is not generated"); 414 return; 415 } 416 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 417 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 418 error_report_once("Interrupt Mask set, irq is not generated"); 419 } else { 420 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 421 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 422 } 423 } 424 425 /* Check if the Fault (F) field of the Fault Recording Register referenced by 426 * @index is Set. 427 */ 428 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 429 { 430 /* Each reg is 128-bit */ 431 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 432 addr += 8; /* Access the high 64-bit half */ 433 434 assert(index < DMAR_FRCD_REG_NR); 435 436 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 437 } 438 439 /* Update the PPF field of Fault Status Register. 440 * Should be called whenever change the F field of any fault recording 441 * registers. 442 */ 443 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 444 { 445 uint32_t i; 446 uint32_t ppf_mask = 0; 447 448 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 449 if (vtd_is_frcd_set(s, i)) { 450 ppf_mask = VTD_FSTS_PPF; 451 break; 452 } 453 } 454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 455 trace_vtd_fsts_ppf(!!ppf_mask); 456 } 457 458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 459 { 460 /* Each reg is 128-bit */ 461 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 462 addr += 8; /* Access the high 64-bit half */ 463 464 assert(index < DMAR_FRCD_REG_NR); 465 466 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 467 vtd_update_fsts_ppf(s); 468 } 469 470 /* Must not update F field now, should be done later */ 471 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 472 uint16_t source_id, hwaddr addr, 473 VTDFaultReason fault, bool is_write, 474 bool is_pasid, uint32_t pasid) 475 { 476 uint64_t hi = 0, lo; 477 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 478 479 assert(index < DMAR_FRCD_REG_NR); 480 481 lo = VTD_FRCD_FI(addr); 482 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) | 483 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid); 484 if (!is_write) { 485 hi |= VTD_FRCD_T; 486 } 487 vtd_set_quad_raw(s, frcd_reg_addr, lo); 488 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 489 490 trace_vtd_frr_new(index, hi, lo); 491 } 492 493 /* Try to collapse multiple pending faults from the same requester */ 494 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 495 { 496 uint32_t i; 497 uint64_t frcd_reg; 498 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 499 500 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 501 frcd_reg = vtd_get_quad_raw(s, addr); 502 if ((frcd_reg & VTD_FRCD_F) && 503 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 504 return true; 505 } 506 addr += 16; /* 128-bit for each */ 507 } 508 return false; 509 } 510 511 /* Log and report an DMAR (address translation) fault to software */ 512 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 513 hwaddr addr, VTDFaultReason fault, 514 bool is_write, bool is_pasid, 515 uint32_t pasid) 516 { 517 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 518 519 assert(fault < VTD_FR_MAX); 520 521 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 522 523 if (fsts_reg & VTD_FSTS_PFO) { 524 error_report_once("New fault is not recorded due to " 525 "Primary Fault Overflow"); 526 return; 527 } 528 529 if (vtd_try_collapse_fault(s, source_id)) { 530 error_report_once("New fault is not recorded due to " 531 "compression of faults"); 532 return; 533 } 534 535 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 536 error_report_once("Next Fault Recording Reg is used, " 537 "new fault is not recorded, set PFO field"); 538 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 539 return; 540 } 541 542 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, 543 is_write, is_pasid, pasid); 544 545 if (fsts_reg & VTD_FSTS_PPF) { 546 error_report_once("There are pending faults already, " 547 "fault event is not generated"); 548 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 549 s->next_frcd_reg++; 550 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 551 s->next_frcd_reg = 0; 552 } 553 } else { 554 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 555 VTD_FSTS_FRI(s->next_frcd_reg)); 556 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 557 s->next_frcd_reg++; 558 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 559 s->next_frcd_reg = 0; 560 } 561 /* This case actually cause the PPF to be Set. 562 * So generate fault event (interrupt). 563 */ 564 vtd_generate_fault_event(s, fsts_reg); 565 } 566 } 567 568 /* Handle Invalidation Queue Errors of queued invalidation interface error 569 * conditions. 570 */ 571 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 572 { 573 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 574 575 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 576 vtd_generate_fault_event(s, fsts_reg); 577 } 578 579 /* Set the IWC field and try to generate an invalidation completion interrupt */ 580 static void vtd_generate_completion_event(IntelIOMMUState *s) 581 { 582 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 583 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 584 return; 585 } 586 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 587 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 588 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 589 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 590 "new event not generated"); 591 return; 592 } else { 593 /* Generate the interrupt event */ 594 trace_vtd_inv_desc_wait_irq("Generating complete event"); 595 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 596 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 597 } 598 } 599 600 static inline bool vtd_root_entry_present(IntelIOMMUState *s, 601 VTDRootEntry *re, 602 uint8_t devfn) 603 { 604 if (s->root_scalable && devfn > UINT8_MAX / 2) { 605 return re->hi & VTD_ROOT_ENTRY_P; 606 } 607 608 return re->lo & VTD_ROOT_ENTRY_P; 609 } 610 611 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 612 VTDRootEntry *re) 613 { 614 dma_addr_t addr; 615 616 addr = s->root + index * sizeof(*re); 617 if (dma_memory_read(&address_space_memory, addr, 618 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) { 619 re->lo = 0; 620 return -VTD_FR_ROOT_TABLE_INV; 621 } 622 re->lo = le64_to_cpu(re->lo); 623 re->hi = le64_to_cpu(re->hi); 624 return 0; 625 } 626 627 static inline bool vtd_ce_present(VTDContextEntry *context) 628 { 629 return context->lo & VTD_CONTEXT_ENTRY_P; 630 } 631 632 static int vtd_get_context_entry_from_root(IntelIOMMUState *s, 633 VTDRootEntry *re, 634 uint8_t index, 635 VTDContextEntry *ce) 636 { 637 dma_addr_t addr, ce_size; 638 639 /* we have checked that root entry is present */ 640 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : 641 VTD_CTX_ENTRY_LEGACY_SIZE; 642 643 if (s->root_scalable && index > UINT8_MAX / 2) { 644 index = index & (~VTD_DEVFN_CHECK_MASK); 645 addr = re->hi & VTD_ROOT_ENTRY_CTP; 646 } else { 647 addr = re->lo & VTD_ROOT_ENTRY_CTP; 648 } 649 650 addr = addr + index * ce_size; 651 if (dma_memory_read(&address_space_memory, addr, 652 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) { 653 return -VTD_FR_CONTEXT_TABLE_INV; 654 } 655 656 ce->lo = le64_to_cpu(ce->lo); 657 ce->hi = le64_to_cpu(ce->hi); 658 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { 659 ce->val[2] = le64_to_cpu(ce->val[2]); 660 ce->val[3] = le64_to_cpu(ce->val[3]); 661 } 662 return 0; 663 } 664 665 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 666 { 667 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 668 } 669 670 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) 671 { 672 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); 673 } 674 675 /* Whether the pte indicates the address of the page frame */ 676 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 677 { 678 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 679 } 680 681 /* Get the content of a spte located in @base_addr[@index] */ 682 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 683 { 684 uint64_t slpte; 685 686 assert(index < VTD_SL_PT_ENTRY_NR); 687 688 if (dma_memory_read(&address_space_memory, 689 base_addr + index * sizeof(slpte), 690 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) { 691 slpte = (uint64_t)-1; 692 return slpte; 693 } 694 slpte = le64_to_cpu(slpte); 695 return slpte; 696 } 697 698 /* Given an iova and the level of paging structure, return the offset 699 * of current level. 700 */ 701 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 702 { 703 return (iova >> vtd_slpt_level_shift(level)) & 704 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 705 } 706 707 /* Check Capability Register to see if the @level of page-table is supported */ 708 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 709 { 710 return VTD_CAP_SAGAW_MASK & s->cap & 711 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 712 } 713 714 /* Return true if check passed, otherwise false */ 715 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, 716 VTDPASIDEntry *pe) 717 { 718 switch (VTD_PE_GET_TYPE(pe)) { 719 case VTD_SM_PASID_ENTRY_FLT: 720 case VTD_SM_PASID_ENTRY_SLT: 721 case VTD_SM_PASID_ENTRY_NESTED: 722 break; 723 case VTD_SM_PASID_ENTRY_PT: 724 if (!x86_iommu->pt_supported) { 725 return false; 726 } 727 break; 728 default: 729 /* Unknown type */ 730 return false; 731 } 732 return true; 733 } 734 735 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire) 736 { 737 return pdire->val & 1; 738 } 739 740 /** 741 * Caller of this function should check present bit if wants 742 * to use pdir entry for further usage except for fpd bit check. 743 */ 744 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base, 745 uint32_t pasid, 746 VTDPASIDDirEntry *pdire) 747 { 748 uint32_t index; 749 dma_addr_t addr, entry_size; 750 751 index = VTD_PASID_DIR_INDEX(pasid); 752 entry_size = VTD_PASID_DIR_ENTRY_SIZE; 753 addr = pasid_dir_base + index * entry_size; 754 if (dma_memory_read(&address_space_memory, addr, 755 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) { 756 return -VTD_FR_PASID_TABLE_INV; 757 } 758 759 return 0; 760 } 761 762 static inline bool vtd_pe_present(VTDPASIDEntry *pe) 763 { 764 return pe->val[0] & VTD_PASID_ENTRY_P; 765 } 766 767 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s, 768 uint32_t pasid, 769 dma_addr_t addr, 770 VTDPASIDEntry *pe) 771 { 772 uint32_t index; 773 dma_addr_t entry_size; 774 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 775 776 index = VTD_PASID_TABLE_INDEX(pasid); 777 entry_size = VTD_PASID_ENTRY_SIZE; 778 addr = addr + index * entry_size; 779 if (dma_memory_read(&address_space_memory, addr, 780 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) { 781 return -VTD_FR_PASID_TABLE_INV; 782 } 783 784 /* Do translation type check */ 785 if (!vtd_pe_type_check(x86_iommu, pe)) { 786 return -VTD_FR_PASID_TABLE_INV; 787 } 788 789 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { 790 return -VTD_FR_PASID_TABLE_INV; 791 } 792 793 return 0; 794 } 795 796 /** 797 * Caller of this function should check present bit if wants 798 * to use pasid entry for further usage except for fpd bit check. 799 */ 800 static int vtd_get_pe_from_pdire(IntelIOMMUState *s, 801 uint32_t pasid, 802 VTDPASIDDirEntry *pdire, 803 VTDPASIDEntry *pe) 804 { 805 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; 806 807 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe); 808 } 809 810 /** 811 * This function gets a pasid entry from a specified pasid 812 * table (includes dir and leaf table) with a specified pasid. 813 * Sanity check should be done to ensure return a present 814 * pasid entry to caller. 815 */ 816 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s, 817 dma_addr_t pasid_dir_base, 818 uint32_t pasid, 819 VTDPASIDEntry *pe) 820 { 821 int ret; 822 VTDPASIDDirEntry pdire; 823 824 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, 825 pasid, &pdire); 826 if (ret) { 827 return ret; 828 } 829 830 if (!vtd_pdire_present(&pdire)) { 831 return -VTD_FR_PASID_TABLE_INV; 832 } 833 834 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe); 835 if (ret) { 836 return ret; 837 } 838 839 if (!vtd_pe_present(pe)) { 840 return -VTD_FR_PASID_TABLE_INV; 841 } 842 843 return 0; 844 } 845 846 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, 847 VTDContextEntry *ce, 848 VTDPASIDEntry *pe, 849 uint32_t pasid) 850 { 851 dma_addr_t pasid_dir_base; 852 int ret = 0; 853 854 if (pasid == PCI_NO_PASID) { 855 pasid = VTD_CE_GET_RID2PASID(ce); 856 } 857 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 858 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe); 859 860 return ret; 861 } 862 863 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, 864 VTDContextEntry *ce, 865 bool *pe_fpd_set, 866 uint32_t pasid) 867 { 868 int ret; 869 dma_addr_t pasid_dir_base; 870 VTDPASIDDirEntry pdire; 871 VTDPASIDEntry pe; 872 873 if (pasid == PCI_NO_PASID) { 874 pasid = VTD_CE_GET_RID2PASID(ce); 875 } 876 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 877 878 /* 879 * No present bit check since fpd is meaningful even 880 * if the present bit is clear. 881 */ 882 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); 883 if (ret) { 884 return ret; 885 } 886 887 if (pdire.val & VTD_PASID_DIR_FPD) { 888 *pe_fpd_set = true; 889 return 0; 890 } 891 892 if (!vtd_pdire_present(&pdire)) { 893 return -VTD_FR_PASID_TABLE_INV; 894 } 895 896 /* 897 * No present bit check since fpd is meaningful even 898 * if the present bit is clear. 899 */ 900 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe); 901 if (ret) { 902 return ret; 903 } 904 905 if (pe.val[0] & VTD_PASID_ENTRY_FPD) { 906 *pe_fpd_set = true; 907 } 908 909 return 0; 910 } 911 912 /* Get the page-table level that hardware should use for the second-level 913 * page-table walk from the Address Width field of context-entry. 914 */ 915 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 916 { 917 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 918 } 919 920 static uint32_t vtd_get_iova_level(IntelIOMMUState *s, 921 VTDContextEntry *ce, 922 uint32_t pasid) 923 { 924 VTDPASIDEntry pe; 925 926 if (s->root_scalable) { 927 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 928 return VTD_PE_GET_LEVEL(&pe); 929 } 930 931 return vtd_ce_get_level(ce); 932 } 933 934 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 935 { 936 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 937 } 938 939 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, 940 VTDContextEntry *ce, 941 uint32_t pasid) 942 { 943 VTDPASIDEntry pe; 944 945 if (s->root_scalable) { 946 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 947 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; 948 } 949 950 return vtd_ce_get_agaw(ce); 951 } 952 953 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 954 { 955 return ce->lo & VTD_CONTEXT_ENTRY_TT; 956 } 957 958 /* Only for Legacy Mode. Return true if check passed, otherwise false */ 959 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 960 VTDContextEntry *ce) 961 { 962 switch (vtd_ce_get_type(ce)) { 963 case VTD_CONTEXT_TT_MULTI_LEVEL: 964 /* Always supported */ 965 break; 966 case VTD_CONTEXT_TT_DEV_IOTLB: 967 if (!x86_iommu->dt_supported) { 968 error_report_once("%s: DT specified but not supported", __func__); 969 return false; 970 } 971 break; 972 case VTD_CONTEXT_TT_PASS_THROUGH: 973 if (!x86_iommu->pt_supported) { 974 error_report_once("%s: PT specified but not supported", __func__); 975 return false; 976 } 977 break; 978 default: 979 /* Unknown type */ 980 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 981 vtd_ce_get_type(ce)); 982 return false; 983 } 984 return true; 985 } 986 987 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, 988 VTDContextEntry *ce, uint8_t aw, 989 uint32_t pasid) 990 { 991 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid); 992 return 1ULL << MIN(ce_agaw, aw); 993 } 994 995 /* Return true if IOVA passes range check, otherwise false. */ 996 static inline bool vtd_iova_range_check(IntelIOMMUState *s, 997 uint64_t iova, VTDContextEntry *ce, 998 uint8_t aw, uint32_t pasid) 999 { 1000 /* 1001 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 1002 * in CAP_REG and AW in context-entry. 1003 */ 1004 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1)); 1005 } 1006 1007 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, 1008 VTDContextEntry *ce, 1009 uint32_t pasid) 1010 { 1011 VTDPASIDEntry pe; 1012 1013 if (s->root_scalable) { 1014 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1015 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; 1016 } 1017 1018 return vtd_ce_get_slpt_base(ce); 1019 } 1020 1021 /* 1022 * Rsvd field masks for spte: 1023 * vtd_spte_rsvd 4k pages 1024 * vtd_spte_rsvd_large large pages 1025 */ 1026 static uint64_t vtd_spte_rsvd[5]; 1027 static uint64_t vtd_spte_rsvd_large[5]; 1028 1029 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 1030 { 1031 uint64_t rsvd_mask = vtd_spte_rsvd[level]; 1032 1033 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) && 1034 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) { 1035 /* large page */ 1036 rsvd_mask = vtd_spte_rsvd_large[level]; 1037 } 1038 1039 return slpte & rsvd_mask; 1040 } 1041 1042 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 1043 * of the translation, can be used for deciding the size of large page. 1044 */ 1045 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, 1046 uint64_t iova, bool is_write, 1047 uint64_t *slptep, uint32_t *slpte_level, 1048 bool *reads, bool *writes, uint8_t aw_bits, 1049 uint32_t pasid) 1050 { 1051 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1052 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1053 uint32_t offset; 1054 uint64_t slpte; 1055 uint64_t access_right_check; 1056 uint64_t xlat, size; 1057 1058 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) { 1059 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 "," 1060 "pasid=0x%" PRIx32 ")", __func__, iova, pasid); 1061 return -VTD_FR_ADDR_BEYOND_MGAW; 1062 } 1063 1064 /* FIXME: what is the Atomics request here? */ 1065 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 1066 1067 while (true) { 1068 offset = vtd_iova_level_offset(iova, level); 1069 slpte = vtd_get_slpte(addr, offset); 1070 1071 if (slpte == (uint64_t)-1) { 1072 error_report_once("%s: detected read error on DMAR slpte " 1073 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")", 1074 __func__, iova, pasid); 1075 if (level == vtd_get_iova_level(s, ce, pasid)) { 1076 /* Invalid programming of context-entry */ 1077 return -VTD_FR_CONTEXT_ENTRY_INV; 1078 } else { 1079 return -VTD_FR_PAGING_ENTRY_INV; 1080 } 1081 } 1082 *reads = (*reads) && (slpte & VTD_SL_R); 1083 *writes = (*writes) && (slpte & VTD_SL_W); 1084 if (!(slpte & access_right_check)) { 1085 error_report_once("%s: detected slpte permission error " 1086 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1087 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%" 1088 PRIx32 ")", __func__, iova, level, 1089 slpte, is_write, pasid); 1090 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 1091 } 1092 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1093 error_report_once("%s: detected splte reserve non-zero " 1094 "iova=0x%" PRIx64 ", level=0x%" PRIx32 1095 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", 1096 __func__, iova, level, slpte, pasid); 1097 return -VTD_FR_PAGING_ENTRY_RSVD; 1098 } 1099 1100 if (vtd_is_last_slpte(slpte, level)) { 1101 *slptep = slpte; 1102 *slpte_level = level; 1103 break; 1104 } 1105 addr = vtd_get_slpte_addr(slpte, aw_bits); 1106 level--; 1107 } 1108 1109 xlat = vtd_get_slpte_addr(*slptep, aw_bits); 1110 size = ~vtd_slpt_level_page_mask(level) + 1; 1111 1112 /* 1113 * From VT-d spec 3.14: Untranslated requests and translation 1114 * requests that result in an address in the interrupt range will be 1115 * blocked with condition code LGN.4 or SGN.8. 1116 */ 1117 if ((xlat > VTD_INTERRUPT_ADDR_LAST || 1118 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) { 1119 return 0; 1120 } else { 1121 error_report_once("%s: xlat address is in interrupt range " 1122 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1123 "slpte=0x%" PRIx64 ", write=%d, " 1124 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", " 1125 "pasid=0x%" PRIx32 ")", 1126 __func__, iova, level, slpte, is_write, 1127 xlat, size, pasid); 1128 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR : 1129 -VTD_FR_INTERRUPT_ADDR; 1130 } 1131 } 1132 1133 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private); 1134 1135 /** 1136 * Constant information used during page walking 1137 * 1138 * @hook_fn: hook func to be called when detected page 1139 * @private: private data to be passed into hook func 1140 * @notify_unmap: whether we should notify invalid entries 1141 * @as: VT-d address space of the device 1142 * @aw: maximum address width 1143 * @domain: domain ID of the page walk 1144 */ 1145 typedef struct { 1146 VTDAddressSpace *as; 1147 vtd_page_walk_hook hook_fn; 1148 void *private; 1149 bool notify_unmap; 1150 uint8_t aw; 1151 uint16_t domain_id; 1152 } vtd_page_walk_info; 1153 1154 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info) 1155 { 1156 VTDAddressSpace *as = info->as; 1157 vtd_page_walk_hook hook_fn = info->hook_fn; 1158 void *private = info->private; 1159 IOMMUTLBEntry *entry = &event->entry; 1160 DMAMap target = { 1161 .iova = entry->iova, 1162 .size = entry->addr_mask, 1163 .translated_addr = entry->translated_addr, 1164 .perm = entry->perm, 1165 }; 1166 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 1167 1168 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) { 1169 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1170 return 0; 1171 } 1172 1173 assert(hook_fn); 1174 1175 /* Update local IOVA mapped ranges */ 1176 if (event->type == IOMMU_NOTIFIER_MAP) { 1177 if (mapped) { 1178 /* If it's exactly the same translation, skip */ 1179 if (!memcmp(mapped, &target, sizeof(target))) { 1180 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 1181 entry->translated_addr); 1182 return 0; 1183 } else { 1184 /* 1185 * Translation changed. Normally this should not 1186 * happen, but it can happen when with buggy guest 1187 * OSes. Note that there will be a small window that 1188 * we don't have map at all. But that's the best 1189 * effort we can do. The ideal way to emulate this is 1190 * atomically modify the PTE to follow what has 1191 * changed, but we can't. One example is that vfio 1192 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 1193 * interface to modify a mapping (meanwhile it seems 1194 * meaningless to even provide one). Anyway, let's 1195 * mark this as a TODO in case one day we'll have 1196 * a better solution. 1197 */ 1198 IOMMUAccessFlags cache_perm = entry->perm; 1199 int ret; 1200 1201 /* Emulate an UNMAP */ 1202 event->type = IOMMU_NOTIFIER_UNMAP; 1203 entry->perm = IOMMU_NONE; 1204 trace_vtd_page_walk_one(info->domain_id, 1205 entry->iova, 1206 entry->translated_addr, 1207 entry->addr_mask, 1208 entry->perm); 1209 ret = hook_fn(event, private); 1210 if (ret) { 1211 return ret; 1212 } 1213 /* Drop any existing mapping */ 1214 iova_tree_remove(as->iova_tree, target); 1215 /* Recover the correct type */ 1216 event->type = IOMMU_NOTIFIER_MAP; 1217 entry->perm = cache_perm; 1218 } 1219 } 1220 iova_tree_insert(as->iova_tree, &target); 1221 } else { 1222 if (!mapped) { 1223 /* Skip since we didn't map this range at all */ 1224 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1225 return 0; 1226 } 1227 iova_tree_remove(as->iova_tree, target); 1228 } 1229 1230 trace_vtd_page_walk_one(info->domain_id, entry->iova, 1231 entry->translated_addr, entry->addr_mask, 1232 entry->perm); 1233 return hook_fn(event, private); 1234 } 1235 1236 /** 1237 * vtd_page_walk_level - walk over specific level for IOVA range 1238 * 1239 * @addr: base GPA addr to start the walk 1240 * @start: IOVA range start address 1241 * @end: IOVA range end address (start <= addr < end) 1242 * @read: whether parent level has read permission 1243 * @write: whether parent level has write permission 1244 * @info: constant information for the page walk 1245 */ 1246 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 1247 uint64_t end, uint32_t level, bool read, 1248 bool write, vtd_page_walk_info *info) 1249 { 1250 bool read_cur, write_cur, entry_valid; 1251 uint32_t offset; 1252 uint64_t slpte; 1253 uint64_t subpage_size, subpage_mask; 1254 IOMMUTLBEvent event; 1255 uint64_t iova = start; 1256 uint64_t iova_next; 1257 int ret = 0; 1258 1259 trace_vtd_page_walk_level(addr, level, start, end); 1260 1261 subpage_size = 1ULL << vtd_slpt_level_shift(level); 1262 subpage_mask = vtd_slpt_level_page_mask(level); 1263 1264 while (iova < end) { 1265 iova_next = (iova & subpage_mask) + subpage_size; 1266 1267 offset = vtd_iova_level_offset(iova, level); 1268 slpte = vtd_get_slpte(addr, offset); 1269 1270 if (slpte == (uint64_t)-1) { 1271 trace_vtd_page_walk_skip_read(iova, iova_next); 1272 goto next; 1273 } 1274 1275 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1276 trace_vtd_page_walk_skip_reserve(iova, iova_next); 1277 goto next; 1278 } 1279 1280 /* Permissions are stacked with parents' */ 1281 read_cur = read && (slpte & VTD_SL_R); 1282 write_cur = write && (slpte & VTD_SL_W); 1283 1284 /* 1285 * As long as we have either read/write permission, this is a 1286 * valid entry. The rule works for both page entries and page 1287 * table entries. 1288 */ 1289 entry_valid = read_cur | write_cur; 1290 1291 if (!vtd_is_last_slpte(slpte, level) && entry_valid) { 1292 /* 1293 * This is a valid PDE (or even bigger than PDE). We need 1294 * to walk one further level. 1295 */ 1296 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), 1297 iova, MIN(iova_next, end), level - 1, 1298 read_cur, write_cur, info); 1299 } else { 1300 /* 1301 * This means we are either: 1302 * 1303 * (1) the real page entry (either 4K page, or huge page) 1304 * (2) the whole range is invalid 1305 * 1306 * In either case, we send an IOTLB notification down. 1307 */ 1308 event.entry.target_as = &address_space_memory; 1309 event.entry.iova = iova & subpage_mask; 1310 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 1311 event.entry.addr_mask = ~subpage_mask; 1312 /* NOTE: this is only meaningful if entry_valid == true */ 1313 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); 1314 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP : 1315 IOMMU_NOTIFIER_UNMAP; 1316 ret = vtd_page_walk_one(&event, info); 1317 } 1318 1319 if (ret < 0) { 1320 return ret; 1321 } 1322 1323 next: 1324 iova = iova_next; 1325 } 1326 1327 return 0; 1328 } 1329 1330 /** 1331 * vtd_page_walk - walk specific IOVA range, and call the hook 1332 * 1333 * @s: intel iommu state 1334 * @ce: context entry to walk upon 1335 * @start: IOVA address to start the walk 1336 * @end: IOVA range end address (start <= addr < end) 1337 * @info: page walking information struct 1338 */ 1339 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, 1340 uint64_t start, uint64_t end, 1341 vtd_page_walk_info *info, 1342 uint32_t pasid) 1343 { 1344 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1345 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1346 1347 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) { 1348 return -VTD_FR_ADDR_BEYOND_MGAW; 1349 } 1350 1351 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) { 1352 /* Fix end so that it reaches the maximum */ 1353 end = vtd_iova_limit(s, ce, info->aw, pasid); 1354 } 1355 1356 return vtd_page_walk_level(addr, start, end, level, true, true, info); 1357 } 1358 1359 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, 1360 VTDRootEntry *re) 1361 { 1362 /* Legacy Mode reserved bits check */ 1363 if (!s->root_scalable && 1364 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1365 goto rsvd_err; 1366 1367 /* Scalable Mode reserved bits check */ 1368 if (s->root_scalable && 1369 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || 1370 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1371 goto rsvd_err; 1372 1373 return 0; 1374 1375 rsvd_err: 1376 error_report_once("%s: invalid root entry: hi=0x%"PRIx64 1377 ", lo=0x%"PRIx64, 1378 __func__, re->hi, re->lo); 1379 return -VTD_FR_ROOT_ENTRY_RSVD; 1380 } 1381 1382 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, 1383 VTDContextEntry *ce) 1384 { 1385 if (!s->root_scalable && 1386 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || 1387 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1388 error_report_once("%s: invalid context entry: hi=%"PRIx64 1389 ", lo=%"PRIx64" (reserved nonzero)", 1390 __func__, ce->hi, ce->lo); 1391 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1392 } 1393 1394 if (s->root_scalable && 1395 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || 1396 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || 1397 ce->val[2] || 1398 ce->val[3])) { 1399 error_report_once("%s: invalid context entry: val[3]=%"PRIx64 1400 ", val[2]=%"PRIx64 1401 ", val[1]=%"PRIx64 1402 ", val[0]=%"PRIx64" (reserved nonzero)", 1403 __func__, ce->val[3], ce->val[2], 1404 ce->val[1], ce->val[0]); 1405 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1406 } 1407 1408 return 0; 1409 } 1410 1411 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, 1412 VTDContextEntry *ce) 1413 { 1414 VTDPASIDEntry pe; 1415 1416 /* 1417 * Make sure in Scalable Mode, a present context entry 1418 * has valid rid2pasid setting, which includes valid 1419 * rid2pasid field and corresponding pasid entry setting 1420 */ 1421 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID); 1422 } 1423 1424 /* Map a device to its corresponding domain (context-entry) */ 1425 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 1426 uint8_t devfn, VTDContextEntry *ce) 1427 { 1428 VTDRootEntry re; 1429 int ret_fr; 1430 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 1431 1432 ret_fr = vtd_get_root_entry(s, bus_num, &re); 1433 if (ret_fr) { 1434 return ret_fr; 1435 } 1436 1437 if (!vtd_root_entry_present(s, &re, devfn)) { 1438 /* Not error - it's okay we don't have root entry. */ 1439 trace_vtd_re_not_present(bus_num); 1440 return -VTD_FR_ROOT_ENTRY_P; 1441 } 1442 1443 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); 1444 if (ret_fr) { 1445 return ret_fr; 1446 } 1447 1448 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); 1449 if (ret_fr) { 1450 return ret_fr; 1451 } 1452 1453 if (!vtd_ce_present(ce)) { 1454 /* Not error - it's okay we don't have context entry. */ 1455 trace_vtd_ce_not_present(bus_num, devfn); 1456 return -VTD_FR_CONTEXT_ENTRY_P; 1457 } 1458 1459 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); 1460 if (ret_fr) { 1461 return ret_fr; 1462 } 1463 1464 /* Check if the programming of context-entry is valid */ 1465 if (!s->root_scalable && 1466 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 1467 error_report_once("%s: invalid context entry: hi=%"PRIx64 1468 ", lo=%"PRIx64" (level %d not supported)", 1469 __func__, ce->hi, ce->lo, 1470 vtd_ce_get_level(ce)); 1471 return -VTD_FR_CONTEXT_ENTRY_INV; 1472 } 1473 1474 if (!s->root_scalable) { 1475 /* Do translation type check */ 1476 if (!vtd_ce_type_check(x86_iommu, ce)) { 1477 /* Errors dumped in vtd_ce_type_check() */ 1478 return -VTD_FR_CONTEXT_ENTRY_INV; 1479 } 1480 } else { 1481 /* 1482 * Check if the programming of context-entry.rid2pasid 1483 * and corresponding pasid setting is valid, and thus 1484 * avoids to check pasid entry fetching result in future 1485 * helper function calling. 1486 */ 1487 ret_fr = vtd_ce_rid2pasid_check(s, ce); 1488 if (ret_fr) { 1489 return ret_fr; 1490 } 1491 } 1492 1493 return 0; 1494 } 1495 1496 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event, 1497 void *private) 1498 { 1499 memory_region_notify_iommu(private, 0, *event); 1500 return 0; 1501 } 1502 1503 static uint16_t vtd_get_domain_id(IntelIOMMUState *s, 1504 VTDContextEntry *ce, 1505 uint32_t pasid) 1506 { 1507 VTDPASIDEntry pe; 1508 1509 if (s->root_scalable) { 1510 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1511 return VTD_SM_PASID_ENTRY_DID(pe.val[1]); 1512 } 1513 1514 return VTD_CONTEXT_ENTRY_DID(ce->hi); 1515 } 1516 1517 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1518 VTDContextEntry *ce, 1519 hwaddr addr, hwaddr size) 1520 { 1521 IntelIOMMUState *s = vtd_as->iommu_state; 1522 vtd_page_walk_info info = { 1523 .hook_fn = vtd_sync_shadow_page_hook, 1524 .private = (void *)&vtd_as->iommu, 1525 .notify_unmap = true, 1526 .aw = s->aw_bits, 1527 .as = vtd_as, 1528 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid), 1529 }; 1530 1531 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid); 1532 } 1533 1534 static int vtd_address_space_sync(VTDAddressSpace *vtd_as) 1535 { 1536 int ret; 1537 VTDContextEntry ce; 1538 IOMMUNotifier *n; 1539 1540 /* If no MAP notifier registered, we simply invalidate all the cache */ 1541 if (!vtd_as_has_map_notifier(vtd_as)) { 1542 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1543 memory_region_unmap_iommu_notifier_range(n); 1544 } 1545 return 0; 1546 } 1547 1548 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1549 pci_bus_num(vtd_as->bus), 1550 vtd_as->devfn, &ce); 1551 if (ret) { 1552 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1553 /* 1554 * It's a valid scenario to have a context entry that is 1555 * not present. For example, when a device is removed 1556 * from an existing domain then the context entry will be 1557 * zeroed by the guest before it was put into another 1558 * domain. When this happens, instead of synchronizing 1559 * the shadow pages we should invalidate all existing 1560 * mappings and notify the backends. 1561 */ 1562 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1563 vtd_address_space_unmap(vtd_as, n); 1564 } 1565 ret = 0; 1566 } 1567 return ret; 1568 } 1569 1570 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1571 } 1572 1573 /* 1574 * Check if specific device is configured to bypass address 1575 * translation for DMA requests. In Scalable Mode, bypass 1576 * 1st-level translation or 2nd-level translation, it depends 1577 * on PGTT setting. 1578 */ 1579 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce, 1580 uint32_t pasid) 1581 { 1582 VTDPASIDEntry pe; 1583 int ret; 1584 1585 if (s->root_scalable) { 1586 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1587 if (ret) { 1588 /* 1589 * This error is guest triggerable. We should assumt PT 1590 * not enabled for safety. 1591 */ 1592 return false; 1593 } 1594 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); 1595 } 1596 1597 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH); 1598 1599 } 1600 1601 static bool vtd_as_pt_enabled(VTDAddressSpace *as) 1602 { 1603 IntelIOMMUState *s; 1604 VTDContextEntry ce; 1605 1606 assert(as); 1607 1608 s = as->iommu_state; 1609 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn, 1610 &ce)) { 1611 /* 1612 * Possibly failed to parse the context entry for some reason 1613 * (e.g., during init, or any guest configuration errors on 1614 * context entries). We should assume PT not enabled for 1615 * safety. 1616 */ 1617 return false; 1618 } 1619 1620 return vtd_dev_pt_enabled(s, &ce, as->pasid); 1621 } 1622 1623 /* Return whether the device is using IOMMU translation. */ 1624 static bool vtd_switch_address_space(VTDAddressSpace *as) 1625 { 1626 bool use_iommu, pt; 1627 /* Whether we need to take the BQL on our own */ 1628 bool take_bql = !qemu_mutex_iothread_locked(); 1629 1630 assert(as); 1631 1632 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as); 1633 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as); 1634 1635 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1636 VTD_PCI_SLOT(as->devfn), 1637 VTD_PCI_FUNC(as->devfn), 1638 use_iommu); 1639 1640 /* 1641 * It's possible that we reach here without BQL, e.g., when called 1642 * from vtd_pt_enable_fast_path(). However the memory APIs need 1643 * it. We'd better make sure we have had it already, or, take it. 1644 */ 1645 if (take_bql) { 1646 qemu_mutex_lock_iothread(); 1647 } 1648 1649 /* Turn off first then on the other */ 1650 if (use_iommu) { 1651 memory_region_set_enabled(&as->nodmar, false); 1652 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1653 /* 1654 * vt-d spec v3.4 3.14: 1655 * 1656 * """ 1657 * Requests-with-PASID with input address in range 0xFEEx_xxxx 1658 * are translated normally like any other request-with-PASID 1659 * through DMA-remapping hardware. 1660 * """ 1661 * 1662 * Need to disable ir for as with PASID. 1663 */ 1664 if (as->pasid != PCI_NO_PASID) { 1665 memory_region_set_enabled(&as->iommu_ir, false); 1666 } else { 1667 memory_region_set_enabled(&as->iommu_ir, true); 1668 } 1669 } else { 1670 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1671 memory_region_set_enabled(&as->nodmar, true); 1672 } 1673 1674 /* 1675 * vtd-spec v3.4 3.14: 1676 * 1677 * """ 1678 * Requests-with-PASID with input address in range 0xFEEx_xxxx are 1679 * translated normally like any other request-with-PASID through 1680 * DMA-remapping hardware. However, if such a request is processed 1681 * using pass-through translation, it will be blocked as described 1682 * in the paragraph below. 1683 * 1684 * Software must not program paging-structure entries to remap any 1685 * address to the interrupt address range. Untranslated requests 1686 * and translation requests that result in an address in the 1687 * interrupt range will be blocked with condition code LGN.4 or 1688 * SGN.8. 1689 * """ 1690 * 1691 * We enable per as memory region (iommu_ir_fault) for catching 1692 * the tranlsation for interrupt range through PASID + PT. 1693 */ 1694 if (pt && as->pasid != PCI_NO_PASID) { 1695 memory_region_set_enabled(&as->iommu_ir_fault, true); 1696 } else { 1697 memory_region_set_enabled(&as->iommu_ir_fault, false); 1698 } 1699 1700 if (take_bql) { 1701 qemu_mutex_unlock_iothread(); 1702 } 1703 1704 return use_iommu; 1705 } 1706 1707 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1708 { 1709 VTDAddressSpace *vtd_as; 1710 GHashTableIter iter; 1711 1712 g_hash_table_iter_init(&iter, s->vtd_address_spaces); 1713 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) { 1714 vtd_switch_address_space(vtd_as); 1715 } 1716 } 1717 1718 static const bool vtd_qualified_faults[] = { 1719 [VTD_FR_RESERVED] = false, 1720 [VTD_FR_ROOT_ENTRY_P] = false, 1721 [VTD_FR_CONTEXT_ENTRY_P] = true, 1722 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1723 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1724 [VTD_FR_WRITE] = true, 1725 [VTD_FR_READ] = true, 1726 [VTD_FR_PAGING_ENTRY_INV] = true, 1727 [VTD_FR_ROOT_TABLE_INV] = false, 1728 [VTD_FR_CONTEXT_TABLE_INV] = false, 1729 [VTD_FR_INTERRUPT_ADDR] = true, 1730 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1731 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1732 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1733 [VTD_FR_PASID_TABLE_INV] = false, 1734 [VTD_FR_SM_INTERRUPT_ADDR] = true, 1735 [VTD_FR_MAX] = false, 1736 }; 1737 1738 /* To see if a fault condition is "qualified", which is reported to software 1739 * only if the FPD field in the context-entry used to process the faulting 1740 * request is 0. 1741 */ 1742 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1743 { 1744 return vtd_qualified_faults[fault]; 1745 } 1746 1747 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1748 { 1749 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1750 } 1751 1752 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value, 1753 gpointer user_data) 1754 { 1755 struct vtd_as_key *as_key = (struct vtd_as_key *)key; 1756 uint16_t target_sid = *(uint16_t *)user_data; 1757 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn); 1758 return sid == target_sid; 1759 } 1760 1761 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid) 1762 { 1763 uint8_t bus_num = PCI_BUS_NUM(sid); 1764 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num]; 1765 1766 if (vtd_as && 1767 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) { 1768 return vtd_as; 1769 } 1770 1771 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid); 1772 s->vtd_as_cache[bus_num] = vtd_as; 1773 1774 return vtd_as; 1775 } 1776 1777 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1778 { 1779 VTDAddressSpace *vtd_as; 1780 bool success = false; 1781 1782 vtd_as = vtd_get_as_by_sid(s, source_id); 1783 if (!vtd_as) { 1784 goto out; 1785 } 1786 1787 if (vtd_switch_address_space(vtd_as) == false) { 1788 /* We switched off IOMMU region successfully. */ 1789 success = true; 1790 } 1791 1792 out: 1793 trace_vtd_pt_enable_fast_path(source_id, success); 1794 } 1795 1796 static void vtd_report_fault(IntelIOMMUState *s, 1797 int err, bool is_fpd_set, 1798 uint16_t source_id, 1799 hwaddr addr, 1800 bool is_write, 1801 bool is_pasid, 1802 uint32_t pasid) 1803 { 1804 if (is_fpd_set && vtd_is_qualified_fault(err)) { 1805 trace_vtd_fault_disabled(); 1806 } else { 1807 vtd_report_dmar_fault(s, source_id, addr, err, is_write, 1808 is_pasid, pasid); 1809 } 1810 } 1811 1812 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1813 * translation. 1814 * 1815 * Called from RCU critical section. 1816 * 1817 * @bus_num: The bus number 1818 * @devfn: The devfn, which is the combined of device and function number 1819 * @is_write: The access is a write operation 1820 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1821 * 1822 * Returns true if translation is successful, otherwise false. 1823 */ 1824 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1825 uint8_t devfn, hwaddr addr, bool is_write, 1826 IOMMUTLBEntry *entry) 1827 { 1828 IntelIOMMUState *s = vtd_as->iommu_state; 1829 VTDContextEntry ce; 1830 uint8_t bus_num = pci_bus_num(bus); 1831 VTDContextCacheEntry *cc_entry; 1832 uint64_t slpte, page_mask; 1833 uint32_t level, pasid = vtd_as->pasid; 1834 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn); 1835 int ret_fr; 1836 bool is_fpd_set = false; 1837 bool reads = true; 1838 bool writes = true; 1839 uint8_t access_flags; 1840 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable; 1841 VTDIOTLBEntry *iotlb_entry; 1842 1843 /* 1844 * We have standalone memory region for interrupt addresses, we 1845 * should never receive translation requests in this region. 1846 */ 1847 assert(!vtd_is_interrupt_addr(addr)); 1848 1849 vtd_iommu_lock(s); 1850 1851 cc_entry = &vtd_as->context_cache_entry; 1852 1853 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */ 1854 if (!rid2pasid) { 1855 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1856 if (iotlb_entry) { 1857 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1858 iotlb_entry->domain_id); 1859 slpte = iotlb_entry->slpte; 1860 access_flags = iotlb_entry->access_flags; 1861 page_mask = iotlb_entry->mask; 1862 goto out; 1863 } 1864 } 1865 1866 /* Try to fetch context-entry from cache first */ 1867 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1868 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1869 cc_entry->context_entry.lo, 1870 cc_entry->context_cache_gen); 1871 ce = cc_entry->context_entry; 1872 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1873 if (!is_fpd_set && s->root_scalable) { 1874 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1875 if (ret_fr) { 1876 vtd_report_fault(s, -ret_fr, is_fpd_set, 1877 source_id, addr, is_write, 1878 false, 0); 1879 goto error; 1880 } 1881 } 1882 } else { 1883 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1884 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1885 if (!ret_fr && !is_fpd_set && s->root_scalable) { 1886 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1887 } 1888 if (ret_fr) { 1889 vtd_report_fault(s, -ret_fr, is_fpd_set, 1890 source_id, addr, is_write, 1891 false, 0); 1892 goto error; 1893 } 1894 /* Update context-cache */ 1895 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1896 cc_entry->context_cache_gen, 1897 s->context_cache_gen); 1898 cc_entry->context_entry = ce; 1899 cc_entry->context_cache_gen = s->context_cache_gen; 1900 } 1901 1902 if (rid2pasid) { 1903 pasid = VTD_CE_GET_RID2PASID(&ce); 1904 } 1905 1906 /* 1907 * We don't need to translate for pass-through context entries. 1908 * Also, let's ignore IOTLB caching as well for PT devices. 1909 */ 1910 if (vtd_dev_pt_enabled(s, &ce, pasid)) { 1911 entry->iova = addr & VTD_PAGE_MASK_4K; 1912 entry->translated_addr = entry->iova; 1913 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1914 entry->perm = IOMMU_RW; 1915 trace_vtd_translate_pt(source_id, entry->iova); 1916 1917 /* 1918 * When this happens, it means firstly caching-mode is not 1919 * enabled, and this is the first passthrough translation for 1920 * the device. Let's enable the fast path for passthrough. 1921 * 1922 * When passthrough is disabled again for the device, we can 1923 * capture it via the context entry invalidation, then the 1924 * IOMMU region can be swapped back. 1925 */ 1926 vtd_pt_enable_fast_path(s, source_id); 1927 vtd_iommu_unlock(s); 1928 return true; 1929 } 1930 1931 /* Try to fetch slpte form IOTLB for RID2PASID slow path */ 1932 if (rid2pasid) { 1933 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1934 if (iotlb_entry) { 1935 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1936 iotlb_entry->domain_id); 1937 slpte = iotlb_entry->slpte; 1938 access_flags = iotlb_entry->access_flags; 1939 page_mask = iotlb_entry->mask; 1940 goto out; 1941 } 1942 } 1943 1944 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, 1945 &reads, &writes, s->aw_bits, pasid); 1946 if (ret_fr) { 1947 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, 1948 addr, is_write, pasid != PCI_NO_PASID, pasid); 1949 goto error; 1950 } 1951 1952 page_mask = vtd_slpt_level_page_mask(level); 1953 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 1954 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid), 1955 addr, slpte, access_flags, level, pasid); 1956 out: 1957 vtd_iommu_unlock(s); 1958 entry->iova = addr & page_mask; 1959 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; 1960 entry->addr_mask = ~page_mask; 1961 entry->perm = access_flags; 1962 return true; 1963 1964 error: 1965 vtd_iommu_unlock(s); 1966 entry->iova = 0; 1967 entry->translated_addr = 0; 1968 entry->addr_mask = 0; 1969 entry->perm = IOMMU_NONE; 1970 return false; 1971 } 1972 1973 static void vtd_root_table_setup(IntelIOMMUState *s) 1974 { 1975 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 1976 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 1977 1978 vtd_update_scalable_state(s); 1979 1980 trace_vtd_reg_dmar_root(s->root, s->root_scalable); 1981 } 1982 1983 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 1984 uint32_t index, uint32_t mask) 1985 { 1986 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 1987 } 1988 1989 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 1990 { 1991 uint64_t value = 0; 1992 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 1993 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 1994 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 1995 s->intr_eime = value & VTD_IRTA_EIME; 1996 1997 /* Notify global invalidation */ 1998 vtd_iec_notify_all(s, true, 0, 0); 1999 2000 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 2001 } 2002 2003 static void vtd_iommu_replay_all(IntelIOMMUState *s) 2004 { 2005 VTDAddressSpace *vtd_as; 2006 2007 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2008 vtd_address_space_sync(vtd_as); 2009 } 2010 } 2011 2012 static void vtd_context_global_invalidate(IntelIOMMUState *s) 2013 { 2014 trace_vtd_inv_desc_cc_global(); 2015 /* Protects context cache */ 2016 vtd_iommu_lock(s); 2017 s->context_cache_gen++; 2018 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 2019 vtd_reset_context_cache_locked(s); 2020 } 2021 vtd_iommu_unlock(s); 2022 vtd_address_space_refresh_all(s); 2023 /* 2024 * From VT-d spec 6.5.2.1, a global context entry invalidation 2025 * should be followed by a IOTLB global invalidation, so we should 2026 * be safe even without this. Hoewever, let's replay the region as 2027 * well to be safer, and go back here when we need finer tunes for 2028 * VT-d emulation codes. 2029 */ 2030 vtd_iommu_replay_all(s); 2031 } 2032 2033 /* Do a context-cache device-selective invalidation. 2034 * @func_mask: FM field after shifting 2035 */ 2036 static void vtd_context_device_invalidate(IntelIOMMUState *s, 2037 uint16_t source_id, 2038 uint16_t func_mask) 2039 { 2040 GHashTableIter as_it; 2041 uint16_t mask; 2042 VTDAddressSpace *vtd_as; 2043 uint8_t bus_n, devfn; 2044 2045 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 2046 2047 switch (func_mask & 3) { 2048 case 0: 2049 mask = 0; /* No bits in the SID field masked */ 2050 break; 2051 case 1: 2052 mask = 4; /* Mask bit 2 in the SID field */ 2053 break; 2054 case 2: 2055 mask = 6; /* Mask bit 2:1 in the SID field */ 2056 break; 2057 case 3: 2058 mask = 7; /* Mask bit 2:0 in the SID field */ 2059 break; 2060 default: 2061 g_assert_not_reached(); 2062 } 2063 mask = ~mask; 2064 2065 bus_n = VTD_SID_TO_BUS(source_id); 2066 devfn = VTD_SID_TO_DEVFN(source_id); 2067 2068 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 2069 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 2070 if ((pci_bus_num(vtd_as->bus) == bus_n) && 2071 (vtd_as->devfn & mask) == (devfn & mask)) { 2072 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn), 2073 VTD_PCI_FUNC(vtd_as->devfn)); 2074 vtd_iommu_lock(s); 2075 vtd_as->context_cache_entry.context_cache_gen = 0; 2076 vtd_iommu_unlock(s); 2077 /* 2078 * Do switch address space when needed, in case if the 2079 * device passthrough bit is switched. 2080 */ 2081 vtd_switch_address_space(vtd_as); 2082 /* 2083 * So a device is moving out of (or moving into) a 2084 * domain, resync the shadow page table. 2085 * This won't bring bad even if we have no such 2086 * notifier registered - the IOMMU notification 2087 * framework will skip MAP notifications if that 2088 * happened. 2089 */ 2090 vtd_address_space_sync(vtd_as); 2091 } 2092 } 2093 } 2094 2095 /* Context-cache invalidation 2096 * Returns the Context Actual Invalidation Granularity. 2097 * @val: the content of the CCMD_REG 2098 */ 2099 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 2100 { 2101 uint64_t caig; 2102 uint64_t type = val & VTD_CCMD_CIRG_MASK; 2103 2104 switch (type) { 2105 case VTD_CCMD_DOMAIN_INVL: 2106 /* Fall through */ 2107 case VTD_CCMD_GLOBAL_INVL: 2108 caig = VTD_CCMD_GLOBAL_INVL_A; 2109 vtd_context_global_invalidate(s); 2110 break; 2111 2112 case VTD_CCMD_DEVICE_INVL: 2113 caig = VTD_CCMD_DEVICE_INVL_A; 2114 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 2115 break; 2116 2117 default: 2118 error_report_once("%s: invalid context: 0x%" PRIx64, 2119 __func__, val); 2120 caig = 0; 2121 } 2122 return caig; 2123 } 2124 2125 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 2126 { 2127 trace_vtd_inv_desc_iotlb_global(); 2128 vtd_reset_iotlb(s); 2129 vtd_iommu_replay_all(s); 2130 } 2131 2132 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 2133 { 2134 VTDContextEntry ce; 2135 VTDAddressSpace *vtd_as; 2136 2137 trace_vtd_inv_desc_iotlb_domain(domain_id); 2138 2139 vtd_iommu_lock(s); 2140 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 2141 &domain_id); 2142 vtd_iommu_unlock(s); 2143 2144 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2145 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2146 vtd_as->devfn, &ce) && 2147 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2148 vtd_address_space_sync(vtd_as); 2149 } 2150 } 2151 } 2152 2153 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 2154 uint16_t domain_id, hwaddr addr, 2155 uint8_t am, uint32_t pasid) 2156 { 2157 VTDAddressSpace *vtd_as; 2158 VTDContextEntry ce; 2159 int ret; 2160 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 2161 2162 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 2163 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) { 2164 continue; 2165 } 2166 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2167 vtd_as->devfn, &ce); 2168 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2169 if (vtd_as_has_map_notifier(vtd_as)) { 2170 /* 2171 * As long as we have MAP notifications registered in 2172 * any of our IOMMU notifiers, we need to sync the 2173 * shadow page table. 2174 */ 2175 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 2176 } else { 2177 /* 2178 * For UNMAP-only notifiers, we don't need to walk the 2179 * page tables. We just deliver the PSI down to 2180 * invalidate caches. 2181 */ 2182 IOMMUTLBEvent event = { 2183 .type = IOMMU_NOTIFIER_UNMAP, 2184 .entry = { 2185 .target_as = &address_space_memory, 2186 .iova = addr, 2187 .translated_addr = 0, 2188 .addr_mask = size - 1, 2189 .perm = IOMMU_NONE, 2190 }, 2191 }; 2192 memory_region_notify_iommu(&vtd_as->iommu, 0, event); 2193 } 2194 } 2195 } 2196 } 2197 2198 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 2199 hwaddr addr, uint8_t am) 2200 { 2201 VTDIOTLBPageInvInfo info; 2202 2203 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 2204 2205 assert(am <= VTD_MAMV); 2206 info.domain_id = domain_id; 2207 info.addr = addr; 2208 info.mask = ~((1 << am) - 1); 2209 vtd_iommu_lock(s); 2210 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 2211 vtd_iommu_unlock(s); 2212 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID); 2213 } 2214 2215 /* Flush IOTLB 2216 * Returns the IOTLB Actual Invalidation Granularity. 2217 * @val: the content of the IOTLB_REG 2218 */ 2219 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 2220 { 2221 uint64_t iaig; 2222 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 2223 uint16_t domain_id; 2224 hwaddr addr; 2225 uint8_t am; 2226 2227 switch (type) { 2228 case VTD_TLB_GLOBAL_FLUSH: 2229 iaig = VTD_TLB_GLOBAL_FLUSH_A; 2230 vtd_iotlb_global_invalidate(s); 2231 break; 2232 2233 case VTD_TLB_DSI_FLUSH: 2234 domain_id = VTD_TLB_DID(val); 2235 iaig = VTD_TLB_DSI_FLUSH_A; 2236 vtd_iotlb_domain_invalidate(s, domain_id); 2237 break; 2238 2239 case VTD_TLB_PSI_FLUSH: 2240 domain_id = VTD_TLB_DID(val); 2241 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 2242 am = VTD_IVA_AM(addr); 2243 addr = VTD_IVA_ADDR(addr); 2244 if (am > VTD_MAMV) { 2245 error_report_once("%s: address mask overflow: 0x%" PRIx64, 2246 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 2247 iaig = 0; 2248 break; 2249 } 2250 iaig = VTD_TLB_PSI_FLUSH_A; 2251 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2252 break; 2253 2254 default: 2255 error_report_once("%s: invalid granularity: 0x%" PRIx64, 2256 __func__, val); 2257 iaig = 0; 2258 } 2259 return iaig; 2260 } 2261 2262 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 2263 2264 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 2265 { 2266 return s->qi_enabled && (s->iq_tail == s->iq_head) && 2267 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 2268 } 2269 2270 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 2271 { 2272 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 2273 2274 trace_vtd_inv_qi_enable(en); 2275 2276 if (en) { 2277 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 2278 /* 2^(x+8) entries */ 2279 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); 2280 s->qi_enabled = true; 2281 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 2282 /* Ok - report back to driver */ 2283 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 2284 2285 if (s->iq_tail != 0) { 2286 /* 2287 * This is a spec violation but Windows guests are known to set up 2288 * Queued Invalidation this way so we allow the write and process 2289 * Invalidation Descriptors right away. 2290 */ 2291 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 2292 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2293 vtd_fetch_inv_desc(s); 2294 } 2295 } 2296 } else { 2297 if (vtd_queued_inv_disable_check(s)) { 2298 /* disable Queued Invalidation */ 2299 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 2300 s->iq_head = 0; 2301 s->qi_enabled = false; 2302 /* Ok - report back to driver */ 2303 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 2304 } else { 2305 error_report_once("%s: detected improper state when disable QI " 2306 "(head=0x%x, tail=0x%x, last_type=%d)", 2307 __func__, 2308 s->iq_head, s->iq_tail, s->iq_last_desc_type); 2309 } 2310 } 2311 } 2312 2313 /* Set Root Table Pointer */ 2314 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 2315 { 2316 vtd_root_table_setup(s); 2317 /* Ok - report back to driver */ 2318 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 2319 vtd_reset_caches(s); 2320 vtd_address_space_refresh_all(s); 2321 } 2322 2323 /* Set Interrupt Remap Table Pointer */ 2324 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 2325 { 2326 vtd_interrupt_remap_table_setup(s); 2327 /* Ok - report back to driver */ 2328 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 2329 } 2330 2331 /* Handle Translation Enable/Disable */ 2332 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 2333 { 2334 if (s->dmar_enabled == en) { 2335 return; 2336 } 2337 2338 trace_vtd_dmar_enable(en); 2339 2340 if (en) { 2341 s->dmar_enabled = true; 2342 /* Ok - report back to driver */ 2343 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 2344 } else { 2345 s->dmar_enabled = false; 2346 2347 /* Clear the index of Fault Recording Register */ 2348 s->next_frcd_reg = 0; 2349 /* Ok - report back to driver */ 2350 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 2351 } 2352 2353 vtd_reset_caches(s); 2354 vtd_address_space_refresh_all(s); 2355 } 2356 2357 /* Handle Interrupt Remap Enable/Disable */ 2358 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 2359 { 2360 trace_vtd_ir_enable(en); 2361 2362 if (en) { 2363 s->intr_enabled = true; 2364 /* Ok - report back to driver */ 2365 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 2366 } else { 2367 s->intr_enabled = false; 2368 /* Ok - report back to driver */ 2369 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 2370 } 2371 } 2372 2373 /* Handle write to Global Command Register */ 2374 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 2375 { 2376 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2377 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 2378 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 2379 uint32_t changed = status ^ val; 2380 2381 trace_vtd_reg_write_gcmd(status, val); 2382 if ((changed & VTD_GCMD_TE) && s->dma_translation) { 2383 /* Translation enable/disable */ 2384 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 2385 } 2386 if (val & VTD_GCMD_SRTP) { 2387 /* Set/update the root-table pointer */ 2388 vtd_handle_gcmd_srtp(s); 2389 } 2390 if (changed & VTD_GCMD_QIE) { 2391 /* Queued Invalidation Enable */ 2392 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 2393 } 2394 if (val & VTD_GCMD_SIRTP) { 2395 /* Set/update the interrupt remapping root-table pointer */ 2396 vtd_handle_gcmd_sirtp(s); 2397 } 2398 if ((changed & VTD_GCMD_IRE) && 2399 x86_iommu_ir_supported(x86_iommu)) { 2400 /* Interrupt remap enable/disable */ 2401 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 2402 } 2403 } 2404 2405 /* Handle write to Context Command Register */ 2406 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 2407 { 2408 uint64_t ret; 2409 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 2410 2411 /* Context-cache invalidation request */ 2412 if (val & VTD_CCMD_ICC) { 2413 if (s->qi_enabled) { 2414 error_report_once("Queued Invalidation enabled, " 2415 "should not use register-based invalidation"); 2416 return; 2417 } 2418 ret = vtd_context_cache_invalidate(s, val); 2419 /* Invalidation completed. Change something to show */ 2420 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 2421 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 2422 ret); 2423 } 2424 } 2425 2426 /* Handle write to IOTLB Invalidation Register */ 2427 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 2428 { 2429 uint64_t ret; 2430 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 2431 2432 /* IOTLB invalidation request */ 2433 if (val & VTD_TLB_IVT) { 2434 if (s->qi_enabled) { 2435 error_report_once("Queued Invalidation enabled, " 2436 "should not use register-based invalidation"); 2437 return; 2438 } 2439 ret = vtd_iotlb_flush(s, val); 2440 /* Invalidation completed. Change something to show */ 2441 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 2442 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 2443 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 2444 } 2445 } 2446 2447 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 2448 static bool vtd_get_inv_desc(IntelIOMMUState *s, 2449 VTDInvDesc *inv_desc) 2450 { 2451 dma_addr_t base_addr = s->iq; 2452 uint32_t offset = s->iq_head; 2453 uint32_t dw = s->iq_dw ? 32 : 16; 2454 dma_addr_t addr = base_addr + offset * dw; 2455 2456 if (dma_memory_read(&address_space_memory, addr, 2457 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) { 2458 error_report_once("Read INV DESC failed."); 2459 return false; 2460 } 2461 inv_desc->lo = le64_to_cpu(inv_desc->lo); 2462 inv_desc->hi = le64_to_cpu(inv_desc->hi); 2463 if (dw == 32) { 2464 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); 2465 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); 2466 } 2467 return true; 2468 } 2469 2470 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2471 { 2472 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 2473 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 2474 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2475 " (reserved nonzero)", __func__, inv_desc->hi, 2476 inv_desc->lo); 2477 return false; 2478 } 2479 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 2480 /* Status Write */ 2481 uint32_t status_data = (uint32_t)(inv_desc->lo >> 2482 VTD_INV_DESC_WAIT_DATA_SHIFT); 2483 2484 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 2485 2486 /* FIXME: need to be masked with HAW? */ 2487 dma_addr_t status_addr = inv_desc->hi; 2488 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 2489 status_data = cpu_to_le32(status_data); 2490 if (dma_memory_write(&address_space_memory, status_addr, 2491 &status_data, sizeof(status_data), 2492 MEMTXATTRS_UNSPECIFIED)) { 2493 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 2494 return false; 2495 } 2496 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 2497 /* Interrupt flag */ 2498 vtd_generate_completion_event(s); 2499 } else { 2500 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2501 " (unknown type)", __func__, inv_desc->hi, 2502 inv_desc->lo); 2503 return false; 2504 } 2505 return true; 2506 } 2507 2508 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 2509 VTDInvDesc *inv_desc) 2510 { 2511 uint16_t sid, fmask; 2512 2513 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 2514 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2515 " (reserved nonzero)", __func__, inv_desc->hi, 2516 inv_desc->lo); 2517 return false; 2518 } 2519 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 2520 case VTD_INV_DESC_CC_DOMAIN: 2521 trace_vtd_inv_desc_cc_domain( 2522 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 2523 /* Fall through */ 2524 case VTD_INV_DESC_CC_GLOBAL: 2525 vtd_context_global_invalidate(s); 2526 break; 2527 2528 case VTD_INV_DESC_CC_DEVICE: 2529 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 2530 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 2531 vtd_context_device_invalidate(s, sid, fmask); 2532 break; 2533 2534 default: 2535 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2536 " (invalid type)", __func__, inv_desc->hi, 2537 inv_desc->lo); 2538 return false; 2539 } 2540 return true; 2541 } 2542 2543 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2544 { 2545 uint16_t domain_id; 2546 uint8_t am; 2547 hwaddr addr; 2548 2549 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 2550 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 2551 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2552 ", lo=0x%"PRIx64" (reserved bits unzero)", 2553 __func__, inv_desc->hi, inv_desc->lo); 2554 return false; 2555 } 2556 2557 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 2558 case VTD_INV_DESC_IOTLB_GLOBAL: 2559 vtd_iotlb_global_invalidate(s); 2560 break; 2561 2562 case VTD_INV_DESC_IOTLB_DOMAIN: 2563 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2564 vtd_iotlb_domain_invalidate(s, domain_id); 2565 break; 2566 2567 case VTD_INV_DESC_IOTLB_PAGE: 2568 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2569 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 2570 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 2571 if (am > VTD_MAMV) { 2572 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2573 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)", 2574 __func__, inv_desc->hi, inv_desc->lo, 2575 am, (unsigned)VTD_MAMV); 2576 return false; 2577 } 2578 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2579 break; 2580 2581 default: 2582 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2583 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", 2584 __func__, inv_desc->hi, inv_desc->lo, 2585 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2586 return false; 2587 } 2588 return true; 2589 } 2590 2591 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 2592 VTDInvDesc *inv_desc) 2593 { 2594 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 2595 inv_desc->iec.index, 2596 inv_desc->iec.index_mask); 2597 2598 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 2599 inv_desc->iec.index, 2600 inv_desc->iec.index_mask); 2601 return true; 2602 } 2603 2604 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 2605 VTDInvDesc *inv_desc) 2606 { 2607 VTDAddressSpace *vtd_dev_as; 2608 IOMMUTLBEvent event; 2609 hwaddr addr; 2610 uint64_t sz; 2611 uint16_t sid; 2612 bool size; 2613 2614 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 2615 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 2616 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 2617 2618 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 2619 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 2620 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 2621 ", lo=%"PRIx64" (reserved nonzero)", __func__, 2622 inv_desc->hi, inv_desc->lo); 2623 return false; 2624 } 2625 2626 /* 2627 * Using sid is OK since the guest should have finished the 2628 * initialization of both the bus and device. 2629 */ 2630 vtd_dev_as = vtd_get_as_by_sid(s, sid); 2631 if (!vtd_dev_as) { 2632 goto done; 2633 } 2634 2635 /* According to ATS spec table 2.4: 2636 * S = 0, bits 15:12 = xxxx range size: 4K 2637 * S = 1, bits 15:12 = xxx0 range size: 8K 2638 * S = 1, bits 15:12 = xx01 range size: 16K 2639 * S = 1, bits 15:12 = x011 range size: 32K 2640 * S = 1, bits 15:12 = 0111 range size: 64K 2641 * ... 2642 */ 2643 if (size) { 2644 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 2645 addr &= ~(sz - 1); 2646 } else { 2647 sz = VTD_PAGE_SIZE; 2648 } 2649 2650 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP; 2651 event.entry.target_as = &vtd_dev_as->as; 2652 event.entry.addr_mask = sz - 1; 2653 event.entry.iova = addr; 2654 event.entry.perm = IOMMU_NONE; 2655 event.entry.translated_addr = 0; 2656 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event); 2657 2658 done: 2659 return true; 2660 } 2661 2662 static bool vtd_process_inv_desc(IntelIOMMUState *s) 2663 { 2664 VTDInvDesc inv_desc; 2665 uint8_t desc_type; 2666 2667 trace_vtd_inv_qi_head(s->iq_head); 2668 if (!vtd_get_inv_desc(s, &inv_desc)) { 2669 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2670 return false; 2671 } 2672 2673 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 2674 /* FIXME: should update at first or at last? */ 2675 s->iq_last_desc_type = desc_type; 2676 2677 switch (desc_type) { 2678 case VTD_INV_DESC_CC: 2679 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 2680 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 2681 return false; 2682 } 2683 break; 2684 2685 case VTD_INV_DESC_IOTLB: 2686 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 2687 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 2688 return false; 2689 } 2690 break; 2691 2692 /* 2693 * TODO: the entity of below two cases will be implemented in future series. 2694 * To make guest (which integrates scalable mode support patch set in 2695 * iommu driver) work, just return true is enough so far. 2696 */ 2697 case VTD_INV_DESC_PC: 2698 break; 2699 2700 case VTD_INV_DESC_PIOTLB: 2701 break; 2702 2703 case VTD_INV_DESC_WAIT: 2704 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 2705 if (!vtd_process_wait_desc(s, &inv_desc)) { 2706 return false; 2707 } 2708 break; 2709 2710 case VTD_INV_DESC_IEC: 2711 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 2712 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 2713 return false; 2714 } 2715 break; 2716 2717 case VTD_INV_DESC_DEVICE: 2718 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 2719 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 2720 return false; 2721 } 2722 break; 2723 2724 default: 2725 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 2726 " (unknown type)", __func__, inv_desc.hi, 2727 inv_desc.lo); 2728 return false; 2729 } 2730 s->iq_head++; 2731 if (s->iq_head == s->iq_size) { 2732 s->iq_head = 0; 2733 } 2734 return true; 2735 } 2736 2737 /* Try to fetch and process more Invalidation Descriptors */ 2738 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 2739 { 2740 int qi_shift; 2741 2742 /* Refer to 10.4.23 of VT-d spec 3.0 */ 2743 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4; 2744 2745 trace_vtd_inv_qi_fetch(); 2746 2747 if (s->iq_tail >= s->iq_size) { 2748 /* Detects an invalid Tail pointer */ 2749 error_report_once("%s: detected invalid QI tail " 2750 "(tail=0x%x, size=0x%x)", 2751 __func__, s->iq_tail, s->iq_size); 2752 vtd_handle_inv_queue_error(s); 2753 return; 2754 } 2755 while (s->iq_head != s->iq_tail) { 2756 if (!vtd_process_inv_desc(s)) { 2757 /* Invalidation Queue Errors */ 2758 vtd_handle_inv_queue_error(s); 2759 break; 2760 } 2761 /* Must update the IQH_REG in time */ 2762 vtd_set_quad_raw(s, DMAR_IQH_REG, 2763 (((uint64_t)(s->iq_head)) << qi_shift) & 2764 VTD_IQH_QH_MASK); 2765 } 2766 } 2767 2768 /* Handle write to Invalidation Queue Tail Register */ 2769 static void vtd_handle_iqt_write(IntelIOMMUState *s) 2770 { 2771 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 2772 2773 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { 2774 error_report_once("%s: RSV bit is set: val=0x%"PRIx64, 2775 __func__, val); 2776 return; 2777 } 2778 s->iq_tail = VTD_IQT_QT(s->iq_dw, val); 2779 trace_vtd_inv_qi_tail(s->iq_tail); 2780 2781 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2782 /* Process Invalidation Queue here */ 2783 vtd_fetch_inv_desc(s); 2784 } 2785 } 2786 2787 static void vtd_handle_fsts_write(IntelIOMMUState *s) 2788 { 2789 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2790 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2791 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 2792 2793 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 2794 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2795 trace_vtd_fsts_clear_ip(); 2796 } 2797 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 2798 * Descriptors if there are any when Queued Invalidation is enabled? 2799 */ 2800 } 2801 2802 static void vtd_handle_fectl_write(IntelIOMMUState *s) 2803 { 2804 uint32_t fectl_reg; 2805 /* FIXME: when software clears the IM field, check the IP field. But do we 2806 * need to compare the old value and the new value to conclude that 2807 * software clears the IM field? Or just check if the IM field is zero? 2808 */ 2809 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2810 2811 trace_vtd_reg_write_fectl(fectl_reg); 2812 2813 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 2814 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 2815 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2816 } 2817 } 2818 2819 static void vtd_handle_ics_write(IntelIOMMUState *s) 2820 { 2821 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 2822 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2823 2824 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 2825 trace_vtd_reg_ics_clear_ip(); 2826 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2827 } 2828 } 2829 2830 static void vtd_handle_iectl_write(IntelIOMMUState *s) 2831 { 2832 uint32_t iectl_reg; 2833 /* FIXME: when software clears the IM field, check the IP field. But do we 2834 * need to compare the old value and the new value to conclude that 2835 * software clears the IM field? Or just check if the IM field is zero? 2836 */ 2837 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2838 2839 trace_vtd_reg_write_iectl(iectl_reg); 2840 2841 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 2842 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 2843 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2844 } 2845 } 2846 2847 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 2848 { 2849 IntelIOMMUState *s = opaque; 2850 uint64_t val; 2851 2852 trace_vtd_reg_read(addr, size); 2853 2854 if (addr + size > DMAR_REG_SIZE) { 2855 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2856 " size=0x%x", __func__, addr, size); 2857 return (uint64_t)-1; 2858 } 2859 2860 switch (addr) { 2861 /* Root Table Address Register, 64-bit */ 2862 case DMAR_RTADDR_REG: 2863 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 2864 if (size == 4) { 2865 val = val & ((1ULL << 32) - 1); 2866 } 2867 break; 2868 2869 case DMAR_RTADDR_REG_HI: 2870 assert(size == 4); 2871 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32; 2872 break; 2873 2874 /* Invalidation Queue Address Register, 64-bit */ 2875 case DMAR_IQA_REG: 2876 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2877 if (size == 4) { 2878 val = val & ((1ULL << 32) - 1); 2879 } 2880 break; 2881 2882 case DMAR_IQA_REG_HI: 2883 assert(size == 4); 2884 val = s->iq >> 32; 2885 break; 2886 2887 default: 2888 if (size == 4) { 2889 val = vtd_get_long(s, addr); 2890 } else { 2891 val = vtd_get_quad(s, addr); 2892 } 2893 } 2894 2895 return val; 2896 } 2897 2898 static void vtd_mem_write(void *opaque, hwaddr addr, 2899 uint64_t val, unsigned size) 2900 { 2901 IntelIOMMUState *s = opaque; 2902 2903 trace_vtd_reg_write(addr, size, val); 2904 2905 if (addr + size > DMAR_REG_SIZE) { 2906 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2907 " size=0x%x", __func__, addr, size); 2908 return; 2909 } 2910 2911 switch (addr) { 2912 /* Global Command Register, 32-bit */ 2913 case DMAR_GCMD_REG: 2914 vtd_set_long(s, addr, val); 2915 vtd_handle_gcmd_write(s); 2916 break; 2917 2918 /* Context Command Register, 64-bit */ 2919 case DMAR_CCMD_REG: 2920 if (size == 4) { 2921 vtd_set_long(s, addr, val); 2922 } else { 2923 vtd_set_quad(s, addr, val); 2924 vtd_handle_ccmd_write(s); 2925 } 2926 break; 2927 2928 case DMAR_CCMD_REG_HI: 2929 assert(size == 4); 2930 vtd_set_long(s, addr, val); 2931 vtd_handle_ccmd_write(s); 2932 break; 2933 2934 /* IOTLB Invalidation Register, 64-bit */ 2935 case DMAR_IOTLB_REG: 2936 if (size == 4) { 2937 vtd_set_long(s, addr, val); 2938 } else { 2939 vtd_set_quad(s, addr, val); 2940 vtd_handle_iotlb_write(s); 2941 } 2942 break; 2943 2944 case DMAR_IOTLB_REG_HI: 2945 assert(size == 4); 2946 vtd_set_long(s, addr, val); 2947 vtd_handle_iotlb_write(s); 2948 break; 2949 2950 /* Invalidate Address Register, 64-bit */ 2951 case DMAR_IVA_REG: 2952 if (size == 4) { 2953 vtd_set_long(s, addr, val); 2954 } else { 2955 vtd_set_quad(s, addr, val); 2956 } 2957 break; 2958 2959 case DMAR_IVA_REG_HI: 2960 assert(size == 4); 2961 vtd_set_long(s, addr, val); 2962 break; 2963 2964 /* Fault Status Register, 32-bit */ 2965 case DMAR_FSTS_REG: 2966 assert(size == 4); 2967 vtd_set_long(s, addr, val); 2968 vtd_handle_fsts_write(s); 2969 break; 2970 2971 /* Fault Event Control Register, 32-bit */ 2972 case DMAR_FECTL_REG: 2973 assert(size == 4); 2974 vtd_set_long(s, addr, val); 2975 vtd_handle_fectl_write(s); 2976 break; 2977 2978 /* Fault Event Data Register, 32-bit */ 2979 case DMAR_FEDATA_REG: 2980 assert(size == 4); 2981 vtd_set_long(s, addr, val); 2982 break; 2983 2984 /* Fault Event Address Register, 32-bit */ 2985 case DMAR_FEADDR_REG: 2986 if (size == 4) { 2987 vtd_set_long(s, addr, val); 2988 } else { 2989 /* 2990 * While the register is 32-bit only, some guests (Xen...) write to 2991 * it with 64-bit. 2992 */ 2993 vtd_set_quad(s, addr, val); 2994 } 2995 break; 2996 2997 /* Fault Event Upper Address Register, 32-bit */ 2998 case DMAR_FEUADDR_REG: 2999 assert(size == 4); 3000 vtd_set_long(s, addr, val); 3001 break; 3002 3003 /* Protected Memory Enable Register, 32-bit */ 3004 case DMAR_PMEN_REG: 3005 assert(size == 4); 3006 vtd_set_long(s, addr, val); 3007 break; 3008 3009 /* Root Table Address Register, 64-bit */ 3010 case DMAR_RTADDR_REG: 3011 if (size == 4) { 3012 vtd_set_long(s, addr, val); 3013 } else { 3014 vtd_set_quad(s, addr, val); 3015 } 3016 break; 3017 3018 case DMAR_RTADDR_REG_HI: 3019 assert(size == 4); 3020 vtd_set_long(s, addr, val); 3021 break; 3022 3023 /* Invalidation Queue Tail Register, 64-bit */ 3024 case DMAR_IQT_REG: 3025 if (size == 4) { 3026 vtd_set_long(s, addr, val); 3027 } else { 3028 vtd_set_quad(s, addr, val); 3029 } 3030 vtd_handle_iqt_write(s); 3031 break; 3032 3033 case DMAR_IQT_REG_HI: 3034 assert(size == 4); 3035 vtd_set_long(s, addr, val); 3036 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 3037 break; 3038 3039 /* Invalidation Queue Address Register, 64-bit */ 3040 case DMAR_IQA_REG: 3041 if (size == 4) { 3042 vtd_set_long(s, addr, val); 3043 } else { 3044 vtd_set_quad(s, addr, val); 3045 } 3046 vtd_update_iq_dw(s); 3047 break; 3048 3049 case DMAR_IQA_REG_HI: 3050 assert(size == 4); 3051 vtd_set_long(s, addr, val); 3052 break; 3053 3054 /* Invalidation Completion Status Register, 32-bit */ 3055 case DMAR_ICS_REG: 3056 assert(size == 4); 3057 vtd_set_long(s, addr, val); 3058 vtd_handle_ics_write(s); 3059 break; 3060 3061 /* Invalidation Event Control Register, 32-bit */ 3062 case DMAR_IECTL_REG: 3063 assert(size == 4); 3064 vtd_set_long(s, addr, val); 3065 vtd_handle_iectl_write(s); 3066 break; 3067 3068 /* Invalidation Event Data Register, 32-bit */ 3069 case DMAR_IEDATA_REG: 3070 assert(size == 4); 3071 vtd_set_long(s, addr, val); 3072 break; 3073 3074 /* Invalidation Event Address Register, 32-bit */ 3075 case DMAR_IEADDR_REG: 3076 assert(size == 4); 3077 vtd_set_long(s, addr, val); 3078 break; 3079 3080 /* Invalidation Event Upper Address Register, 32-bit */ 3081 case DMAR_IEUADDR_REG: 3082 assert(size == 4); 3083 vtd_set_long(s, addr, val); 3084 break; 3085 3086 /* Fault Recording Registers, 128-bit */ 3087 case DMAR_FRCD_REG_0_0: 3088 if (size == 4) { 3089 vtd_set_long(s, addr, val); 3090 } else { 3091 vtd_set_quad(s, addr, val); 3092 } 3093 break; 3094 3095 case DMAR_FRCD_REG_0_1: 3096 assert(size == 4); 3097 vtd_set_long(s, addr, val); 3098 break; 3099 3100 case DMAR_FRCD_REG_0_2: 3101 if (size == 4) { 3102 vtd_set_long(s, addr, val); 3103 } else { 3104 vtd_set_quad(s, addr, val); 3105 /* May clear bit 127 (Fault), update PPF */ 3106 vtd_update_fsts_ppf(s); 3107 } 3108 break; 3109 3110 case DMAR_FRCD_REG_0_3: 3111 assert(size == 4); 3112 vtd_set_long(s, addr, val); 3113 /* May clear bit 127 (Fault), update PPF */ 3114 vtd_update_fsts_ppf(s); 3115 break; 3116 3117 case DMAR_IRTA_REG: 3118 if (size == 4) { 3119 vtd_set_long(s, addr, val); 3120 } else { 3121 vtd_set_quad(s, addr, val); 3122 } 3123 break; 3124 3125 case DMAR_IRTA_REG_HI: 3126 assert(size == 4); 3127 vtd_set_long(s, addr, val); 3128 break; 3129 3130 default: 3131 if (size == 4) { 3132 vtd_set_long(s, addr, val); 3133 } else { 3134 vtd_set_quad(s, addr, val); 3135 } 3136 } 3137 } 3138 3139 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 3140 IOMMUAccessFlags flag, int iommu_idx) 3141 { 3142 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3143 IntelIOMMUState *s = vtd_as->iommu_state; 3144 IOMMUTLBEntry iotlb = { 3145 /* We'll fill in the rest later. */ 3146 .target_as = &address_space_memory, 3147 }; 3148 bool success; 3149 3150 if (likely(s->dmar_enabled)) { 3151 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 3152 addr, flag & IOMMU_WO, &iotlb); 3153 } else { 3154 /* DMAR disabled, passthrough, use 4k-page*/ 3155 iotlb.iova = addr & VTD_PAGE_MASK_4K; 3156 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 3157 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 3158 iotlb.perm = IOMMU_RW; 3159 success = true; 3160 } 3161 3162 if (likely(success)) { 3163 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 3164 VTD_PCI_SLOT(vtd_as->devfn), 3165 VTD_PCI_FUNC(vtd_as->devfn), 3166 iotlb.iova, iotlb.translated_addr, 3167 iotlb.addr_mask); 3168 } else { 3169 error_report_once("%s: detected translation failure " 3170 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 3171 __func__, pci_bus_num(vtd_as->bus), 3172 VTD_PCI_SLOT(vtd_as->devfn), 3173 VTD_PCI_FUNC(vtd_as->devfn), 3174 addr); 3175 } 3176 3177 return iotlb; 3178 } 3179 3180 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 3181 IOMMUNotifierFlag old, 3182 IOMMUNotifierFlag new, 3183 Error **errp) 3184 { 3185 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3186 IntelIOMMUState *s = vtd_as->iommu_state; 3187 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3188 3189 /* TODO: add support for VFIO and vhost users */ 3190 if (s->snoop_control) { 3191 error_setg_errno(errp, ENOTSUP, 3192 "Snoop Control with vhost or VFIO is not supported"); 3193 return -ENOTSUP; 3194 } 3195 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) { 3196 error_setg_errno(errp, ENOTSUP, 3197 "device %02x.%02x.%x requires caching mode", 3198 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3199 PCI_FUNC(vtd_as->devfn)); 3200 return -ENOTSUP; 3201 } 3202 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) { 3203 error_setg_errno(errp, ENOTSUP, 3204 "device %02x.%02x.%x requires device IOTLB mode", 3205 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3206 PCI_FUNC(vtd_as->devfn)); 3207 return -ENOTSUP; 3208 } 3209 3210 /* Update per-address-space notifier flags */ 3211 vtd_as->notifier_flags = new; 3212 3213 if (old == IOMMU_NOTIFIER_NONE) { 3214 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 3215 } else if (new == IOMMU_NOTIFIER_NONE) { 3216 QLIST_REMOVE(vtd_as, next); 3217 } 3218 return 0; 3219 } 3220 3221 static int vtd_post_load(void *opaque, int version_id) 3222 { 3223 IntelIOMMUState *iommu = opaque; 3224 3225 /* 3226 * We don't need to migrate the root_scalable because we can 3227 * simply do the calculation after the loading is complete. We 3228 * can actually do similar things with root, dmar_enabled, etc. 3229 * however since we've had them already so we'd better keep them 3230 * for compatibility of migration. 3231 */ 3232 vtd_update_scalable_state(iommu); 3233 3234 vtd_update_iq_dw(iommu); 3235 3236 /* 3237 * Memory regions are dynamically turned on/off depending on 3238 * context entry configurations from the guest. After migration, 3239 * we need to make sure the memory regions are still correct. 3240 */ 3241 vtd_switch_address_space_all(iommu); 3242 3243 return 0; 3244 } 3245 3246 static const VMStateDescription vtd_vmstate = { 3247 .name = "iommu-intel", 3248 .version_id = 1, 3249 .minimum_version_id = 1, 3250 .priority = MIG_PRI_IOMMU, 3251 .post_load = vtd_post_load, 3252 .fields = (VMStateField[]) { 3253 VMSTATE_UINT64(root, IntelIOMMUState), 3254 VMSTATE_UINT64(intr_root, IntelIOMMUState), 3255 VMSTATE_UINT64(iq, IntelIOMMUState), 3256 VMSTATE_UINT32(intr_size, IntelIOMMUState), 3257 VMSTATE_UINT16(iq_head, IntelIOMMUState), 3258 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 3259 VMSTATE_UINT16(iq_size, IntelIOMMUState), 3260 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 3261 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 3262 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 3263 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */ 3264 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 3265 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 3266 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 3267 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 3268 VMSTATE_END_OF_LIST() 3269 } 3270 }; 3271 3272 static const MemoryRegionOps vtd_mem_ops = { 3273 .read = vtd_mem_read, 3274 .write = vtd_mem_write, 3275 .endianness = DEVICE_LITTLE_ENDIAN, 3276 .impl = { 3277 .min_access_size = 4, 3278 .max_access_size = 8, 3279 }, 3280 .valid = { 3281 .min_access_size = 4, 3282 .max_access_size = 8, 3283 }, 3284 }; 3285 3286 static Property vtd_properties[] = { 3287 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 3288 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 3289 ON_OFF_AUTO_AUTO), 3290 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 3291 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 3292 VTD_HOST_ADDRESS_WIDTH), 3293 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 3294 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), 3295 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false), 3296 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false), 3297 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 3298 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true), 3299 DEFINE_PROP_END_OF_LIST(), 3300 }; 3301 3302 /* Read IRTE entry with specific index */ 3303 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 3304 VTD_IR_TableEntry *entry, uint16_t sid) 3305 { 3306 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 3307 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 3308 dma_addr_t addr = 0x00; 3309 uint16_t mask, source_id; 3310 uint8_t bus, bus_max, bus_min; 3311 3312 if (index >= iommu->intr_size) { 3313 error_report_once("%s: index too large: ind=0x%x", 3314 __func__, index); 3315 return -VTD_FR_IR_INDEX_OVER; 3316 } 3317 3318 addr = iommu->intr_root + index * sizeof(*entry); 3319 if (dma_memory_read(&address_space_memory, addr, 3320 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) { 3321 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 3322 __func__, index, addr); 3323 return -VTD_FR_IR_ROOT_INVAL; 3324 } 3325 3326 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]), 3327 le64_to_cpu(entry->data[0])); 3328 3329 if (!entry->irte.present) { 3330 error_report_once("%s: detected non-present IRTE " 3331 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3332 __func__, index, le64_to_cpu(entry->data[1]), 3333 le64_to_cpu(entry->data[0])); 3334 return -VTD_FR_IR_ENTRY_P; 3335 } 3336 3337 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 3338 entry->irte.__reserved_2) { 3339 error_report_once("%s: detected non-zero reserved IRTE " 3340 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3341 __func__, index, le64_to_cpu(entry->data[1]), 3342 le64_to_cpu(entry->data[0])); 3343 return -VTD_FR_IR_IRTE_RSVD; 3344 } 3345 3346 if (sid != X86_IOMMU_SID_INVALID) { 3347 /* Validate IRTE SID */ 3348 source_id = le32_to_cpu(entry->irte.source_id); 3349 switch (entry->irte.sid_vtype) { 3350 case VTD_SVT_NONE: 3351 break; 3352 3353 case VTD_SVT_ALL: 3354 mask = vtd_svt_mask[entry->irte.sid_q]; 3355 if ((source_id & mask) != (sid & mask)) { 3356 error_report_once("%s: invalid IRTE SID " 3357 "(index=%u, sid=%u, source_id=%u)", 3358 __func__, index, sid, source_id); 3359 return -VTD_FR_IR_SID_ERR; 3360 } 3361 break; 3362 3363 case VTD_SVT_BUS: 3364 bus_max = source_id >> 8; 3365 bus_min = source_id & 0xff; 3366 bus = sid >> 8; 3367 if (bus > bus_max || bus < bus_min) { 3368 error_report_once("%s: invalid SVT_BUS " 3369 "(index=%u, bus=%u, min=%u, max=%u)", 3370 __func__, index, bus, bus_min, bus_max); 3371 return -VTD_FR_IR_SID_ERR; 3372 } 3373 break; 3374 3375 default: 3376 error_report_once("%s: detected invalid IRTE SVT " 3377 "(index=%u, type=%d)", __func__, 3378 index, entry->irte.sid_vtype); 3379 /* Take this as verification failure. */ 3380 return -VTD_FR_IR_SID_ERR; 3381 } 3382 } 3383 3384 return 0; 3385 } 3386 3387 /* Fetch IRQ information of specific IR index */ 3388 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 3389 X86IOMMUIrq *irq, uint16_t sid) 3390 { 3391 VTD_IR_TableEntry irte = {}; 3392 int ret = 0; 3393 3394 ret = vtd_irte_get(iommu, index, &irte, sid); 3395 if (ret) { 3396 return ret; 3397 } 3398 3399 irq->trigger_mode = irte.irte.trigger_mode; 3400 irq->vector = irte.irte.vector; 3401 irq->delivery_mode = irte.irte.delivery_mode; 3402 irq->dest = le32_to_cpu(irte.irte.dest_id); 3403 if (!iommu->intr_eime) { 3404 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 3405 #define VTD_IR_APIC_DEST_SHIFT (8) 3406 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 3407 VTD_IR_APIC_DEST_SHIFT; 3408 } 3409 irq->dest_mode = irte.irte.dest_mode; 3410 irq->redir_hint = irte.irte.redir_hint; 3411 3412 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 3413 irq->delivery_mode, irq->dest, irq->dest_mode); 3414 3415 return 0; 3416 } 3417 3418 /* Interrupt remapping for MSI/MSI-X entry */ 3419 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 3420 MSIMessage *origin, 3421 MSIMessage *translated, 3422 uint16_t sid) 3423 { 3424 int ret = 0; 3425 VTD_IR_MSIAddress addr; 3426 uint16_t index; 3427 X86IOMMUIrq irq = {}; 3428 3429 assert(origin && translated); 3430 3431 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 3432 3433 if (!iommu || !iommu->intr_enabled) { 3434 memcpy(translated, origin, sizeof(*origin)); 3435 goto out; 3436 } 3437 3438 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 3439 error_report_once("%s: MSI address high 32 bits non-zero detected: " 3440 "address=0x%" PRIx64, __func__, origin->address); 3441 return -VTD_FR_IR_REQ_RSVD; 3442 } 3443 3444 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 3445 if (addr.addr.__head != 0xfee) { 3446 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 3447 __func__, addr.data); 3448 return -VTD_FR_IR_REQ_RSVD; 3449 } 3450 3451 /* This is compatible mode. */ 3452 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 3453 memcpy(translated, origin, sizeof(*origin)); 3454 goto out; 3455 } 3456 3457 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l); 3458 3459 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 3460 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 3461 3462 if (addr.addr.sub_valid) { 3463 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 3464 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 3465 } 3466 3467 ret = vtd_remap_irq_get(iommu, index, &irq, sid); 3468 if (ret) { 3469 return ret; 3470 } 3471 3472 if (addr.addr.sub_valid) { 3473 trace_vtd_ir_remap_type("MSI"); 3474 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 3475 error_report_once("%s: invalid IR MSI " 3476 "(sid=%u, address=0x%" PRIx64 3477 ", data=0x%" PRIx32 ")", 3478 __func__, sid, origin->address, origin->data); 3479 return -VTD_FR_IR_REQ_RSVD; 3480 } 3481 } else { 3482 uint8_t vector = origin->data & 0xff; 3483 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 3484 3485 trace_vtd_ir_remap_type("IOAPIC"); 3486 /* IOAPIC entry vector should be aligned with IRTE vector 3487 * (see vt-d spec 5.1.5.1). */ 3488 if (vector != irq.vector) { 3489 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 3490 } 3491 3492 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 3493 * (see vt-d spec 5.1.5.1). */ 3494 if (trigger_mode != irq.trigger_mode) { 3495 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 3496 irq.trigger_mode); 3497 } 3498 } 3499 3500 /* 3501 * We'd better keep the last two bits, assuming that guest OS 3502 * might modify it. Keep it does not hurt after all. 3503 */ 3504 irq.msi_addr_last_bits = addr.addr.__not_care; 3505 3506 /* Translate X86IOMMUIrq to MSI message */ 3507 x86_iommu_irq_to_msi_message(&irq, translated); 3508 3509 out: 3510 trace_vtd_ir_remap_msi(origin->address, origin->data, 3511 translated->address, translated->data); 3512 return 0; 3513 } 3514 3515 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 3516 MSIMessage *dst, uint16_t sid) 3517 { 3518 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 3519 src, dst, sid); 3520 } 3521 3522 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 3523 uint64_t *data, unsigned size, 3524 MemTxAttrs attrs) 3525 { 3526 return MEMTX_OK; 3527 } 3528 3529 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 3530 uint64_t value, unsigned size, 3531 MemTxAttrs attrs) 3532 { 3533 int ret = 0; 3534 MSIMessage from = {}, to = {}; 3535 uint16_t sid = X86_IOMMU_SID_INVALID; 3536 3537 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 3538 from.data = (uint32_t) value; 3539 3540 if (!attrs.unspecified) { 3541 /* We have explicit Source ID */ 3542 sid = attrs.requester_id; 3543 } 3544 3545 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); 3546 if (ret) { 3547 /* TODO: report error */ 3548 /* Drop this interrupt */ 3549 return MEMTX_ERROR; 3550 } 3551 3552 apic_get_class(NULL)->send_msi(&to); 3553 3554 return MEMTX_OK; 3555 } 3556 3557 static const MemoryRegionOps vtd_mem_ir_ops = { 3558 .read_with_attrs = vtd_mem_ir_read, 3559 .write_with_attrs = vtd_mem_ir_write, 3560 .endianness = DEVICE_LITTLE_ENDIAN, 3561 .impl = { 3562 .min_access_size = 4, 3563 .max_access_size = 4, 3564 }, 3565 .valid = { 3566 .min_access_size = 4, 3567 .max_access_size = 4, 3568 }, 3569 }; 3570 3571 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as, 3572 hwaddr addr, bool is_write) 3573 { 3574 IntelIOMMUState *s = vtd_as->iommu_state; 3575 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3576 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn); 3577 bool is_fpd_set = false; 3578 VTDContextEntry ce; 3579 3580 assert(vtd_as->pasid != PCI_NO_PASID); 3581 3582 /* Try out best to fetch FPD, we can't do anything more */ 3583 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3584 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 3585 if (!is_fpd_set && s->root_scalable) { 3586 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid); 3587 } 3588 } 3589 3590 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR, 3591 is_fpd_set, sid, addr, is_write, 3592 true, vtd_as->pasid); 3593 } 3594 3595 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr, 3596 uint64_t *data, unsigned size, 3597 MemTxAttrs attrs) 3598 { 3599 vtd_report_ir_illegal_access(opaque, addr, false); 3600 3601 return MEMTX_ERROR; 3602 } 3603 3604 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr, 3605 uint64_t value, unsigned size, 3606 MemTxAttrs attrs) 3607 { 3608 vtd_report_ir_illegal_access(opaque, addr, true); 3609 3610 return MEMTX_ERROR; 3611 } 3612 3613 static const MemoryRegionOps vtd_mem_ir_fault_ops = { 3614 .read_with_attrs = vtd_mem_ir_fault_read, 3615 .write_with_attrs = vtd_mem_ir_fault_write, 3616 .endianness = DEVICE_LITTLE_ENDIAN, 3617 .impl = { 3618 .min_access_size = 1, 3619 .max_access_size = 8, 3620 }, 3621 .valid = { 3622 .min_access_size = 1, 3623 .max_access_size = 8, 3624 }, 3625 }; 3626 3627 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, 3628 int devfn, unsigned int pasid) 3629 { 3630 /* 3631 * We can't simply use sid here since the bus number might not be 3632 * initialized by the guest. 3633 */ 3634 struct vtd_as_key key = { 3635 .bus = bus, 3636 .devfn = devfn, 3637 .pasid = pasid, 3638 }; 3639 VTDAddressSpace *vtd_dev_as; 3640 char name[128]; 3641 3642 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); 3643 if (!vtd_dev_as) { 3644 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key)); 3645 3646 new_key->bus = bus; 3647 new_key->devfn = devfn; 3648 new_key->pasid = pasid; 3649 3650 if (pasid == PCI_NO_PASID) { 3651 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), 3652 PCI_FUNC(devfn)); 3653 } else { 3654 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn), 3655 PCI_FUNC(devfn), pasid); 3656 } 3657 3658 vtd_dev_as = g_new0(VTDAddressSpace, 1); 3659 3660 vtd_dev_as->bus = bus; 3661 vtd_dev_as->devfn = (uint8_t)devfn; 3662 vtd_dev_as->pasid = pasid; 3663 vtd_dev_as->iommu_state = s; 3664 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 3665 vtd_dev_as->iova_tree = iova_tree_new(); 3666 3667 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); 3668 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); 3669 3670 /* 3671 * Build the DMAR-disabled container with aliases to the 3672 * shared MRs. Note that aliasing to a shared memory region 3673 * could help the memory API to detect same FlatViews so we 3674 * can have devices to share the same FlatView when DMAR is 3675 * disabled (either by not providing "intel_iommu=on" or with 3676 * "iommu=pt"). It will greatly reduce the total number of 3677 * FlatViews of the system hence VM runs faster. 3678 */ 3679 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), 3680 "vtd-nodmar", &s->mr_nodmar, 0, 3681 memory_region_size(&s->mr_nodmar)); 3682 3683 /* 3684 * Build the per-device DMAR-enabled container. 3685 * 3686 * TODO: currently we have per-device IOMMU memory region only 3687 * because we have per-device IOMMU notifiers for devices. If 3688 * one day we can abstract the IOMMU notifiers out of the 3689 * memory regions then we can also share the same memory 3690 * region here just like what we've done above with the nodmar 3691 * region. 3692 */ 3693 strcat(name, "-dmar"); 3694 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 3695 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 3696 name, UINT64_MAX); 3697 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", 3698 &s->mr_ir, 0, memory_region_size(&s->mr_ir)); 3699 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), 3700 VTD_INTERRUPT_ADDR_FIRST, 3701 &vtd_dev_as->iommu_ir, 1); 3702 3703 /* 3704 * This region is used for catching fault to access interrupt 3705 * range via passthrough + PASID. See also 3706 * vtd_switch_address_space(). We can't use alias since we 3707 * need to know the sid which is valid for MSI who uses 3708 * bus_master_as (see msi_send_message()). 3709 */ 3710 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s), 3711 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir", 3712 VTD_INTERRUPT_ADDR_SIZE); 3713 /* 3714 * Hook to root since when PT is enabled vtd_dev_as->iommu 3715 * will be disabled. 3716 */ 3717 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root), 3718 VTD_INTERRUPT_ADDR_FIRST, 3719 &vtd_dev_as->iommu_ir_fault, 2); 3720 3721 /* 3722 * Hook both the containers under the root container, we 3723 * switch between DMAR & noDMAR by enable/disable 3724 * corresponding sub-containers 3725 */ 3726 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3727 MEMORY_REGION(&vtd_dev_as->iommu), 3728 0); 3729 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3730 &vtd_dev_as->nodmar, 0); 3731 3732 vtd_switch_address_space(vtd_dev_as); 3733 3734 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as); 3735 } 3736 return vtd_dev_as; 3737 } 3738 3739 /* Unmap the whole range in the notifier's scope. */ 3740 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 3741 { 3742 hwaddr size, remain; 3743 hwaddr start = n->start; 3744 hwaddr end = n->end; 3745 IntelIOMMUState *s = as->iommu_state; 3746 DMAMap map; 3747 3748 /* 3749 * Note: all the codes in this function has a assumption that IOVA 3750 * bits are no more than VTD_MGAW bits (which is restricted by 3751 * VT-d spec), otherwise we need to consider overflow of 64 bits. 3752 */ 3753 3754 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) { 3755 /* 3756 * Don't need to unmap regions that is bigger than the whole 3757 * VT-d supported address space size 3758 */ 3759 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1; 3760 } 3761 3762 assert(start <= end); 3763 size = remain = end - start + 1; 3764 3765 while (remain >= VTD_PAGE_SIZE) { 3766 IOMMUTLBEvent event; 3767 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits); 3768 uint64_t size = mask + 1; 3769 3770 assert(size); 3771 3772 event.type = IOMMU_NOTIFIER_UNMAP; 3773 event.entry.iova = start; 3774 event.entry.addr_mask = mask; 3775 event.entry.target_as = &address_space_memory; 3776 event.entry.perm = IOMMU_NONE; 3777 /* This field is meaningless for unmap */ 3778 event.entry.translated_addr = 0; 3779 3780 memory_region_notify_iommu_one(n, &event); 3781 3782 start += size; 3783 remain -= size; 3784 } 3785 3786 assert(!remain); 3787 3788 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 3789 VTD_PCI_SLOT(as->devfn), 3790 VTD_PCI_FUNC(as->devfn), 3791 n->start, size); 3792 3793 map.iova = n->start; 3794 map.size = size; 3795 iova_tree_remove(as->iova_tree, map); 3796 } 3797 3798 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 3799 { 3800 VTDAddressSpace *vtd_as; 3801 IOMMUNotifier *n; 3802 3803 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 3804 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 3805 vtd_address_space_unmap(vtd_as, n); 3806 } 3807 } 3808 } 3809 3810 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 3811 { 3812 vtd_address_space_unmap_all(s); 3813 vtd_switch_address_space_all(s); 3814 } 3815 3816 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private) 3817 { 3818 memory_region_notify_iommu_one(private, event); 3819 return 0; 3820 } 3821 3822 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 3823 { 3824 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 3825 IntelIOMMUState *s = vtd_as->iommu_state; 3826 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3827 VTDContextEntry ce; 3828 3829 /* 3830 * The replay can be triggered by either a invalidation or a newly 3831 * created entry. No matter what, we release existing mappings 3832 * (it means flushing caches for UNMAP-only registers). 3833 */ 3834 vtd_address_space_unmap(vtd_as, n); 3835 3836 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3837 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : 3838 "legacy mode", 3839 bus_n, PCI_SLOT(vtd_as->devfn), 3840 PCI_FUNC(vtd_as->devfn), 3841 vtd_get_domain_id(s, &ce, vtd_as->pasid), 3842 ce.hi, ce.lo); 3843 if (vtd_as_has_map_notifier(vtd_as)) { 3844 /* This is required only for MAP typed notifiers */ 3845 vtd_page_walk_info info = { 3846 .hook_fn = vtd_replay_hook, 3847 .private = (void *)n, 3848 .notify_unmap = false, 3849 .aw = s->aw_bits, 3850 .as = vtd_as, 3851 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid), 3852 }; 3853 3854 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid); 3855 } 3856 } else { 3857 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 3858 PCI_FUNC(vtd_as->devfn)); 3859 } 3860 3861 return; 3862 } 3863 3864 /* Do the initialization. It will also be called when reset, so pay 3865 * attention when adding new initialization stuff. 3866 */ 3867 static void vtd_init(IntelIOMMUState *s) 3868 { 3869 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3870 3871 memset(s->csr, 0, DMAR_REG_SIZE); 3872 memset(s->wmask, 0, DMAR_REG_SIZE); 3873 memset(s->w1cmask, 0, DMAR_REG_SIZE); 3874 memset(s->womask, 0, DMAR_REG_SIZE); 3875 3876 s->root = 0; 3877 s->root_scalable = false; 3878 s->dmar_enabled = false; 3879 s->intr_enabled = false; 3880 s->iq_head = 0; 3881 s->iq_tail = 0; 3882 s->iq = 0; 3883 s->iq_size = 0; 3884 s->qi_enabled = false; 3885 s->iq_last_desc_type = VTD_INV_DESC_NONE; 3886 s->iq_dw = false; 3887 s->next_frcd_reg = 0; 3888 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 3889 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 3890 VTD_CAP_MGAW(s->aw_bits); 3891 if (s->dma_drain) { 3892 s->cap |= VTD_CAP_DRAIN; 3893 } 3894 if (s->dma_translation) { 3895 if (s->aw_bits >= VTD_HOST_AW_39BIT) { 3896 s->cap |= VTD_CAP_SAGAW_39bit; 3897 } 3898 if (s->aw_bits >= VTD_HOST_AW_48BIT) { 3899 s->cap |= VTD_CAP_SAGAW_48bit; 3900 } 3901 } 3902 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 3903 3904 /* 3905 * Rsvd field masks for spte 3906 */ 3907 vtd_spte_rsvd[0] = ~0ULL; 3908 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits, 3909 x86_iommu->dt_supported); 3910 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 3911 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 3912 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 3913 3914 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits, 3915 x86_iommu->dt_supported); 3916 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits, 3917 x86_iommu->dt_supported); 3918 3919 if (s->scalable_mode || s->snoop_control) { 3920 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP; 3921 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP; 3922 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP; 3923 } 3924 3925 if (x86_iommu_ir_supported(x86_iommu)) { 3926 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 3927 if (s->intr_eim == ON_OFF_AUTO_ON) { 3928 s->ecap |= VTD_ECAP_EIM; 3929 } 3930 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 3931 } 3932 3933 if (x86_iommu->dt_supported) { 3934 s->ecap |= VTD_ECAP_DT; 3935 } 3936 3937 if (x86_iommu->pt_supported) { 3938 s->ecap |= VTD_ECAP_PT; 3939 } 3940 3941 if (s->caching_mode) { 3942 s->cap |= VTD_CAP_CM; 3943 } 3944 3945 /* TODO: read cap/ecap from host to decide which cap to be exposed. */ 3946 if (s->scalable_mode) { 3947 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; 3948 } 3949 3950 if (s->snoop_control) { 3951 s->ecap |= VTD_ECAP_SC; 3952 } 3953 3954 if (s->pasid) { 3955 s->ecap |= VTD_ECAP_PASID; 3956 } 3957 3958 vtd_reset_caches(s); 3959 3960 /* Define registers with default values and bit semantics */ 3961 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 3962 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 3963 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 3964 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 3965 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 3966 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 3967 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); 3968 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 3969 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 3970 3971 /* Advanced Fault Logging not supported */ 3972 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 3973 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3974 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 3975 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 3976 3977 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 3978 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 3979 */ 3980 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 3981 3982 /* Treated as RO for implementations that PLMR and PHMR fields reported 3983 * as Clear in the CAP_REG. 3984 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 3985 */ 3986 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 3987 3988 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 3989 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 3990 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); 3991 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 3992 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3993 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 3994 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 3995 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 3996 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 3997 3998 /* IOTLB registers */ 3999 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 4000 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 4001 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 4002 4003 /* Fault Recording Registers, 128-bit */ 4004 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 4005 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 4006 4007 /* 4008 * Interrupt remapping registers. 4009 */ 4010 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 4011 } 4012 4013 /* Should not reset address_spaces when reset because devices will still use 4014 * the address space they got at first (won't ask the bus again). 4015 */ 4016 static void vtd_reset(DeviceState *dev) 4017 { 4018 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4019 4020 vtd_init(s); 4021 vtd_address_space_refresh_all(s); 4022 } 4023 4024 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 4025 { 4026 IntelIOMMUState *s = opaque; 4027 VTDAddressSpace *vtd_as; 4028 4029 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 4030 4031 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID); 4032 return &vtd_as->as; 4033 } 4034 4035 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 4036 { 4037 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4038 4039 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 4040 error_setg(errp, "eim=on cannot be selected without intremap=on"); 4041 return false; 4042 } 4043 4044 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 4045 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 4046 && x86_iommu_ir_supported(x86_iommu) ? 4047 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 4048 } 4049 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 4050 if (!kvm_irqchip_is_split()) { 4051 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); 4052 return false; 4053 } 4054 if (!kvm_enable_x2apic()) { 4055 error_setg(errp, "eim=on requires support on the KVM side" 4056 "(X2APIC_API, first shipped in v4.7)"); 4057 return false; 4058 } 4059 } 4060 4061 /* Currently only address widths supported are 39 and 48 bits */ 4062 if ((s->aw_bits != VTD_HOST_AW_39BIT) && 4063 (s->aw_bits != VTD_HOST_AW_48BIT)) { 4064 error_setg(errp, "Supported values for aw-bits are: %d, %d", 4065 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 4066 return false; 4067 } 4068 4069 if (s->scalable_mode && !s->dma_drain) { 4070 error_setg(errp, "Need to set dma_drain for scalable mode"); 4071 return false; 4072 } 4073 4074 if (s->pasid && !s->scalable_mode) { 4075 error_setg(errp, "Need to set scalable mode for PASID"); 4076 return false; 4077 } 4078 4079 return true; 4080 } 4081 4082 static int vtd_machine_done_notify_one(Object *child, void *unused) 4083 { 4084 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 4085 4086 /* 4087 * We hard-coded here because vfio-pci is the only special case 4088 * here. Let's be more elegant in the future when we can, but so 4089 * far there seems to be no better way. 4090 */ 4091 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) { 4092 vtd_panic_require_caching_mode(); 4093 } 4094 4095 return 0; 4096 } 4097 4098 static void vtd_machine_done_hook(Notifier *notifier, void *unused) 4099 { 4100 object_child_foreach_recursive(object_get_root(), 4101 vtd_machine_done_notify_one, NULL); 4102 } 4103 4104 static Notifier vtd_machine_done_notify = { 4105 .notify = vtd_machine_done_hook, 4106 }; 4107 4108 static void vtd_realize(DeviceState *dev, Error **errp) 4109 { 4110 MachineState *ms = MACHINE(qdev_get_machine()); 4111 PCMachineState *pcms = PC_MACHINE(ms); 4112 X86MachineState *x86ms = X86_MACHINE(ms); 4113 PCIBus *bus = pcms->bus; 4114 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4115 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4116 4117 if (s->pasid && x86_iommu->dt_supported) { 4118 /* 4119 * PASID-based-Device-TLB Invalidate Descriptor is not 4120 * implemented and it requires support from vhost layer which 4121 * needs to be implemented in the future. 4122 */ 4123 error_setg(errp, "PASID based device IOTLB is not supported"); 4124 return; 4125 } 4126 4127 if (!vtd_decide_config(s, errp)) { 4128 return; 4129 } 4130 4131 QLIST_INIT(&s->vtd_as_with_notifiers); 4132 qemu_mutex_init(&s->iommu_lock); 4133 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 4134 "intel_iommu", DMAR_REG_SIZE); 4135 4136 /* Create the shared memory regions by all devices */ 4137 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", 4138 UINT64_MAX); 4139 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, 4140 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); 4141 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), 4142 "vtd-sys-alias", get_system_memory(), 0, 4143 memory_region_size(get_system_memory())); 4144 memory_region_add_subregion_overlap(&s->mr_nodmar, 0, 4145 &s->mr_sys_alias, 0); 4146 memory_region_add_subregion_overlap(&s->mr_nodmar, 4147 VTD_INTERRUPT_ADDR_FIRST, 4148 &s->mr_ir, 1); 4149 4150 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); 4151 /* No corresponding destroy */ 4152 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal, 4153 g_free, g_free); 4154 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal, 4155 g_free, g_free); 4156 vtd_init(s); 4157 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR); 4158 pci_setup_iommu(bus, vtd_host_dma_iommu, dev); 4159 /* Pseudo address space under root PCI bus. */ 4160 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 4161 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify); 4162 } 4163 4164 static void vtd_class_init(ObjectClass *klass, void *data) 4165 { 4166 DeviceClass *dc = DEVICE_CLASS(klass); 4167 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass); 4168 4169 dc->reset = vtd_reset; 4170 dc->vmsd = &vtd_vmstate; 4171 device_class_set_props(dc, vtd_properties); 4172 dc->hotpluggable = false; 4173 x86_class->realize = vtd_realize; 4174 x86_class->int_remap = vtd_int_remap; 4175 /* Supported by the pc-q35-* machine types */ 4176 dc->user_creatable = true; 4177 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 4178 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device"; 4179 } 4180 4181 static const TypeInfo vtd_info = { 4182 .name = TYPE_INTEL_IOMMU_DEVICE, 4183 .parent = TYPE_X86_IOMMU_DEVICE, 4184 .instance_size = sizeof(IntelIOMMUState), 4185 .class_init = vtd_class_init, 4186 }; 4187 4188 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 4189 void *data) 4190 { 4191 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 4192 4193 imrc->translate = vtd_iommu_translate; 4194 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 4195 imrc->replay = vtd_iommu_replay; 4196 } 4197 4198 static const TypeInfo vtd_iommu_memory_region_info = { 4199 .parent = TYPE_IOMMU_MEMORY_REGION, 4200 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 4201 .class_init = vtd_iommu_memory_region_class_init, 4202 }; 4203 4204 static void vtd_register_types(void) 4205 { 4206 type_register_static(&vtd_info); 4207 type_register_static(&vtd_iommu_memory_region_info); 4208 } 4209 4210 type_init(vtd_register_types) 4211