1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qemu/main-loop.h" 25 #include "qapi/error.h" 26 #include "hw/sysbus.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/i386/pc.h" 32 #include "hw/i386/apic-msidef.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "sysemu/dma.h" 37 #include "sysemu/sysemu.h" 38 #include "hw/i386/apic_internal.h" 39 #include "kvm/kvm_i386.h" 40 #include "migration/vmstate.h" 41 #include "trace.h" 42 43 /* context entry operations */ 44 #define VTD_CE_GET_RID2PASID(ce) \ 45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) 46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ 47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) 48 49 /* pe operations */ 50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) 51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) 52 53 /* 54 * PCI bus number (or SID) is not reliable since the device is usaully 55 * initialized before guest can configure the PCI bridge 56 * (SECONDARY_BUS_NUMBER). 57 */ 58 struct vtd_as_key { 59 PCIBus *bus; 60 uint8_t devfn; 61 uint32_t pasid; 62 }; 63 64 /* bus/devfn is PCI device's real BDF not the aliased one */ 65 struct vtd_hiod_key { 66 PCIBus *bus; 67 uint8_t devfn; 68 }; 69 70 struct vtd_iotlb_key { 71 uint64_t gfn; 72 uint32_t pasid; 73 uint16_t sid; 74 uint8_t level; 75 }; 76 77 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 78 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 79 80 static void vtd_panic_require_caching_mode(void) 81 { 82 error_report("We need to set caching-mode=on for intel-iommu to enable " 83 "device assignment with IOMMU protection."); 84 exit(1); 85 } 86 87 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 88 uint64_t wmask, uint64_t w1cmask) 89 { 90 stq_le_p(&s->csr[addr], val); 91 stq_le_p(&s->wmask[addr], wmask); 92 stq_le_p(&s->w1cmask[addr], w1cmask); 93 } 94 95 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 96 { 97 stq_le_p(&s->womask[addr], mask); 98 } 99 100 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 101 uint32_t wmask, uint32_t w1cmask) 102 { 103 stl_le_p(&s->csr[addr], val); 104 stl_le_p(&s->wmask[addr], wmask); 105 stl_le_p(&s->w1cmask[addr], w1cmask); 106 } 107 108 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 109 { 110 stl_le_p(&s->womask[addr], mask); 111 } 112 113 /* "External" get/set operations */ 114 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 115 { 116 uint64_t oldval = ldq_le_p(&s->csr[addr]); 117 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 118 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 119 stq_le_p(&s->csr[addr], 120 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 121 } 122 123 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 124 { 125 uint32_t oldval = ldl_le_p(&s->csr[addr]); 126 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 127 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 128 stl_le_p(&s->csr[addr], 129 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 130 } 131 132 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 133 { 134 uint64_t val = ldq_le_p(&s->csr[addr]); 135 uint64_t womask = ldq_le_p(&s->womask[addr]); 136 return val & ~womask; 137 } 138 139 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 140 { 141 uint32_t val = ldl_le_p(&s->csr[addr]); 142 uint32_t womask = ldl_le_p(&s->womask[addr]); 143 return val & ~womask; 144 } 145 146 /* "Internal" get/set operations */ 147 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 148 { 149 return ldq_le_p(&s->csr[addr]); 150 } 151 152 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 153 { 154 return ldl_le_p(&s->csr[addr]); 155 } 156 157 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 158 { 159 stq_le_p(&s->csr[addr], val); 160 } 161 162 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 163 uint32_t clear, uint32_t mask) 164 { 165 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 166 stl_le_p(&s->csr[addr], new_val); 167 return new_val; 168 } 169 170 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 171 uint64_t clear, uint64_t mask) 172 { 173 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 174 stq_le_p(&s->csr[addr], new_val); 175 return new_val; 176 } 177 178 static inline void vtd_iommu_lock(IntelIOMMUState *s) 179 { 180 qemu_mutex_lock(&s->iommu_lock); 181 } 182 183 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 184 { 185 qemu_mutex_unlock(&s->iommu_lock); 186 } 187 188 static void vtd_update_scalable_state(IntelIOMMUState *s) 189 { 190 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 191 192 if (s->scalable_mode) { 193 s->root_scalable = val & VTD_RTADDR_SMT; 194 } 195 } 196 197 static void vtd_update_iq_dw(IntelIOMMUState *s) 198 { 199 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG); 200 201 if (s->ecap & VTD_ECAP_SMTS && 202 val & VTD_IQA_DW_MASK) { 203 s->iq_dw = true; 204 } else { 205 s->iq_dw = false; 206 } 207 } 208 209 /* Whether the address space needs to notify new mappings */ 210 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 211 { 212 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 213 } 214 215 /* GHashTable functions */ 216 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2) 217 { 218 const struct vtd_iotlb_key *key1 = v1; 219 const struct vtd_iotlb_key *key2 = v2; 220 221 return key1->sid == key2->sid && 222 key1->pasid == key2->pasid && 223 key1->level == key2->level && 224 key1->gfn == key2->gfn; 225 } 226 227 static guint vtd_iotlb_hash(gconstpointer v) 228 { 229 const struct vtd_iotlb_key *key = v; 230 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) | 231 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT | 232 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT; 233 234 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU)); 235 } 236 237 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2) 238 { 239 const struct vtd_as_key *key1 = v1; 240 const struct vtd_as_key *key2 = v2; 241 242 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) && 243 (key1->pasid == key2->pasid); 244 } 245 246 /* 247 * Note that we use pointer to PCIBus as the key, so hashing/shifting 248 * based on the pointer value is intended. Note that we deal with 249 * collisions through vtd_as_equal(). 250 */ 251 static guint vtd_as_hash(gconstpointer v) 252 { 253 const struct vtd_as_key *key = v; 254 guint value = (guint)(uintptr_t)key->bus; 255 256 return (guint)(value << 8 | key->devfn); 257 } 258 259 /* Same implementation as vtd_as_hash() */ 260 static guint vtd_hiod_hash(gconstpointer v) 261 { 262 return vtd_as_hash(v); 263 } 264 265 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2) 266 { 267 const struct vtd_hiod_key *key1 = v1; 268 const struct vtd_hiod_key *key2 = v2; 269 270 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn); 271 } 272 273 static void vtd_hiod_destroy(gpointer v) 274 { 275 object_unref(v); 276 } 277 278 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 279 gpointer user_data) 280 { 281 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 282 uint16_t domain_id = *(uint16_t *)user_data; 283 return entry->domain_id == domain_id; 284 } 285 286 /* The shift of an addr for a certain level of paging structure */ 287 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 288 { 289 assert(level != 0); 290 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 291 } 292 293 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 294 { 295 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 296 } 297 298 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 299 gpointer user_data) 300 { 301 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 302 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 303 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 304 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 305 return (entry->domain_id == info->domain_id) && 306 (((entry->gfn & info->mask) == gfn) || 307 (entry->gfn == gfn_tlb)); 308 } 309 310 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 311 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 312 */ 313 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 314 { 315 VTDAddressSpace *vtd_as; 316 GHashTableIter as_it; 317 318 trace_vtd_context_cache_reset(); 319 320 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 321 322 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 323 vtd_as->context_cache_entry.context_cache_gen = 0; 324 } 325 s->context_cache_gen = 1; 326 } 327 328 /* Must be called with IOMMU lock held. */ 329 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 330 { 331 assert(s->iotlb); 332 g_hash_table_remove_all(s->iotlb); 333 } 334 335 static void vtd_reset_iotlb(IntelIOMMUState *s) 336 { 337 vtd_iommu_lock(s); 338 vtd_reset_iotlb_locked(s); 339 vtd_iommu_unlock(s); 340 } 341 342 static void vtd_reset_caches(IntelIOMMUState *s) 343 { 344 vtd_iommu_lock(s); 345 vtd_reset_iotlb_locked(s); 346 vtd_reset_context_cache_locked(s); 347 vtd_iommu_unlock(s); 348 } 349 350 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 351 { 352 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 353 } 354 355 /* Must be called with IOMMU lock held */ 356 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 357 uint32_t pasid, hwaddr addr) 358 { 359 struct vtd_iotlb_key key; 360 VTDIOTLBEntry *entry; 361 unsigned level; 362 363 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 364 key.gfn = vtd_get_iotlb_gfn(addr, level); 365 key.level = level; 366 key.sid = source_id; 367 key.pasid = pasid; 368 entry = g_hash_table_lookup(s->iotlb, &key); 369 if (entry) { 370 goto out; 371 } 372 } 373 374 out: 375 return entry; 376 } 377 378 /* Must be with IOMMU lock held */ 379 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 380 uint16_t domain_id, hwaddr addr, uint64_t slpte, 381 uint8_t access_flags, uint32_t level, 382 uint32_t pasid) 383 { 384 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 385 struct vtd_iotlb_key *key = g_malloc(sizeof(*key)); 386 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 387 388 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 389 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 390 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 391 vtd_reset_iotlb_locked(s); 392 } 393 394 entry->gfn = gfn; 395 entry->domain_id = domain_id; 396 entry->slpte = slpte; 397 entry->access_flags = access_flags; 398 entry->mask = vtd_slpt_level_page_mask(level); 399 entry->pasid = pasid; 400 401 key->gfn = gfn; 402 key->sid = source_id; 403 key->level = level; 404 key->pasid = pasid; 405 406 g_hash_table_replace(s->iotlb, key, entry); 407 } 408 409 /* Given the reg addr of both the message data and address, generate an 410 * interrupt via MSI. 411 */ 412 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 413 hwaddr mesg_data_reg) 414 { 415 MSIMessage msi; 416 417 assert(mesg_data_reg < DMAR_REG_SIZE); 418 assert(mesg_addr_reg < DMAR_REG_SIZE); 419 420 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 421 msi.data = vtd_get_long_raw(s, mesg_data_reg); 422 423 trace_vtd_irq_generate(msi.address, msi.data); 424 425 apic_get_class(NULL)->send_msi(&msi); 426 } 427 428 /* Generate a fault event to software via MSI if conditions are met. 429 * Notice that the value of FSTS_REG being passed to it should be the one 430 * before any update. 431 */ 432 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 433 { 434 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 435 pre_fsts & VTD_FSTS_IQE) { 436 error_report_once("There are previous interrupt conditions " 437 "to be serviced by software, fault event " 438 "is not generated"); 439 return; 440 } 441 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 442 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 443 error_report_once("Interrupt Mask set, irq is not generated"); 444 } else { 445 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 446 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 447 } 448 } 449 450 /* Check if the Fault (F) field of the Fault Recording Register referenced by 451 * @index is Set. 452 */ 453 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 454 { 455 /* Each reg is 128-bit */ 456 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 457 addr += 8; /* Access the high 64-bit half */ 458 459 assert(index < DMAR_FRCD_REG_NR); 460 461 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 462 } 463 464 /* Update the PPF field of Fault Status Register. 465 * Should be called whenever change the F field of any fault recording 466 * registers. 467 */ 468 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 469 { 470 uint32_t i; 471 uint32_t ppf_mask = 0; 472 473 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 474 if (vtd_is_frcd_set(s, i)) { 475 ppf_mask = VTD_FSTS_PPF; 476 break; 477 } 478 } 479 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 480 trace_vtd_fsts_ppf(!!ppf_mask); 481 } 482 483 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 484 { 485 /* Each reg is 128-bit */ 486 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 487 addr += 8; /* Access the high 64-bit half */ 488 489 assert(index < DMAR_FRCD_REG_NR); 490 491 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 492 vtd_update_fsts_ppf(s); 493 } 494 495 /* Must not update F field now, should be done later */ 496 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 497 uint64_t hi, uint64_t lo) 498 { 499 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 500 501 assert(index < DMAR_FRCD_REG_NR); 502 503 vtd_set_quad_raw(s, frcd_reg_addr, lo); 504 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 505 506 trace_vtd_frr_new(index, hi, lo); 507 } 508 509 /* Try to collapse multiple pending faults from the same requester */ 510 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 511 { 512 uint32_t i; 513 uint64_t frcd_reg; 514 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 515 516 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 517 frcd_reg = vtd_get_quad_raw(s, addr); 518 if ((frcd_reg & VTD_FRCD_F) && 519 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 520 return true; 521 } 522 addr += 16; /* 128-bit for each */ 523 } 524 return false; 525 } 526 527 /* Log and report an DMAR (address translation) fault to software */ 528 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id, 529 uint64_t hi, uint64_t lo) 530 { 531 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 532 533 if (fsts_reg & VTD_FSTS_PFO) { 534 error_report_once("New fault is not recorded due to " 535 "Primary Fault Overflow"); 536 return; 537 } 538 539 if (vtd_try_collapse_fault(s, source_id)) { 540 error_report_once("New fault is not recorded due to " 541 "compression of faults"); 542 return; 543 } 544 545 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 546 error_report_once("Next Fault Recording Reg is used, " 547 "new fault is not recorded, set PFO field"); 548 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 549 return; 550 } 551 552 vtd_record_frcd(s, s->next_frcd_reg, hi, lo); 553 554 if (fsts_reg & VTD_FSTS_PPF) { 555 error_report_once("There are pending faults already, " 556 "fault event is not generated"); 557 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 558 s->next_frcd_reg++; 559 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 560 s->next_frcd_reg = 0; 561 } 562 } else { 563 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 564 VTD_FSTS_FRI(s->next_frcd_reg)); 565 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 566 s->next_frcd_reg++; 567 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 568 s->next_frcd_reg = 0; 569 } 570 /* This case actually cause the PPF to be Set. 571 * So generate fault event (interrupt). 572 */ 573 vtd_generate_fault_event(s, fsts_reg); 574 } 575 } 576 577 /* Log and report an DMAR (address translation) fault to software */ 578 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 579 hwaddr addr, VTDFaultReason fault, 580 bool is_write, bool is_pasid, 581 uint32_t pasid) 582 { 583 uint64_t hi, lo; 584 585 assert(fault < VTD_FR_MAX); 586 587 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 588 589 lo = VTD_FRCD_FI(addr); 590 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) | 591 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid); 592 if (!is_write) { 593 hi |= VTD_FRCD_T; 594 } 595 596 vtd_report_frcd_fault(s, source_id, hi, lo); 597 } 598 599 600 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id, 601 VTDFaultReason fault, uint16_t index) 602 { 603 uint64_t hi, lo; 604 605 lo = VTD_FRCD_IR_IDX(index); 606 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); 607 608 vtd_report_frcd_fault(s, source_id, hi, lo); 609 } 610 611 /* Handle Invalidation Queue Errors of queued invalidation interface error 612 * conditions. 613 */ 614 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 615 { 616 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 617 618 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 619 vtd_generate_fault_event(s, fsts_reg); 620 } 621 622 /* Set the IWC field and try to generate an invalidation completion interrupt */ 623 static void vtd_generate_completion_event(IntelIOMMUState *s) 624 { 625 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 626 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 627 return; 628 } 629 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 630 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 631 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 632 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 633 "new event not generated"); 634 return; 635 } else { 636 /* Generate the interrupt event */ 637 trace_vtd_inv_desc_wait_irq("Generating complete event"); 638 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 639 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 640 } 641 } 642 643 static inline bool vtd_root_entry_present(IntelIOMMUState *s, 644 VTDRootEntry *re, 645 uint8_t devfn) 646 { 647 if (s->root_scalable && devfn > UINT8_MAX / 2) { 648 return re->hi & VTD_ROOT_ENTRY_P; 649 } 650 651 return re->lo & VTD_ROOT_ENTRY_P; 652 } 653 654 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 655 VTDRootEntry *re) 656 { 657 dma_addr_t addr; 658 659 addr = s->root + index * sizeof(*re); 660 if (dma_memory_read(&address_space_memory, addr, 661 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) { 662 re->lo = 0; 663 return -VTD_FR_ROOT_TABLE_INV; 664 } 665 re->lo = le64_to_cpu(re->lo); 666 re->hi = le64_to_cpu(re->hi); 667 return 0; 668 } 669 670 static inline bool vtd_ce_present(VTDContextEntry *context) 671 { 672 return context->lo & VTD_CONTEXT_ENTRY_P; 673 } 674 675 static int vtd_get_context_entry_from_root(IntelIOMMUState *s, 676 VTDRootEntry *re, 677 uint8_t index, 678 VTDContextEntry *ce) 679 { 680 dma_addr_t addr, ce_size; 681 682 /* we have checked that root entry is present */ 683 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : 684 VTD_CTX_ENTRY_LEGACY_SIZE; 685 686 if (s->root_scalable && index > UINT8_MAX / 2) { 687 index = index & (~VTD_DEVFN_CHECK_MASK); 688 addr = re->hi & VTD_ROOT_ENTRY_CTP; 689 } else { 690 addr = re->lo & VTD_ROOT_ENTRY_CTP; 691 } 692 693 addr = addr + index * ce_size; 694 if (dma_memory_read(&address_space_memory, addr, 695 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) { 696 return -VTD_FR_CONTEXT_TABLE_INV; 697 } 698 699 ce->lo = le64_to_cpu(ce->lo); 700 ce->hi = le64_to_cpu(ce->hi); 701 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { 702 ce->val[2] = le64_to_cpu(ce->val[2]); 703 ce->val[3] = le64_to_cpu(ce->val[3]); 704 } 705 return 0; 706 } 707 708 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 709 { 710 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 711 } 712 713 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) 714 { 715 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); 716 } 717 718 /* Whether the pte indicates the address of the page frame */ 719 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 720 { 721 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 722 } 723 724 /* Get the content of a spte located in @base_addr[@index] */ 725 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 726 { 727 uint64_t slpte; 728 729 assert(index < VTD_SL_PT_ENTRY_NR); 730 731 if (dma_memory_read(&address_space_memory, 732 base_addr + index * sizeof(slpte), 733 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) { 734 slpte = (uint64_t)-1; 735 return slpte; 736 } 737 slpte = le64_to_cpu(slpte); 738 return slpte; 739 } 740 741 /* Given an iova and the level of paging structure, return the offset 742 * of current level. 743 */ 744 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 745 { 746 return (iova >> vtd_slpt_level_shift(level)) & 747 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 748 } 749 750 /* Check Capability Register to see if the @level of page-table is supported */ 751 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 752 { 753 return VTD_CAP_SAGAW_MASK & s->cap & 754 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 755 } 756 757 /* Return true if check passed, otherwise false */ 758 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, 759 VTDPASIDEntry *pe) 760 { 761 switch (VTD_PE_GET_TYPE(pe)) { 762 case VTD_SM_PASID_ENTRY_FLT: 763 case VTD_SM_PASID_ENTRY_SLT: 764 case VTD_SM_PASID_ENTRY_NESTED: 765 break; 766 case VTD_SM_PASID_ENTRY_PT: 767 if (!x86_iommu->pt_supported) { 768 return false; 769 } 770 break; 771 default: 772 /* Unknown type */ 773 return false; 774 } 775 return true; 776 } 777 778 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire) 779 { 780 return pdire->val & 1; 781 } 782 783 /** 784 * Caller of this function should check present bit if wants 785 * to use pdir entry for further usage except for fpd bit check. 786 */ 787 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base, 788 uint32_t pasid, 789 VTDPASIDDirEntry *pdire) 790 { 791 uint32_t index; 792 dma_addr_t addr, entry_size; 793 794 index = VTD_PASID_DIR_INDEX(pasid); 795 entry_size = VTD_PASID_DIR_ENTRY_SIZE; 796 addr = pasid_dir_base + index * entry_size; 797 if (dma_memory_read(&address_space_memory, addr, 798 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) { 799 return -VTD_FR_PASID_TABLE_INV; 800 } 801 802 pdire->val = le64_to_cpu(pdire->val); 803 804 return 0; 805 } 806 807 static inline bool vtd_pe_present(VTDPASIDEntry *pe) 808 { 809 return pe->val[0] & VTD_PASID_ENTRY_P; 810 } 811 812 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s, 813 uint32_t pasid, 814 dma_addr_t addr, 815 VTDPASIDEntry *pe) 816 { 817 uint32_t index; 818 dma_addr_t entry_size; 819 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 820 821 index = VTD_PASID_TABLE_INDEX(pasid); 822 entry_size = VTD_PASID_ENTRY_SIZE; 823 addr = addr + index * entry_size; 824 if (dma_memory_read(&address_space_memory, addr, 825 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) { 826 return -VTD_FR_PASID_TABLE_INV; 827 } 828 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) { 829 pe->val[i] = le64_to_cpu(pe->val[i]); 830 } 831 832 /* Do translation type check */ 833 if (!vtd_pe_type_check(x86_iommu, pe)) { 834 return -VTD_FR_PASID_TABLE_INV; 835 } 836 837 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { 838 return -VTD_FR_PASID_TABLE_INV; 839 } 840 841 return 0; 842 } 843 844 /** 845 * Caller of this function should check present bit if wants 846 * to use pasid entry for further usage except for fpd bit check. 847 */ 848 static int vtd_get_pe_from_pdire(IntelIOMMUState *s, 849 uint32_t pasid, 850 VTDPASIDDirEntry *pdire, 851 VTDPASIDEntry *pe) 852 { 853 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; 854 855 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe); 856 } 857 858 /** 859 * This function gets a pasid entry from a specified pasid 860 * table (includes dir and leaf table) with a specified pasid. 861 * Sanity check should be done to ensure return a present 862 * pasid entry to caller. 863 */ 864 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s, 865 dma_addr_t pasid_dir_base, 866 uint32_t pasid, 867 VTDPASIDEntry *pe) 868 { 869 int ret; 870 VTDPASIDDirEntry pdire; 871 872 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, 873 pasid, &pdire); 874 if (ret) { 875 return ret; 876 } 877 878 if (!vtd_pdire_present(&pdire)) { 879 return -VTD_FR_PASID_TABLE_INV; 880 } 881 882 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe); 883 if (ret) { 884 return ret; 885 } 886 887 if (!vtd_pe_present(pe)) { 888 return -VTD_FR_PASID_TABLE_INV; 889 } 890 891 return 0; 892 } 893 894 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, 895 VTDContextEntry *ce, 896 VTDPASIDEntry *pe, 897 uint32_t pasid) 898 { 899 dma_addr_t pasid_dir_base; 900 int ret = 0; 901 902 if (pasid == PCI_NO_PASID) { 903 pasid = VTD_CE_GET_RID2PASID(ce); 904 } 905 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 906 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe); 907 908 return ret; 909 } 910 911 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, 912 VTDContextEntry *ce, 913 bool *pe_fpd_set, 914 uint32_t pasid) 915 { 916 int ret; 917 dma_addr_t pasid_dir_base; 918 VTDPASIDDirEntry pdire; 919 VTDPASIDEntry pe; 920 921 if (pasid == PCI_NO_PASID) { 922 pasid = VTD_CE_GET_RID2PASID(ce); 923 } 924 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 925 926 /* 927 * No present bit check since fpd is meaningful even 928 * if the present bit is clear. 929 */ 930 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); 931 if (ret) { 932 return ret; 933 } 934 935 if (pdire.val & VTD_PASID_DIR_FPD) { 936 *pe_fpd_set = true; 937 return 0; 938 } 939 940 if (!vtd_pdire_present(&pdire)) { 941 return -VTD_FR_PASID_TABLE_INV; 942 } 943 944 /* 945 * No present bit check since fpd is meaningful even 946 * if the present bit is clear. 947 */ 948 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe); 949 if (ret) { 950 return ret; 951 } 952 953 if (pe.val[0] & VTD_PASID_ENTRY_FPD) { 954 *pe_fpd_set = true; 955 } 956 957 return 0; 958 } 959 960 /* Get the page-table level that hardware should use for the second-level 961 * page-table walk from the Address Width field of context-entry. 962 */ 963 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 964 { 965 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 966 } 967 968 static uint32_t vtd_get_iova_level(IntelIOMMUState *s, 969 VTDContextEntry *ce, 970 uint32_t pasid) 971 { 972 VTDPASIDEntry pe; 973 974 if (s->root_scalable) { 975 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 976 return VTD_PE_GET_LEVEL(&pe); 977 } 978 979 return vtd_ce_get_level(ce); 980 } 981 982 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 983 { 984 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 985 } 986 987 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, 988 VTDContextEntry *ce, 989 uint32_t pasid) 990 { 991 VTDPASIDEntry pe; 992 993 if (s->root_scalable) { 994 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 995 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; 996 } 997 998 return vtd_ce_get_agaw(ce); 999 } 1000 1001 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 1002 { 1003 return ce->lo & VTD_CONTEXT_ENTRY_TT; 1004 } 1005 1006 /* Only for Legacy Mode. Return true if check passed, otherwise false */ 1007 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 1008 VTDContextEntry *ce) 1009 { 1010 switch (vtd_ce_get_type(ce)) { 1011 case VTD_CONTEXT_TT_MULTI_LEVEL: 1012 /* Always supported */ 1013 break; 1014 case VTD_CONTEXT_TT_DEV_IOTLB: 1015 if (!x86_iommu->dt_supported) { 1016 error_report_once("%s: DT specified but not supported", __func__); 1017 return false; 1018 } 1019 break; 1020 case VTD_CONTEXT_TT_PASS_THROUGH: 1021 if (!x86_iommu->pt_supported) { 1022 error_report_once("%s: PT specified but not supported", __func__); 1023 return false; 1024 } 1025 break; 1026 default: 1027 /* Unknown type */ 1028 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 1029 vtd_ce_get_type(ce)); 1030 return false; 1031 } 1032 return true; 1033 } 1034 1035 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, 1036 VTDContextEntry *ce, uint8_t aw, 1037 uint32_t pasid) 1038 { 1039 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid); 1040 return 1ULL << MIN(ce_agaw, aw); 1041 } 1042 1043 /* Return true if IOVA passes range check, otherwise false. */ 1044 static inline bool vtd_iova_range_check(IntelIOMMUState *s, 1045 uint64_t iova, VTDContextEntry *ce, 1046 uint8_t aw, uint32_t pasid) 1047 { 1048 /* 1049 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 1050 * in CAP_REG and AW in context-entry. 1051 */ 1052 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1)); 1053 } 1054 1055 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, 1056 VTDContextEntry *ce, 1057 uint32_t pasid) 1058 { 1059 VTDPASIDEntry pe; 1060 1061 if (s->root_scalable) { 1062 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1063 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; 1064 } 1065 1066 return vtd_ce_get_slpt_base(ce); 1067 } 1068 1069 /* 1070 * Rsvd field masks for spte: 1071 * vtd_spte_rsvd 4k pages 1072 * vtd_spte_rsvd_large large pages 1073 * 1074 * We support only 3-level and 4-level page tables (see vtd_init() which 1075 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap). 1076 */ 1077 #define VTD_SPTE_RSVD_LEN 5 1078 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN]; 1079 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN]; 1080 1081 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 1082 { 1083 uint64_t rsvd_mask; 1084 1085 /* 1086 * We should have caught a guest-mis-programmed level earlier, 1087 * via vtd_is_level_supported. 1088 */ 1089 assert(level < VTD_SPTE_RSVD_LEN); 1090 /* 1091 * Zero level doesn't exist. The smallest level is VTD_SL_PT_LEVEL=1 and 1092 * checked by vtd_is_last_slpte(). 1093 */ 1094 assert(level); 1095 1096 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) && 1097 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) { 1098 /* large page */ 1099 rsvd_mask = vtd_spte_rsvd_large[level]; 1100 } else { 1101 rsvd_mask = vtd_spte_rsvd[level]; 1102 } 1103 1104 return slpte & rsvd_mask; 1105 } 1106 1107 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 1108 * of the translation, can be used for deciding the size of large page. 1109 */ 1110 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, 1111 uint64_t iova, bool is_write, 1112 uint64_t *slptep, uint32_t *slpte_level, 1113 bool *reads, bool *writes, uint8_t aw_bits, 1114 uint32_t pasid) 1115 { 1116 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1117 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1118 uint32_t offset; 1119 uint64_t slpte; 1120 uint64_t access_right_check; 1121 uint64_t xlat, size; 1122 1123 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) { 1124 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 "," 1125 "pasid=0x%" PRIx32 ")", __func__, iova, pasid); 1126 return -VTD_FR_ADDR_BEYOND_MGAW; 1127 } 1128 1129 /* FIXME: what is the Atomics request here? */ 1130 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 1131 1132 while (true) { 1133 offset = vtd_iova_level_offset(iova, level); 1134 slpte = vtd_get_slpte(addr, offset); 1135 1136 if (slpte == (uint64_t)-1) { 1137 error_report_once("%s: detected read error on DMAR slpte " 1138 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")", 1139 __func__, iova, pasid); 1140 if (level == vtd_get_iova_level(s, ce, pasid)) { 1141 /* Invalid programming of context-entry */ 1142 return -VTD_FR_CONTEXT_ENTRY_INV; 1143 } else { 1144 return -VTD_FR_PAGING_ENTRY_INV; 1145 } 1146 } 1147 *reads = (*reads) && (slpte & VTD_SL_R); 1148 *writes = (*writes) && (slpte & VTD_SL_W); 1149 if (!(slpte & access_right_check)) { 1150 error_report_once("%s: detected slpte permission error " 1151 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1152 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%" 1153 PRIx32 ")", __func__, iova, level, 1154 slpte, is_write, pasid); 1155 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 1156 } 1157 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1158 error_report_once("%s: detected splte reserve non-zero " 1159 "iova=0x%" PRIx64 ", level=0x%" PRIx32 1160 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", 1161 __func__, iova, level, slpte, pasid); 1162 return -VTD_FR_PAGING_ENTRY_RSVD; 1163 } 1164 1165 if (vtd_is_last_slpte(slpte, level)) { 1166 *slptep = slpte; 1167 *slpte_level = level; 1168 break; 1169 } 1170 addr = vtd_get_slpte_addr(slpte, aw_bits); 1171 level--; 1172 } 1173 1174 xlat = vtd_get_slpte_addr(*slptep, aw_bits); 1175 size = ~vtd_slpt_level_page_mask(level) + 1; 1176 1177 /* 1178 * From VT-d spec 3.14: Untranslated requests and translation 1179 * requests that result in an address in the interrupt range will be 1180 * blocked with condition code LGN.4 or SGN.8. 1181 */ 1182 if ((xlat > VTD_INTERRUPT_ADDR_LAST || 1183 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) { 1184 return 0; 1185 } else { 1186 error_report_once("%s: xlat address is in interrupt range " 1187 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1188 "slpte=0x%" PRIx64 ", write=%d, " 1189 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", " 1190 "pasid=0x%" PRIx32 ")", 1191 __func__, iova, level, slpte, is_write, 1192 xlat, size, pasid); 1193 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR : 1194 -VTD_FR_INTERRUPT_ADDR; 1195 } 1196 } 1197 1198 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private); 1199 1200 /** 1201 * Constant information used during page walking 1202 * 1203 * @hook_fn: hook func to be called when detected page 1204 * @private: private data to be passed into hook func 1205 * @notify_unmap: whether we should notify invalid entries 1206 * @as: VT-d address space of the device 1207 * @aw: maximum address width 1208 * @domain: domain ID of the page walk 1209 */ 1210 typedef struct { 1211 VTDAddressSpace *as; 1212 vtd_page_walk_hook hook_fn; 1213 void *private; 1214 bool notify_unmap; 1215 uint8_t aw; 1216 uint16_t domain_id; 1217 } vtd_page_walk_info; 1218 1219 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info) 1220 { 1221 VTDAddressSpace *as = info->as; 1222 vtd_page_walk_hook hook_fn = info->hook_fn; 1223 void *private = info->private; 1224 IOMMUTLBEntry *entry = &event->entry; 1225 DMAMap target = { 1226 .iova = entry->iova, 1227 .size = entry->addr_mask, 1228 .translated_addr = entry->translated_addr, 1229 .perm = entry->perm, 1230 }; 1231 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 1232 1233 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) { 1234 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1235 return 0; 1236 } 1237 1238 assert(hook_fn); 1239 1240 /* Update local IOVA mapped ranges */ 1241 if (event->type == IOMMU_NOTIFIER_MAP) { 1242 if (mapped) { 1243 /* If it's exactly the same translation, skip */ 1244 if (!memcmp(mapped, &target, sizeof(target))) { 1245 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 1246 entry->translated_addr); 1247 return 0; 1248 } else { 1249 /* 1250 * Translation changed. Normally this should not 1251 * happen, but it can happen when with buggy guest 1252 * OSes. Note that there will be a small window that 1253 * we don't have map at all. But that's the best 1254 * effort we can do. The ideal way to emulate this is 1255 * atomically modify the PTE to follow what has 1256 * changed, but we can't. One example is that vfio 1257 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 1258 * interface to modify a mapping (meanwhile it seems 1259 * meaningless to even provide one). Anyway, let's 1260 * mark this as a TODO in case one day we'll have 1261 * a better solution. 1262 */ 1263 IOMMUAccessFlags cache_perm = entry->perm; 1264 int ret; 1265 1266 /* Emulate an UNMAP */ 1267 event->type = IOMMU_NOTIFIER_UNMAP; 1268 entry->perm = IOMMU_NONE; 1269 trace_vtd_page_walk_one(info->domain_id, 1270 entry->iova, 1271 entry->translated_addr, 1272 entry->addr_mask, 1273 entry->perm); 1274 ret = hook_fn(event, private); 1275 if (ret) { 1276 return ret; 1277 } 1278 /* Drop any existing mapping */ 1279 iova_tree_remove(as->iova_tree, target); 1280 /* Recover the correct type */ 1281 event->type = IOMMU_NOTIFIER_MAP; 1282 entry->perm = cache_perm; 1283 } 1284 } 1285 iova_tree_insert(as->iova_tree, &target); 1286 } else { 1287 if (!mapped) { 1288 /* Skip since we didn't map this range at all */ 1289 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1290 return 0; 1291 } 1292 iova_tree_remove(as->iova_tree, target); 1293 } 1294 1295 trace_vtd_page_walk_one(info->domain_id, entry->iova, 1296 entry->translated_addr, entry->addr_mask, 1297 entry->perm); 1298 return hook_fn(event, private); 1299 } 1300 1301 /** 1302 * vtd_page_walk_level - walk over specific level for IOVA range 1303 * 1304 * @addr: base GPA addr to start the walk 1305 * @start: IOVA range start address 1306 * @end: IOVA range end address (start <= addr < end) 1307 * @read: whether parent level has read permission 1308 * @write: whether parent level has write permission 1309 * @info: constant information for the page walk 1310 */ 1311 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 1312 uint64_t end, uint32_t level, bool read, 1313 bool write, vtd_page_walk_info *info) 1314 { 1315 bool read_cur, write_cur, entry_valid; 1316 uint32_t offset; 1317 uint64_t slpte; 1318 uint64_t subpage_size, subpage_mask; 1319 IOMMUTLBEvent event; 1320 uint64_t iova = start; 1321 uint64_t iova_next; 1322 int ret = 0; 1323 1324 trace_vtd_page_walk_level(addr, level, start, end); 1325 1326 subpage_size = 1ULL << vtd_slpt_level_shift(level); 1327 subpage_mask = vtd_slpt_level_page_mask(level); 1328 1329 while (iova < end) { 1330 iova_next = (iova & subpage_mask) + subpage_size; 1331 1332 offset = vtd_iova_level_offset(iova, level); 1333 slpte = vtd_get_slpte(addr, offset); 1334 1335 if (slpte == (uint64_t)-1) { 1336 trace_vtd_page_walk_skip_read(iova, iova_next); 1337 goto next; 1338 } 1339 1340 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1341 trace_vtd_page_walk_skip_reserve(iova, iova_next); 1342 goto next; 1343 } 1344 1345 /* Permissions are stacked with parents' */ 1346 read_cur = read && (slpte & VTD_SL_R); 1347 write_cur = write && (slpte & VTD_SL_W); 1348 1349 /* 1350 * As long as we have either read/write permission, this is a 1351 * valid entry. The rule works for both page entries and page 1352 * table entries. 1353 */ 1354 entry_valid = read_cur | write_cur; 1355 1356 if (!vtd_is_last_slpte(slpte, level) && entry_valid) { 1357 /* 1358 * This is a valid PDE (or even bigger than PDE). We need 1359 * to walk one further level. 1360 */ 1361 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), 1362 iova, MIN(iova_next, end), level - 1, 1363 read_cur, write_cur, info); 1364 } else { 1365 /* 1366 * This means we are either: 1367 * 1368 * (1) the real page entry (either 4K page, or huge page) 1369 * (2) the whole range is invalid 1370 * 1371 * In either case, we send an IOTLB notification down. 1372 */ 1373 event.entry.target_as = &address_space_memory; 1374 event.entry.iova = iova & subpage_mask; 1375 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 1376 event.entry.addr_mask = ~subpage_mask; 1377 /* NOTE: this is only meaningful if entry_valid == true */ 1378 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); 1379 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP : 1380 IOMMU_NOTIFIER_UNMAP; 1381 ret = vtd_page_walk_one(&event, info); 1382 } 1383 1384 if (ret < 0) { 1385 return ret; 1386 } 1387 1388 next: 1389 iova = iova_next; 1390 } 1391 1392 return 0; 1393 } 1394 1395 /** 1396 * vtd_page_walk - walk specific IOVA range, and call the hook 1397 * 1398 * @s: intel iommu state 1399 * @ce: context entry to walk upon 1400 * @start: IOVA address to start the walk 1401 * @end: IOVA range end address (start <= addr < end) 1402 * @info: page walking information struct 1403 */ 1404 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, 1405 uint64_t start, uint64_t end, 1406 vtd_page_walk_info *info, 1407 uint32_t pasid) 1408 { 1409 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1410 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1411 1412 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) { 1413 return -VTD_FR_ADDR_BEYOND_MGAW; 1414 } 1415 1416 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) { 1417 /* Fix end so that it reaches the maximum */ 1418 end = vtd_iova_limit(s, ce, info->aw, pasid); 1419 } 1420 1421 return vtd_page_walk_level(addr, start, end, level, true, true, info); 1422 } 1423 1424 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, 1425 VTDRootEntry *re) 1426 { 1427 /* Legacy Mode reserved bits check */ 1428 if (!s->root_scalable && 1429 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1430 goto rsvd_err; 1431 1432 /* Scalable Mode reserved bits check */ 1433 if (s->root_scalable && 1434 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || 1435 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1436 goto rsvd_err; 1437 1438 return 0; 1439 1440 rsvd_err: 1441 error_report_once("%s: invalid root entry: hi=0x%"PRIx64 1442 ", lo=0x%"PRIx64, 1443 __func__, re->hi, re->lo); 1444 return -VTD_FR_ROOT_ENTRY_RSVD; 1445 } 1446 1447 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, 1448 VTDContextEntry *ce) 1449 { 1450 if (!s->root_scalable && 1451 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || 1452 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1453 error_report_once("%s: invalid context entry: hi=%"PRIx64 1454 ", lo=%"PRIx64" (reserved nonzero)", 1455 __func__, ce->hi, ce->lo); 1456 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1457 } 1458 1459 if (s->root_scalable && 1460 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || 1461 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || 1462 ce->val[2] || 1463 ce->val[3])) { 1464 error_report_once("%s: invalid context entry: val[3]=%"PRIx64 1465 ", val[2]=%"PRIx64 1466 ", val[1]=%"PRIx64 1467 ", val[0]=%"PRIx64" (reserved nonzero)", 1468 __func__, ce->val[3], ce->val[2], 1469 ce->val[1], ce->val[0]); 1470 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, 1477 VTDContextEntry *ce) 1478 { 1479 VTDPASIDEntry pe; 1480 1481 /* 1482 * Make sure in Scalable Mode, a present context entry 1483 * has valid rid2pasid setting, which includes valid 1484 * rid2pasid field and corresponding pasid entry setting 1485 */ 1486 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID); 1487 } 1488 1489 /* Map a device to its corresponding domain (context-entry) */ 1490 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 1491 uint8_t devfn, VTDContextEntry *ce) 1492 { 1493 VTDRootEntry re; 1494 int ret_fr; 1495 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 1496 1497 ret_fr = vtd_get_root_entry(s, bus_num, &re); 1498 if (ret_fr) { 1499 return ret_fr; 1500 } 1501 1502 if (!vtd_root_entry_present(s, &re, devfn)) { 1503 /* Not error - it's okay we don't have root entry. */ 1504 trace_vtd_re_not_present(bus_num); 1505 return -VTD_FR_ROOT_ENTRY_P; 1506 } 1507 1508 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); 1509 if (ret_fr) { 1510 return ret_fr; 1511 } 1512 1513 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); 1514 if (ret_fr) { 1515 return ret_fr; 1516 } 1517 1518 if (!vtd_ce_present(ce)) { 1519 /* Not error - it's okay we don't have context entry. */ 1520 trace_vtd_ce_not_present(bus_num, devfn); 1521 return -VTD_FR_CONTEXT_ENTRY_P; 1522 } 1523 1524 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); 1525 if (ret_fr) { 1526 return ret_fr; 1527 } 1528 1529 /* Check if the programming of context-entry is valid */ 1530 if (!s->root_scalable && 1531 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 1532 error_report_once("%s: invalid context entry: hi=%"PRIx64 1533 ", lo=%"PRIx64" (level %d not supported)", 1534 __func__, ce->hi, ce->lo, 1535 vtd_ce_get_level(ce)); 1536 return -VTD_FR_CONTEXT_ENTRY_INV; 1537 } 1538 1539 if (!s->root_scalable) { 1540 /* Do translation type check */ 1541 if (!vtd_ce_type_check(x86_iommu, ce)) { 1542 /* Errors dumped in vtd_ce_type_check() */ 1543 return -VTD_FR_CONTEXT_ENTRY_INV; 1544 } 1545 } else { 1546 /* 1547 * Check if the programming of context-entry.rid2pasid 1548 * and corresponding pasid setting is valid, and thus 1549 * avoids to check pasid entry fetching result in future 1550 * helper function calling. 1551 */ 1552 ret_fr = vtd_ce_rid2pasid_check(s, ce); 1553 if (ret_fr) { 1554 return ret_fr; 1555 } 1556 } 1557 1558 return 0; 1559 } 1560 1561 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event, 1562 void *private) 1563 { 1564 memory_region_notify_iommu(private, 0, *event); 1565 return 0; 1566 } 1567 1568 static uint16_t vtd_get_domain_id(IntelIOMMUState *s, 1569 VTDContextEntry *ce, 1570 uint32_t pasid) 1571 { 1572 VTDPASIDEntry pe; 1573 1574 if (s->root_scalable) { 1575 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1576 return VTD_SM_PASID_ENTRY_DID(pe.val[1]); 1577 } 1578 1579 return VTD_CONTEXT_ENTRY_DID(ce->hi); 1580 } 1581 1582 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1583 VTDContextEntry *ce, 1584 hwaddr addr, hwaddr size) 1585 { 1586 IntelIOMMUState *s = vtd_as->iommu_state; 1587 vtd_page_walk_info info = { 1588 .hook_fn = vtd_sync_shadow_page_hook, 1589 .private = (void *)&vtd_as->iommu, 1590 .notify_unmap = true, 1591 .aw = s->aw_bits, 1592 .as = vtd_as, 1593 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid), 1594 }; 1595 1596 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid); 1597 } 1598 1599 static int vtd_address_space_sync(VTDAddressSpace *vtd_as) 1600 { 1601 int ret; 1602 VTDContextEntry ce; 1603 IOMMUNotifier *n; 1604 1605 /* If no MAP notifier registered, we simply invalidate all the cache */ 1606 if (!vtd_as_has_map_notifier(vtd_as)) { 1607 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1608 memory_region_unmap_iommu_notifier_range(n); 1609 } 1610 return 0; 1611 } 1612 1613 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1614 pci_bus_num(vtd_as->bus), 1615 vtd_as->devfn, &ce); 1616 if (ret) { 1617 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1618 /* 1619 * It's a valid scenario to have a context entry that is 1620 * not present. For example, when a device is removed 1621 * from an existing domain then the context entry will be 1622 * zeroed by the guest before it was put into another 1623 * domain. When this happens, instead of synchronizing 1624 * the shadow pages we should invalidate all existing 1625 * mappings and notify the backends. 1626 */ 1627 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1628 vtd_address_space_unmap(vtd_as, n); 1629 } 1630 ret = 0; 1631 } 1632 return ret; 1633 } 1634 1635 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1636 } 1637 1638 /* 1639 * Check if specific device is configured to bypass address 1640 * translation for DMA requests. In Scalable Mode, bypass 1641 * 1st-level translation or 2nd-level translation, it depends 1642 * on PGTT setting. 1643 */ 1644 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce, 1645 uint32_t pasid) 1646 { 1647 VTDPASIDEntry pe; 1648 int ret; 1649 1650 if (s->root_scalable) { 1651 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1652 if (ret) { 1653 /* 1654 * This error is guest triggerable. We should assumt PT 1655 * not enabled for safety. 1656 */ 1657 return false; 1658 } 1659 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); 1660 } 1661 1662 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH); 1663 1664 } 1665 1666 static bool vtd_as_pt_enabled(VTDAddressSpace *as) 1667 { 1668 IntelIOMMUState *s; 1669 VTDContextEntry ce; 1670 1671 assert(as); 1672 1673 s = as->iommu_state; 1674 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn, 1675 &ce)) { 1676 /* 1677 * Possibly failed to parse the context entry for some reason 1678 * (e.g., during init, or any guest configuration errors on 1679 * context entries). We should assume PT not enabled for 1680 * safety. 1681 */ 1682 return false; 1683 } 1684 1685 return vtd_dev_pt_enabled(s, &ce, as->pasid); 1686 } 1687 1688 /* Return whether the device is using IOMMU translation. */ 1689 static bool vtd_switch_address_space(VTDAddressSpace *as) 1690 { 1691 bool use_iommu, pt; 1692 /* Whether we need to take the BQL on our own */ 1693 bool take_bql = !bql_locked(); 1694 1695 assert(as); 1696 1697 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as); 1698 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as); 1699 1700 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1701 VTD_PCI_SLOT(as->devfn), 1702 VTD_PCI_FUNC(as->devfn), 1703 use_iommu); 1704 1705 /* 1706 * It's possible that we reach here without BQL, e.g., when called 1707 * from vtd_pt_enable_fast_path(). However the memory APIs need 1708 * it. We'd better make sure we have had it already, or, take it. 1709 */ 1710 if (take_bql) { 1711 bql_lock(); 1712 } 1713 1714 /* Turn off first then on the other */ 1715 if (use_iommu) { 1716 memory_region_set_enabled(&as->nodmar, false); 1717 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1718 /* 1719 * vt-d spec v3.4 3.14: 1720 * 1721 * """ 1722 * Requests-with-PASID with input address in range 0xFEEx_xxxx 1723 * are translated normally like any other request-with-PASID 1724 * through DMA-remapping hardware. 1725 * """ 1726 * 1727 * Need to disable ir for as with PASID. 1728 */ 1729 if (as->pasid != PCI_NO_PASID) { 1730 memory_region_set_enabled(&as->iommu_ir, false); 1731 } else { 1732 memory_region_set_enabled(&as->iommu_ir, true); 1733 } 1734 } else { 1735 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1736 memory_region_set_enabled(&as->nodmar, true); 1737 } 1738 1739 /* 1740 * vtd-spec v3.4 3.14: 1741 * 1742 * """ 1743 * Requests-with-PASID with input address in range 0xFEEx_xxxx are 1744 * translated normally like any other request-with-PASID through 1745 * DMA-remapping hardware. However, if such a request is processed 1746 * using pass-through translation, it will be blocked as described 1747 * in the paragraph below. 1748 * 1749 * Software must not program paging-structure entries to remap any 1750 * address to the interrupt address range. Untranslated requests 1751 * and translation requests that result in an address in the 1752 * interrupt range will be blocked with condition code LGN.4 or 1753 * SGN.8. 1754 * """ 1755 * 1756 * We enable per as memory region (iommu_ir_fault) for catching 1757 * the translation for interrupt range through PASID + PT. 1758 */ 1759 if (pt && as->pasid != PCI_NO_PASID) { 1760 memory_region_set_enabled(&as->iommu_ir_fault, true); 1761 } else { 1762 memory_region_set_enabled(&as->iommu_ir_fault, false); 1763 } 1764 1765 if (take_bql) { 1766 bql_unlock(); 1767 } 1768 1769 return use_iommu; 1770 } 1771 1772 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1773 { 1774 VTDAddressSpace *vtd_as; 1775 GHashTableIter iter; 1776 1777 g_hash_table_iter_init(&iter, s->vtd_address_spaces); 1778 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) { 1779 vtd_switch_address_space(vtd_as); 1780 } 1781 } 1782 1783 static const bool vtd_qualified_faults[] = { 1784 [VTD_FR_RESERVED] = false, 1785 [VTD_FR_ROOT_ENTRY_P] = false, 1786 [VTD_FR_CONTEXT_ENTRY_P] = true, 1787 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1788 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1789 [VTD_FR_WRITE] = true, 1790 [VTD_FR_READ] = true, 1791 [VTD_FR_PAGING_ENTRY_INV] = true, 1792 [VTD_FR_ROOT_TABLE_INV] = false, 1793 [VTD_FR_CONTEXT_TABLE_INV] = false, 1794 [VTD_FR_INTERRUPT_ADDR] = true, 1795 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1796 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1797 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1798 [VTD_FR_PASID_TABLE_INV] = false, 1799 [VTD_FR_SM_INTERRUPT_ADDR] = true, 1800 [VTD_FR_MAX] = false, 1801 }; 1802 1803 /* To see if a fault condition is "qualified", which is reported to software 1804 * only if the FPD field in the context-entry used to process the faulting 1805 * request is 0. 1806 */ 1807 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1808 { 1809 return vtd_qualified_faults[fault]; 1810 } 1811 1812 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1813 { 1814 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1815 } 1816 1817 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value, 1818 gpointer user_data) 1819 { 1820 struct vtd_as_key *as_key = (struct vtd_as_key *)key; 1821 uint16_t target_sid = *(uint16_t *)user_data; 1822 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn); 1823 return sid == target_sid; 1824 } 1825 1826 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid) 1827 { 1828 uint8_t bus_num = PCI_BUS_NUM(sid); 1829 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num]; 1830 1831 if (vtd_as && 1832 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) { 1833 return vtd_as; 1834 } 1835 1836 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid); 1837 s->vtd_as_cache[bus_num] = vtd_as; 1838 1839 return vtd_as; 1840 } 1841 1842 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1843 { 1844 VTDAddressSpace *vtd_as; 1845 bool success = false; 1846 1847 vtd_as = vtd_get_as_by_sid(s, source_id); 1848 if (!vtd_as) { 1849 goto out; 1850 } 1851 1852 if (vtd_switch_address_space(vtd_as) == false) { 1853 /* We switched off IOMMU region successfully. */ 1854 success = true; 1855 } 1856 1857 out: 1858 trace_vtd_pt_enable_fast_path(source_id, success); 1859 } 1860 1861 static void vtd_report_fault(IntelIOMMUState *s, 1862 int err, bool is_fpd_set, 1863 uint16_t source_id, 1864 hwaddr addr, 1865 bool is_write, 1866 bool is_pasid, 1867 uint32_t pasid) 1868 { 1869 if (is_fpd_set && vtd_is_qualified_fault(err)) { 1870 trace_vtd_fault_disabled(); 1871 } else { 1872 vtd_report_dmar_fault(s, source_id, addr, err, is_write, 1873 is_pasid, pasid); 1874 } 1875 } 1876 1877 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1878 * translation. 1879 * 1880 * Called from RCU critical section. 1881 * 1882 * @bus_num: The bus number 1883 * @devfn: The devfn, which is the combined of device and function number 1884 * @is_write: The access is a write operation 1885 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1886 * 1887 * Returns true if translation is successful, otherwise false. 1888 */ 1889 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1890 uint8_t devfn, hwaddr addr, bool is_write, 1891 IOMMUTLBEntry *entry) 1892 { 1893 IntelIOMMUState *s = vtd_as->iommu_state; 1894 VTDContextEntry ce; 1895 uint8_t bus_num = pci_bus_num(bus); 1896 VTDContextCacheEntry *cc_entry; 1897 uint64_t slpte, page_mask; 1898 uint32_t level, pasid = vtd_as->pasid; 1899 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn); 1900 int ret_fr; 1901 bool is_fpd_set = false; 1902 bool reads = true; 1903 bool writes = true; 1904 uint8_t access_flags; 1905 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable; 1906 VTDIOTLBEntry *iotlb_entry; 1907 1908 /* 1909 * We have standalone memory region for interrupt addresses, we 1910 * should never receive translation requests in this region. 1911 */ 1912 assert(!vtd_is_interrupt_addr(addr)); 1913 1914 vtd_iommu_lock(s); 1915 1916 cc_entry = &vtd_as->context_cache_entry; 1917 1918 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */ 1919 if (!rid2pasid) { 1920 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1921 if (iotlb_entry) { 1922 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1923 iotlb_entry->domain_id); 1924 slpte = iotlb_entry->slpte; 1925 access_flags = iotlb_entry->access_flags; 1926 page_mask = iotlb_entry->mask; 1927 goto out; 1928 } 1929 } 1930 1931 /* Try to fetch context-entry from cache first */ 1932 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1933 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1934 cc_entry->context_entry.lo, 1935 cc_entry->context_cache_gen); 1936 ce = cc_entry->context_entry; 1937 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1938 if (!is_fpd_set && s->root_scalable) { 1939 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1940 if (ret_fr) { 1941 vtd_report_fault(s, -ret_fr, is_fpd_set, 1942 source_id, addr, is_write, 1943 false, 0); 1944 goto error; 1945 } 1946 } 1947 } else { 1948 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1949 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1950 if (!ret_fr && !is_fpd_set && s->root_scalable) { 1951 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1952 } 1953 if (ret_fr) { 1954 vtd_report_fault(s, -ret_fr, is_fpd_set, 1955 source_id, addr, is_write, 1956 false, 0); 1957 goto error; 1958 } 1959 /* Update context-cache */ 1960 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1961 cc_entry->context_cache_gen, 1962 s->context_cache_gen); 1963 cc_entry->context_entry = ce; 1964 cc_entry->context_cache_gen = s->context_cache_gen; 1965 } 1966 1967 if (rid2pasid) { 1968 pasid = VTD_CE_GET_RID2PASID(&ce); 1969 } 1970 1971 /* 1972 * We don't need to translate for pass-through context entries. 1973 * Also, let's ignore IOTLB caching as well for PT devices. 1974 */ 1975 if (vtd_dev_pt_enabled(s, &ce, pasid)) { 1976 entry->iova = addr & VTD_PAGE_MASK_4K; 1977 entry->translated_addr = entry->iova; 1978 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1979 entry->perm = IOMMU_RW; 1980 trace_vtd_translate_pt(source_id, entry->iova); 1981 1982 /* 1983 * When this happens, it means firstly caching-mode is not 1984 * enabled, and this is the first passthrough translation for 1985 * the device. Let's enable the fast path for passthrough. 1986 * 1987 * When passthrough is disabled again for the device, we can 1988 * capture it via the context entry invalidation, then the 1989 * IOMMU region can be swapped back. 1990 */ 1991 vtd_pt_enable_fast_path(s, source_id); 1992 vtd_iommu_unlock(s); 1993 return true; 1994 } 1995 1996 /* Try to fetch slpte form IOTLB for RID2PASID slow path */ 1997 if (rid2pasid) { 1998 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1999 if (iotlb_entry) { 2000 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 2001 iotlb_entry->domain_id); 2002 slpte = iotlb_entry->slpte; 2003 access_flags = iotlb_entry->access_flags; 2004 page_mask = iotlb_entry->mask; 2005 goto out; 2006 } 2007 } 2008 2009 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, 2010 &reads, &writes, s->aw_bits, pasid); 2011 if (ret_fr) { 2012 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, 2013 addr, is_write, pasid != PCI_NO_PASID, pasid); 2014 goto error; 2015 } 2016 2017 page_mask = vtd_slpt_level_page_mask(level); 2018 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 2019 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid), 2020 addr, slpte, access_flags, level, pasid); 2021 out: 2022 vtd_iommu_unlock(s); 2023 entry->iova = addr & page_mask; 2024 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; 2025 entry->addr_mask = ~page_mask; 2026 entry->perm = access_flags; 2027 return true; 2028 2029 error: 2030 vtd_iommu_unlock(s); 2031 entry->iova = 0; 2032 entry->translated_addr = 0; 2033 entry->addr_mask = 0; 2034 entry->perm = IOMMU_NONE; 2035 return false; 2036 } 2037 2038 static void vtd_root_table_setup(IntelIOMMUState *s) 2039 { 2040 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 2041 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 2042 2043 vtd_update_scalable_state(s); 2044 2045 trace_vtd_reg_dmar_root(s->root, s->root_scalable); 2046 } 2047 2048 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 2049 uint32_t index, uint32_t mask) 2050 { 2051 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 2052 } 2053 2054 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 2055 { 2056 uint64_t value = 0; 2057 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 2058 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 2059 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 2060 s->intr_eime = value & VTD_IRTA_EIME; 2061 2062 /* Notify global invalidation */ 2063 vtd_iec_notify_all(s, true, 0, 0); 2064 2065 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 2066 } 2067 2068 static void vtd_iommu_replay_all(IntelIOMMUState *s) 2069 { 2070 VTDAddressSpace *vtd_as; 2071 2072 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2073 vtd_address_space_sync(vtd_as); 2074 } 2075 } 2076 2077 static void vtd_context_global_invalidate(IntelIOMMUState *s) 2078 { 2079 trace_vtd_inv_desc_cc_global(); 2080 /* Protects context cache */ 2081 vtd_iommu_lock(s); 2082 s->context_cache_gen++; 2083 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 2084 vtd_reset_context_cache_locked(s); 2085 } 2086 vtd_iommu_unlock(s); 2087 vtd_address_space_refresh_all(s); 2088 /* 2089 * From VT-d spec 6.5.2.1, a global context entry invalidation 2090 * should be followed by a IOTLB global invalidation, so we should 2091 * be safe even without this. Hoewever, let's replay the region as 2092 * well to be safer, and go back here when we need finer tunes for 2093 * VT-d emulation codes. 2094 */ 2095 vtd_iommu_replay_all(s); 2096 } 2097 2098 /* Do a context-cache device-selective invalidation. 2099 * @func_mask: FM field after shifting 2100 */ 2101 static void vtd_context_device_invalidate(IntelIOMMUState *s, 2102 uint16_t source_id, 2103 uint16_t func_mask) 2104 { 2105 GHashTableIter as_it; 2106 uint16_t mask; 2107 VTDAddressSpace *vtd_as; 2108 uint8_t bus_n, devfn; 2109 2110 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 2111 2112 switch (func_mask & 3) { 2113 case 0: 2114 mask = 0; /* No bits in the SID field masked */ 2115 break; 2116 case 1: 2117 mask = 4; /* Mask bit 2 in the SID field */ 2118 break; 2119 case 2: 2120 mask = 6; /* Mask bit 2:1 in the SID field */ 2121 break; 2122 case 3: 2123 mask = 7; /* Mask bit 2:0 in the SID field */ 2124 break; 2125 default: 2126 g_assert_not_reached(); 2127 } 2128 mask = ~mask; 2129 2130 bus_n = VTD_SID_TO_BUS(source_id); 2131 devfn = VTD_SID_TO_DEVFN(source_id); 2132 2133 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 2134 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 2135 if ((pci_bus_num(vtd_as->bus) == bus_n) && 2136 (vtd_as->devfn & mask) == (devfn & mask)) { 2137 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn), 2138 VTD_PCI_FUNC(vtd_as->devfn)); 2139 vtd_iommu_lock(s); 2140 vtd_as->context_cache_entry.context_cache_gen = 0; 2141 vtd_iommu_unlock(s); 2142 /* 2143 * Do switch address space when needed, in case if the 2144 * device passthrough bit is switched. 2145 */ 2146 vtd_switch_address_space(vtd_as); 2147 /* 2148 * So a device is moving out of (or moving into) a 2149 * domain, resync the shadow page table. 2150 * This won't bring bad even if we have no such 2151 * notifier registered - the IOMMU notification 2152 * framework will skip MAP notifications if that 2153 * happened. 2154 */ 2155 vtd_address_space_sync(vtd_as); 2156 } 2157 } 2158 } 2159 2160 /* Context-cache invalidation 2161 * Returns the Context Actual Invalidation Granularity. 2162 * @val: the content of the CCMD_REG 2163 */ 2164 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 2165 { 2166 uint64_t caig; 2167 uint64_t type = val & VTD_CCMD_CIRG_MASK; 2168 2169 switch (type) { 2170 case VTD_CCMD_DOMAIN_INVL: 2171 /* Fall through */ 2172 case VTD_CCMD_GLOBAL_INVL: 2173 caig = VTD_CCMD_GLOBAL_INVL_A; 2174 vtd_context_global_invalidate(s); 2175 break; 2176 2177 case VTD_CCMD_DEVICE_INVL: 2178 caig = VTD_CCMD_DEVICE_INVL_A; 2179 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 2180 break; 2181 2182 default: 2183 error_report_once("%s: invalid context: 0x%" PRIx64, 2184 __func__, val); 2185 caig = 0; 2186 } 2187 return caig; 2188 } 2189 2190 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 2191 { 2192 trace_vtd_inv_desc_iotlb_global(); 2193 vtd_reset_iotlb(s); 2194 vtd_iommu_replay_all(s); 2195 } 2196 2197 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 2198 { 2199 VTDContextEntry ce; 2200 VTDAddressSpace *vtd_as; 2201 2202 trace_vtd_inv_desc_iotlb_domain(domain_id); 2203 2204 vtd_iommu_lock(s); 2205 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 2206 &domain_id); 2207 vtd_iommu_unlock(s); 2208 2209 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2210 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2211 vtd_as->devfn, &ce) && 2212 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2213 vtd_address_space_sync(vtd_as); 2214 } 2215 } 2216 } 2217 2218 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 2219 uint16_t domain_id, hwaddr addr, 2220 uint8_t am, uint32_t pasid) 2221 { 2222 VTDAddressSpace *vtd_as; 2223 VTDContextEntry ce; 2224 int ret; 2225 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 2226 2227 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 2228 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) { 2229 continue; 2230 } 2231 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2232 vtd_as->devfn, &ce); 2233 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2234 if (vtd_as_has_map_notifier(vtd_as)) { 2235 /* 2236 * As long as we have MAP notifications registered in 2237 * any of our IOMMU notifiers, we need to sync the 2238 * shadow page table. 2239 */ 2240 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 2241 } else { 2242 /* 2243 * For UNMAP-only notifiers, we don't need to walk the 2244 * page tables. We just deliver the PSI down to 2245 * invalidate caches. 2246 */ 2247 const IOMMUTLBEvent event = { 2248 .type = IOMMU_NOTIFIER_UNMAP, 2249 .entry = { 2250 .target_as = &address_space_memory, 2251 .iova = addr, 2252 .translated_addr = 0, 2253 .addr_mask = size - 1, 2254 .perm = IOMMU_NONE, 2255 }, 2256 }; 2257 memory_region_notify_iommu(&vtd_as->iommu, 0, event); 2258 } 2259 } 2260 } 2261 } 2262 2263 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 2264 hwaddr addr, uint8_t am) 2265 { 2266 VTDIOTLBPageInvInfo info; 2267 2268 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 2269 2270 assert(am <= VTD_MAMV); 2271 info.domain_id = domain_id; 2272 info.addr = addr; 2273 info.mask = ~((1 << am) - 1); 2274 vtd_iommu_lock(s); 2275 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 2276 vtd_iommu_unlock(s); 2277 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID); 2278 } 2279 2280 /* Flush IOTLB 2281 * Returns the IOTLB Actual Invalidation Granularity. 2282 * @val: the content of the IOTLB_REG 2283 */ 2284 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 2285 { 2286 uint64_t iaig; 2287 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 2288 uint16_t domain_id; 2289 hwaddr addr; 2290 uint8_t am; 2291 2292 switch (type) { 2293 case VTD_TLB_GLOBAL_FLUSH: 2294 iaig = VTD_TLB_GLOBAL_FLUSH_A; 2295 vtd_iotlb_global_invalidate(s); 2296 break; 2297 2298 case VTD_TLB_DSI_FLUSH: 2299 domain_id = VTD_TLB_DID(val); 2300 iaig = VTD_TLB_DSI_FLUSH_A; 2301 vtd_iotlb_domain_invalidate(s, domain_id); 2302 break; 2303 2304 case VTD_TLB_PSI_FLUSH: 2305 domain_id = VTD_TLB_DID(val); 2306 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 2307 am = VTD_IVA_AM(addr); 2308 addr = VTD_IVA_ADDR(addr); 2309 if (am > VTD_MAMV) { 2310 error_report_once("%s: address mask overflow: 0x%" PRIx64, 2311 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 2312 iaig = 0; 2313 break; 2314 } 2315 iaig = VTD_TLB_PSI_FLUSH_A; 2316 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2317 break; 2318 2319 default: 2320 error_report_once("%s: invalid granularity: 0x%" PRIx64, 2321 __func__, val); 2322 iaig = 0; 2323 } 2324 return iaig; 2325 } 2326 2327 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 2328 2329 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 2330 { 2331 return s->qi_enabled && (s->iq_tail == s->iq_head) && 2332 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 2333 } 2334 2335 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 2336 { 2337 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 2338 2339 trace_vtd_inv_qi_enable(en); 2340 2341 if (en) { 2342 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 2343 /* 2^(x+8) entries */ 2344 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); 2345 s->qi_enabled = true; 2346 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 2347 /* Ok - report back to driver */ 2348 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 2349 2350 if (s->iq_tail != 0) { 2351 /* 2352 * This is a spec violation but Windows guests are known to set up 2353 * Queued Invalidation this way so we allow the write and process 2354 * Invalidation Descriptors right away. 2355 */ 2356 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 2357 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2358 vtd_fetch_inv_desc(s); 2359 } 2360 } 2361 } else { 2362 if (vtd_queued_inv_disable_check(s)) { 2363 /* disable Queued Invalidation */ 2364 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 2365 s->iq_head = 0; 2366 s->qi_enabled = false; 2367 /* Ok - report back to driver */ 2368 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 2369 } else { 2370 error_report_once("%s: detected improper state when disable QI " 2371 "(head=0x%x, tail=0x%x, last_type=%d)", 2372 __func__, 2373 s->iq_head, s->iq_tail, s->iq_last_desc_type); 2374 } 2375 } 2376 } 2377 2378 /* Set Root Table Pointer */ 2379 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 2380 { 2381 vtd_root_table_setup(s); 2382 /* Ok - report back to driver */ 2383 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 2384 vtd_reset_caches(s); 2385 vtd_address_space_refresh_all(s); 2386 } 2387 2388 /* Set Interrupt Remap Table Pointer */ 2389 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 2390 { 2391 vtd_interrupt_remap_table_setup(s); 2392 /* Ok - report back to driver */ 2393 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 2394 } 2395 2396 /* Handle Translation Enable/Disable */ 2397 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 2398 { 2399 if (s->dmar_enabled == en) { 2400 return; 2401 } 2402 2403 trace_vtd_dmar_enable(en); 2404 2405 if (en) { 2406 s->dmar_enabled = true; 2407 /* Ok - report back to driver */ 2408 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 2409 } else { 2410 s->dmar_enabled = false; 2411 2412 /* Clear the index of Fault Recording Register */ 2413 s->next_frcd_reg = 0; 2414 /* Ok - report back to driver */ 2415 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 2416 } 2417 2418 vtd_reset_caches(s); 2419 vtd_address_space_refresh_all(s); 2420 } 2421 2422 /* Handle Interrupt Remap Enable/Disable */ 2423 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 2424 { 2425 trace_vtd_ir_enable(en); 2426 2427 if (en) { 2428 s->intr_enabled = true; 2429 /* Ok - report back to driver */ 2430 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 2431 } else { 2432 s->intr_enabled = false; 2433 /* Ok - report back to driver */ 2434 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 2435 } 2436 } 2437 2438 /* Handle write to Global Command Register */ 2439 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 2440 { 2441 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2442 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 2443 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 2444 uint32_t changed = status ^ val; 2445 2446 trace_vtd_reg_write_gcmd(status, val); 2447 if ((changed & VTD_GCMD_TE) && s->dma_translation) { 2448 /* Translation enable/disable */ 2449 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 2450 } 2451 if (val & VTD_GCMD_SRTP) { 2452 /* Set/update the root-table pointer */ 2453 vtd_handle_gcmd_srtp(s); 2454 } 2455 if (changed & VTD_GCMD_QIE) { 2456 /* Queued Invalidation Enable */ 2457 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 2458 } 2459 if (val & VTD_GCMD_SIRTP) { 2460 /* Set/update the interrupt remapping root-table pointer */ 2461 vtd_handle_gcmd_sirtp(s); 2462 } 2463 if ((changed & VTD_GCMD_IRE) && 2464 x86_iommu_ir_supported(x86_iommu)) { 2465 /* Interrupt remap enable/disable */ 2466 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 2467 } 2468 } 2469 2470 /* Handle write to Context Command Register */ 2471 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 2472 { 2473 uint64_t ret; 2474 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 2475 2476 /* Context-cache invalidation request */ 2477 if (val & VTD_CCMD_ICC) { 2478 if (s->qi_enabled) { 2479 error_report_once("Queued Invalidation enabled, " 2480 "should not use register-based invalidation"); 2481 return; 2482 } 2483 ret = vtd_context_cache_invalidate(s, val); 2484 /* Invalidation completed. Change something to show */ 2485 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 2486 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 2487 ret); 2488 } 2489 } 2490 2491 /* Handle write to IOTLB Invalidation Register */ 2492 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 2493 { 2494 uint64_t ret; 2495 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 2496 2497 /* IOTLB invalidation request */ 2498 if (val & VTD_TLB_IVT) { 2499 if (s->qi_enabled) { 2500 error_report_once("Queued Invalidation enabled, " 2501 "should not use register-based invalidation"); 2502 return; 2503 } 2504 ret = vtd_iotlb_flush(s, val); 2505 /* Invalidation completed. Change something to show */ 2506 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 2507 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 2508 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 2509 } 2510 } 2511 2512 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 2513 static bool vtd_get_inv_desc(IntelIOMMUState *s, 2514 VTDInvDesc *inv_desc) 2515 { 2516 dma_addr_t base_addr = s->iq; 2517 uint32_t offset = s->iq_head; 2518 uint32_t dw = s->iq_dw ? 32 : 16; 2519 dma_addr_t addr = base_addr + offset * dw; 2520 2521 if (dma_memory_read(&address_space_memory, addr, 2522 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) { 2523 error_report_once("Read INV DESC failed."); 2524 return false; 2525 } 2526 inv_desc->lo = le64_to_cpu(inv_desc->lo); 2527 inv_desc->hi = le64_to_cpu(inv_desc->hi); 2528 if (dw == 32) { 2529 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); 2530 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); 2531 } 2532 return true; 2533 } 2534 2535 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2536 { 2537 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 2538 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 2539 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2540 " (reserved nonzero)", __func__, inv_desc->hi, 2541 inv_desc->lo); 2542 return false; 2543 } 2544 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 2545 /* Status Write */ 2546 uint32_t status_data = (uint32_t)(inv_desc->lo >> 2547 VTD_INV_DESC_WAIT_DATA_SHIFT); 2548 2549 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 2550 2551 /* FIXME: need to be masked with HAW? */ 2552 dma_addr_t status_addr = inv_desc->hi; 2553 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 2554 status_data = cpu_to_le32(status_data); 2555 if (dma_memory_write(&address_space_memory, status_addr, 2556 &status_data, sizeof(status_data), 2557 MEMTXATTRS_UNSPECIFIED)) { 2558 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 2559 return false; 2560 } 2561 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 2562 /* Interrupt flag */ 2563 vtd_generate_completion_event(s); 2564 } else { 2565 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2566 " (unknown type)", __func__, inv_desc->hi, 2567 inv_desc->lo); 2568 return false; 2569 } 2570 return true; 2571 } 2572 2573 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 2574 VTDInvDesc *inv_desc) 2575 { 2576 uint16_t sid, fmask; 2577 2578 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 2579 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2580 " (reserved nonzero)", __func__, inv_desc->hi, 2581 inv_desc->lo); 2582 return false; 2583 } 2584 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 2585 case VTD_INV_DESC_CC_DOMAIN: 2586 trace_vtd_inv_desc_cc_domain( 2587 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 2588 /* Fall through */ 2589 case VTD_INV_DESC_CC_GLOBAL: 2590 vtd_context_global_invalidate(s); 2591 break; 2592 2593 case VTD_INV_DESC_CC_DEVICE: 2594 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 2595 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 2596 vtd_context_device_invalidate(s, sid, fmask); 2597 break; 2598 2599 default: 2600 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2601 " (invalid type)", __func__, inv_desc->hi, 2602 inv_desc->lo); 2603 return false; 2604 } 2605 return true; 2606 } 2607 2608 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2609 { 2610 uint16_t domain_id; 2611 uint8_t am; 2612 hwaddr addr; 2613 2614 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 2615 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 2616 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2617 ", lo=0x%"PRIx64" (reserved bits unzero)", 2618 __func__, inv_desc->hi, inv_desc->lo); 2619 return false; 2620 } 2621 2622 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 2623 case VTD_INV_DESC_IOTLB_GLOBAL: 2624 vtd_iotlb_global_invalidate(s); 2625 break; 2626 2627 case VTD_INV_DESC_IOTLB_DOMAIN: 2628 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2629 vtd_iotlb_domain_invalidate(s, domain_id); 2630 break; 2631 2632 case VTD_INV_DESC_IOTLB_PAGE: 2633 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2634 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 2635 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 2636 if (am > VTD_MAMV) { 2637 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2638 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)", 2639 __func__, inv_desc->hi, inv_desc->lo, 2640 am, (unsigned)VTD_MAMV); 2641 return false; 2642 } 2643 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2644 break; 2645 2646 default: 2647 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2648 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", 2649 __func__, inv_desc->hi, inv_desc->lo, 2650 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2651 return false; 2652 } 2653 return true; 2654 } 2655 2656 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 2657 VTDInvDesc *inv_desc) 2658 { 2659 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 2660 inv_desc->iec.index, 2661 inv_desc->iec.index_mask); 2662 2663 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 2664 inv_desc->iec.index, 2665 inv_desc->iec.index_mask); 2666 return true; 2667 } 2668 2669 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as, 2670 bool size, hwaddr addr) 2671 { 2672 /* 2673 * According to ATS spec table 2.4: 2674 * S = 0, bits 15:12 = xxxx range size: 4K 2675 * S = 1, bits 15:12 = xxx0 range size: 8K 2676 * S = 1, bits 15:12 = xx01 range size: 16K 2677 * S = 1, bits 15:12 = x011 range size: 32K 2678 * S = 1, bits 15:12 = 0111 range size: 64K 2679 * ... 2680 */ 2681 2682 IOMMUTLBEvent event; 2683 uint64_t sz; 2684 2685 if (size) { 2686 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 2687 addr &= ~(sz - 1); 2688 } else { 2689 sz = VTD_PAGE_SIZE; 2690 } 2691 2692 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP; 2693 event.entry.target_as = &vtd_dev_as->as; 2694 event.entry.addr_mask = sz - 1; 2695 event.entry.iova = addr; 2696 event.entry.perm = IOMMU_NONE; 2697 event.entry.translated_addr = 0; 2698 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event); 2699 } 2700 2701 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 2702 VTDInvDesc *inv_desc) 2703 { 2704 VTDAddressSpace *vtd_dev_as; 2705 hwaddr addr; 2706 uint16_t sid; 2707 bool size; 2708 2709 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 2710 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 2711 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 2712 2713 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 2714 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 2715 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 2716 ", lo=%"PRIx64" (reserved nonzero)", __func__, 2717 inv_desc->hi, inv_desc->lo); 2718 return false; 2719 } 2720 2721 /* 2722 * Using sid is OK since the guest should have finished the 2723 * initialization of both the bus and device. 2724 */ 2725 vtd_dev_as = vtd_get_as_by_sid(s, sid); 2726 if (!vtd_dev_as) { 2727 goto done; 2728 } 2729 2730 do_invalidate_device_tlb(vtd_dev_as, size, addr); 2731 2732 done: 2733 return true; 2734 } 2735 2736 static bool vtd_process_inv_desc(IntelIOMMUState *s) 2737 { 2738 VTDInvDesc inv_desc; 2739 uint8_t desc_type; 2740 2741 trace_vtd_inv_qi_head(s->iq_head); 2742 if (!vtd_get_inv_desc(s, &inv_desc)) { 2743 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2744 return false; 2745 } 2746 2747 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 2748 /* FIXME: should update at first or at last? */ 2749 s->iq_last_desc_type = desc_type; 2750 2751 switch (desc_type) { 2752 case VTD_INV_DESC_CC: 2753 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 2754 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 2755 return false; 2756 } 2757 break; 2758 2759 case VTD_INV_DESC_IOTLB: 2760 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 2761 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 2762 return false; 2763 } 2764 break; 2765 2766 /* 2767 * TODO: the entity of below two cases will be implemented in future series. 2768 * To make guest (which integrates scalable mode support patch set in 2769 * iommu driver) work, just return true is enough so far. 2770 */ 2771 case VTD_INV_DESC_PC: 2772 break; 2773 2774 case VTD_INV_DESC_PIOTLB: 2775 break; 2776 2777 case VTD_INV_DESC_WAIT: 2778 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 2779 if (!vtd_process_wait_desc(s, &inv_desc)) { 2780 return false; 2781 } 2782 break; 2783 2784 case VTD_INV_DESC_IEC: 2785 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 2786 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 2787 return false; 2788 } 2789 break; 2790 2791 case VTD_INV_DESC_DEVICE: 2792 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 2793 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 2794 return false; 2795 } 2796 break; 2797 2798 default: 2799 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 2800 " (unknown type)", __func__, inv_desc.hi, 2801 inv_desc.lo); 2802 return false; 2803 } 2804 s->iq_head++; 2805 if (s->iq_head == s->iq_size) { 2806 s->iq_head = 0; 2807 } 2808 return true; 2809 } 2810 2811 /* Try to fetch and process more Invalidation Descriptors */ 2812 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 2813 { 2814 int qi_shift; 2815 2816 /* Refer to 10.4.23 of VT-d spec 3.0 */ 2817 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4; 2818 2819 trace_vtd_inv_qi_fetch(); 2820 2821 if (s->iq_tail >= s->iq_size) { 2822 /* Detects an invalid Tail pointer */ 2823 error_report_once("%s: detected invalid QI tail " 2824 "(tail=0x%x, size=0x%x)", 2825 __func__, s->iq_tail, s->iq_size); 2826 vtd_handle_inv_queue_error(s); 2827 return; 2828 } 2829 while (s->iq_head != s->iq_tail) { 2830 if (!vtd_process_inv_desc(s)) { 2831 /* Invalidation Queue Errors */ 2832 vtd_handle_inv_queue_error(s); 2833 break; 2834 } 2835 /* Must update the IQH_REG in time */ 2836 vtd_set_quad_raw(s, DMAR_IQH_REG, 2837 (((uint64_t)(s->iq_head)) << qi_shift) & 2838 VTD_IQH_QH_MASK); 2839 } 2840 } 2841 2842 /* Handle write to Invalidation Queue Tail Register */ 2843 static void vtd_handle_iqt_write(IntelIOMMUState *s) 2844 { 2845 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 2846 2847 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { 2848 error_report_once("%s: RSV bit is set: val=0x%"PRIx64, 2849 __func__, val); 2850 return; 2851 } 2852 s->iq_tail = VTD_IQT_QT(s->iq_dw, val); 2853 trace_vtd_inv_qi_tail(s->iq_tail); 2854 2855 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2856 /* Process Invalidation Queue here */ 2857 vtd_fetch_inv_desc(s); 2858 } 2859 } 2860 2861 static void vtd_handle_fsts_write(IntelIOMMUState *s) 2862 { 2863 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2864 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2865 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 2866 2867 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 2868 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2869 trace_vtd_fsts_clear_ip(); 2870 } 2871 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 2872 * Descriptors if there are any when Queued Invalidation is enabled? 2873 */ 2874 } 2875 2876 static void vtd_handle_fectl_write(IntelIOMMUState *s) 2877 { 2878 uint32_t fectl_reg; 2879 /* FIXME: when software clears the IM field, check the IP field. But do we 2880 * need to compare the old value and the new value to conclude that 2881 * software clears the IM field? Or just check if the IM field is zero? 2882 */ 2883 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2884 2885 trace_vtd_reg_write_fectl(fectl_reg); 2886 2887 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 2888 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 2889 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2890 } 2891 } 2892 2893 static void vtd_handle_ics_write(IntelIOMMUState *s) 2894 { 2895 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 2896 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2897 2898 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 2899 trace_vtd_reg_ics_clear_ip(); 2900 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2901 } 2902 } 2903 2904 static void vtd_handle_iectl_write(IntelIOMMUState *s) 2905 { 2906 uint32_t iectl_reg; 2907 /* FIXME: when software clears the IM field, check the IP field. But do we 2908 * need to compare the old value and the new value to conclude that 2909 * software clears the IM field? Or just check if the IM field is zero? 2910 */ 2911 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2912 2913 trace_vtd_reg_write_iectl(iectl_reg); 2914 2915 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 2916 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 2917 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2918 } 2919 } 2920 2921 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 2922 { 2923 IntelIOMMUState *s = opaque; 2924 uint64_t val; 2925 2926 trace_vtd_reg_read(addr, size); 2927 2928 if (addr + size > DMAR_REG_SIZE) { 2929 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2930 " size=0x%x", __func__, addr, size); 2931 return (uint64_t)-1; 2932 } 2933 2934 switch (addr) { 2935 /* Root Table Address Register, 64-bit */ 2936 case DMAR_RTADDR_REG: 2937 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 2938 if (size == 4) { 2939 val = val & ((1ULL << 32) - 1); 2940 } 2941 break; 2942 2943 case DMAR_RTADDR_REG_HI: 2944 assert(size == 4); 2945 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32; 2946 break; 2947 2948 /* Invalidation Queue Address Register, 64-bit */ 2949 case DMAR_IQA_REG: 2950 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2951 if (size == 4) { 2952 val = val & ((1ULL << 32) - 1); 2953 } 2954 break; 2955 2956 case DMAR_IQA_REG_HI: 2957 assert(size == 4); 2958 val = s->iq >> 32; 2959 break; 2960 2961 default: 2962 if (size == 4) { 2963 val = vtd_get_long(s, addr); 2964 } else { 2965 val = vtd_get_quad(s, addr); 2966 } 2967 } 2968 2969 return val; 2970 } 2971 2972 static void vtd_mem_write(void *opaque, hwaddr addr, 2973 uint64_t val, unsigned size) 2974 { 2975 IntelIOMMUState *s = opaque; 2976 2977 trace_vtd_reg_write(addr, size, val); 2978 2979 if (addr + size > DMAR_REG_SIZE) { 2980 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2981 " size=0x%x", __func__, addr, size); 2982 return; 2983 } 2984 2985 switch (addr) { 2986 /* Global Command Register, 32-bit */ 2987 case DMAR_GCMD_REG: 2988 vtd_set_long(s, addr, val); 2989 vtd_handle_gcmd_write(s); 2990 break; 2991 2992 /* Context Command Register, 64-bit */ 2993 case DMAR_CCMD_REG: 2994 if (size == 4) { 2995 vtd_set_long(s, addr, val); 2996 } else { 2997 vtd_set_quad(s, addr, val); 2998 vtd_handle_ccmd_write(s); 2999 } 3000 break; 3001 3002 case DMAR_CCMD_REG_HI: 3003 assert(size == 4); 3004 vtd_set_long(s, addr, val); 3005 vtd_handle_ccmd_write(s); 3006 break; 3007 3008 /* IOTLB Invalidation Register, 64-bit */ 3009 case DMAR_IOTLB_REG: 3010 if (size == 4) { 3011 vtd_set_long(s, addr, val); 3012 } else { 3013 vtd_set_quad(s, addr, val); 3014 vtd_handle_iotlb_write(s); 3015 } 3016 break; 3017 3018 case DMAR_IOTLB_REG_HI: 3019 assert(size == 4); 3020 vtd_set_long(s, addr, val); 3021 vtd_handle_iotlb_write(s); 3022 break; 3023 3024 /* Invalidate Address Register, 64-bit */ 3025 case DMAR_IVA_REG: 3026 if (size == 4) { 3027 vtd_set_long(s, addr, val); 3028 } else { 3029 vtd_set_quad(s, addr, val); 3030 } 3031 break; 3032 3033 case DMAR_IVA_REG_HI: 3034 assert(size == 4); 3035 vtd_set_long(s, addr, val); 3036 break; 3037 3038 /* Fault Status Register, 32-bit */ 3039 case DMAR_FSTS_REG: 3040 assert(size == 4); 3041 vtd_set_long(s, addr, val); 3042 vtd_handle_fsts_write(s); 3043 break; 3044 3045 /* Fault Event Control Register, 32-bit */ 3046 case DMAR_FECTL_REG: 3047 assert(size == 4); 3048 vtd_set_long(s, addr, val); 3049 vtd_handle_fectl_write(s); 3050 break; 3051 3052 /* Fault Event Data Register, 32-bit */ 3053 case DMAR_FEDATA_REG: 3054 assert(size == 4); 3055 vtd_set_long(s, addr, val); 3056 break; 3057 3058 /* Fault Event Address Register, 32-bit */ 3059 case DMAR_FEADDR_REG: 3060 if (size == 4) { 3061 vtd_set_long(s, addr, val); 3062 } else { 3063 /* 3064 * While the register is 32-bit only, some guests (Xen...) write to 3065 * it with 64-bit. 3066 */ 3067 vtd_set_quad(s, addr, val); 3068 } 3069 break; 3070 3071 /* Fault Event Upper Address Register, 32-bit */ 3072 case DMAR_FEUADDR_REG: 3073 assert(size == 4); 3074 vtd_set_long(s, addr, val); 3075 break; 3076 3077 /* Protected Memory Enable Register, 32-bit */ 3078 case DMAR_PMEN_REG: 3079 assert(size == 4); 3080 vtd_set_long(s, addr, val); 3081 break; 3082 3083 /* Root Table Address Register, 64-bit */ 3084 case DMAR_RTADDR_REG: 3085 if (size == 4) { 3086 vtd_set_long(s, addr, val); 3087 } else { 3088 vtd_set_quad(s, addr, val); 3089 } 3090 break; 3091 3092 case DMAR_RTADDR_REG_HI: 3093 assert(size == 4); 3094 vtd_set_long(s, addr, val); 3095 break; 3096 3097 /* Invalidation Queue Tail Register, 64-bit */ 3098 case DMAR_IQT_REG: 3099 if (size == 4) { 3100 vtd_set_long(s, addr, val); 3101 } else { 3102 vtd_set_quad(s, addr, val); 3103 } 3104 vtd_handle_iqt_write(s); 3105 break; 3106 3107 case DMAR_IQT_REG_HI: 3108 assert(size == 4); 3109 vtd_set_long(s, addr, val); 3110 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 3111 break; 3112 3113 /* Invalidation Queue Address Register, 64-bit */ 3114 case DMAR_IQA_REG: 3115 if (size == 4) { 3116 vtd_set_long(s, addr, val); 3117 } else { 3118 vtd_set_quad(s, addr, val); 3119 } 3120 vtd_update_iq_dw(s); 3121 break; 3122 3123 case DMAR_IQA_REG_HI: 3124 assert(size == 4); 3125 vtd_set_long(s, addr, val); 3126 break; 3127 3128 /* Invalidation Completion Status Register, 32-bit */ 3129 case DMAR_ICS_REG: 3130 assert(size == 4); 3131 vtd_set_long(s, addr, val); 3132 vtd_handle_ics_write(s); 3133 break; 3134 3135 /* Invalidation Event Control Register, 32-bit */ 3136 case DMAR_IECTL_REG: 3137 assert(size == 4); 3138 vtd_set_long(s, addr, val); 3139 vtd_handle_iectl_write(s); 3140 break; 3141 3142 /* Invalidation Event Data Register, 32-bit */ 3143 case DMAR_IEDATA_REG: 3144 assert(size == 4); 3145 vtd_set_long(s, addr, val); 3146 break; 3147 3148 /* Invalidation Event Address Register, 32-bit */ 3149 case DMAR_IEADDR_REG: 3150 assert(size == 4); 3151 vtd_set_long(s, addr, val); 3152 break; 3153 3154 /* Invalidation Event Upper Address Register, 32-bit */ 3155 case DMAR_IEUADDR_REG: 3156 assert(size == 4); 3157 vtd_set_long(s, addr, val); 3158 break; 3159 3160 /* Fault Recording Registers, 128-bit */ 3161 case DMAR_FRCD_REG_0_0: 3162 if (size == 4) { 3163 vtd_set_long(s, addr, val); 3164 } else { 3165 vtd_set_quad(s, addr, val); 3166 } 3167 break; 3168 3169 case DMAR_FRCD_REG_0_1: 3170 assert(size == 4); 3171 vtd_set_long(s, addr, val); 3172 break; 3173 3174 case DMAR_FRCD_REG_0_2: 3175 if (size == 4) { 3176 vtd_set_long(s, addr, val); 3177 } else { 3178 vtd_set_quad(s, addr, val); 3179 /* May clear bit 127 (Fault), update PPF */ 3180 vtd_update_fsts_ppf(s); 3181 } 3182 break; 3183 3184 case DMAR_FRCD_REG_0_3: 3185 assert(size == 4); 3186 vtd_set_long(s, addr, val); 3187 /* May clear bit 127 (Fault), update PPF */ 3188 vtd_update_fsts_ppf(s); 3189 break; 3190 3191 case DMAR_IRTA_REG: 3192 if (size == 4) { 3193 vtd_set_long(s, addr, val); 3194 } else { 3195 vtd_set_quad(s, addr, val); 3196 } 3197 break; 3198 3199 case DMAR_IRTA_REG_HI: 3200 assert(size == 4); 3201 vtd_set_long(s, addr, val); 3202 break; 3203 3204 default: 3205 if (size == 4) { 3206 vtd_set_long(s, addr, val); 3207 } else { 3208 vtd_set_quad(s, addr, val); 3209 } 3210 } 3211 } 3212 3213 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 3214 IOMMUAccessFlags flag, int iommu_idx) 3215 { 3216 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3217 IntelIOMMUState *s = vtd_as->iommu_state; 3218 IOMMUTLBEntry iotlb = { 3219 /* We'll fill in the rest later. */ 3220 .target_as = &address_space_memory, 3221 }; 3222 bool success; 3223 3224 if (likely(s->dmar_enabled)) { 3225 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 3226 addr, flag & IOMMU_WO, &iotlb); 3227 } else { 3228 /* DMAR disabled, passthrough, use 4k-page*/ 3229 iotlb.iova = addr & VTD_PAGE_MASK_4K; 3230 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 3231 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 3232 iotlb.perm = IOMMU_RW; 3233 success = true; 3234 } 3235 3236 if (likely(success)) { 3237 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 3238 VTD_PCI_SLOT(vtd_as->devfn), 3239 VTD_PCI_FUNC(vtd_as->devfn), 3240 iotlb.iova, iotlb.translated_addr, 3241 iotlb.addr_mask); 3242 } else { 3243 error_report_once("%s: detected translation failure " 3244 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 3245 __func__, pci_bus_num(vtd_as->bus), 3246 VTD_PCI_SLOT(vtd_as->devfn), 3247 VTD_PCI_FUNC(vtd_as->devfn), 3248 addr); 3249 } 3250 3251 return iotlb; 3252 } 3253 3254 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 3255 IOMMUNotifierFlag old, 3256 IOMMUNotifierFlag new, 3257 Error **errp) 3258 { 3259 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3260 IntelIOMMUState *s = vtd_as->iommu_state; 3261 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3262 3263 /* TODO: add support for VFIO and vhost users */ 3264 if (s->snoop_control) { 3265 error_setg_errno(errp, ENOTSUP, 3266 "Snoop Control with vhost or VFIO is not supported"); 3267 return -ENOTSUP; 3268 } 3269 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) { 3270 error_setg_errno(errp, ENOTSUP, 3271 "device %02x.%02x.%x requires caching mode", 3272 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3273 PCI_FUNC(vtd_as->devfn)); 3274 return -ENOTSUP; 3275 } 3276 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) { 3277 error_setg_errno(errp, ENOTSUP, 3278 "device %02x.%02x.%x requires device IOTLB mode", 3279 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3280 PCI_FUNC(vtd_as->devfn)); 3281 return -ENOTSUP; 3282 } 3283 3284 /* Update per-address-space notifier flags */ 3285 vtd_as->notifier_flags = new; 3286 3287 if (old == IOMMU_NOTIFIER_NONE) { 3288 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 3289 } else if (new == IOMMU_NOTIFIER_NONE) { 3290 QLIST_REMOVE(vtd_as, next); 3291 } 3292 return 0; 3293 } 3294 3295 static int vtd_post_load(void *opaque, int version_id) 3296 { 3297 IntelIOMMUState *iommu = opaque; 3298 3299 /* 3300 * We don't need to migrate the root_scalable because we can 3301 * simply do the calculation after the loading is complete. We 3302 * can actually do similar things with root, dmar_enabled, etc. 3303 * however since we've had them already so we'd better keep them 3304 * for compatibility of migration. 3305 */ 3306 vtd_update_scalable_state(iommu); 3307 3308 vtd_update_iq_dw(iommu); 3309 3310 /* 3311 * Memory regions are dynamically turned on/off depending on 3312 * context entry configurations from the guest. After migration, 3313 * we need to make sure the memory regions are still correct. 3314 */ 3315 vtd_switch_address_space_all(iommu); 3316 3317 return 0; 3318 } 3319 3320 static const VMStateDescription vtd_vmstate = { 3321 .name = "iommu-intel", 3322 .version_id = 1, 3323 .minimum_version_id = 1, 3324 .priority = MIG_PRI_IOMMU, 3325 .post_load = vtd_post_load, 3326 .fields = (const VMStateField[]) { 3327 VMSTATE_UINT64(root, IntelIOMMUState), 3328 VMSTATE_UINT64(intr_root, IntelIOMMUState), 3329 VMSTATE_UINT64(iq, IntelIOMMUState), 3330 VMSTATE_UINT32(intr_size, IntelIOMMUState), 3331 VMSTATE_UINT16(iq_head, IntelIOMMUState), 3332 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 3333 VMSTATE_UINT16(iq_size, IntelIOMMUState), 3334 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 3335 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 3336 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 3337 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */ 3338 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 3339 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 3340 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 3341 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 3342 VMSTATE_END_OF_LIST() 3343 } 3344 }; 3345 3346 static const MemoryRegionOps vtd_mem_ops = { 3347 .read = vtd_mem_read, 3348 .write = vtd_mem_write, 3349 .endianness = DEVICE_LITTLE_ENDIAN, 3350 .impl = { 3351 .min_access_size = 4, 3352 .max_access_size = 8, 3353 }, 3354 .valid = { 3355 .min_access_size = 4, 3356 .max_access_size = 8, 3357 }, 3358 }; 3359 3360 static Property vtd_properties[] = { 3361 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 3362 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 3363 ON_OFF_AUTO_AUTO), 3364 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 3365 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 3366 VTD_HOST_ADDRESS_WIDTH), 3367 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 3368 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), 3369 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false), 3370 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false), 3371 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 3372 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true), 3373 DEFINE_PROP_END_OF_LIST(), 3374 }; 3375 3376 /* Read IRTE entry with specific index */ 3377 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 3378 VTD_IR_TableEntry *entry, uint16_t sid, 3379 bool do_fault) 3380 { 3381 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 3382 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 3383 dma_addr_t addr = 0x00; 3384 uint16_t mask, source_id; 3385 uint8_t bus, bus_max, bus_min; 3386 3387 if (index >= iommu->intr_size) { 3388 error_report_once("%s: index too large: ind=0x%x", 3389 __func__, index); 3390 if (do_fault) { 3391 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index); 3392 } 3393 return false; 3394 } 3395 3396 addr = iommu->intr_root + index * sizeof(*entry); 3397 if (dma_memory_read(&address_space_memory, addr, 3398 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) { 3399 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 3400 __func__, index, addr); 3401 if (do_fault) { 3402 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index); 3403 } 3404 return false; 3405 } 3406 3407 entry->data[0] = le64_to_cpu(entry->data[0]); 3408 entry->data[1] = le64_to_cpu(entry->data[1]); 3409 3410 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]); 3411 3412 /* 3413 * The remaining potential fault conditions are "qualified" by the 3414 * Fault Processing Disable bit in the IRTE. Even "not present". 3415 * So just clear the do_fault flag if PFD is set, which will 3416 * prevent faults being raised. 3417 */ 3418 if (entry->irte.fault_disable) { 3419 do_fault = false; 3420 } 3421 3422 if (!entry->irte.present) { 3423 error_report_once("%s: detected non-present IRTE " 3424 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3425 __func__, index, entry->data[1], entry->data[0]); 3426 if (do_fault) { 3427 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index); 3428 } 3429 return false; 3430 } 3431 3432 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 3433 entry->irte.__reserved_2) { 3434 error_report_once("%s: detected non-zero reserved IRTE " 3435 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3436 __func__, index, entry->data[1], entry->data[0]); 3437 if (do_fault) { 3438 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index); 3439 } 3440 return false; 3441 } 3442 3443 if (sid != X86_IOMMU_SID_INVALID) { 3444 /* Validate IRTE SID */ 3445 source_id = entry->irte.source_id; 3446 switch (entry->irte.sid_vtype) { 3447 case VTD_SVT_NONE: 3448 break; 3449 3450 case VTD_SVT_ALL: 3451 mask = vtd_svt_mask[entry->irte.sid_q]; 3452 if ((source_id & mask) != (sid & mask)) { 3453 error_report_once("%s: invalid IRTE SID " 3454 "(index=%u, sid=%u, source_id=%u)", 3455 __func__, index, sid, source_id); 3456 if (do_fault) { 3457 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); 3458 } 3459 return false; 3460 } 3461 break; 3462 3463 case VTD_SVT_BUS: 3464 bus_max = source_id >> 8; 3465 bus_min = source_id & 0xff; 3466 bus = sid >> 8; 3467 if (bus > bus_max || bus < bus_min) { 3468 error_report_once("%s: invalid SVT_BUS " 3469 "(index=%u, bus=%u, min=%u, max=%u)", 3470 __func__, index, bus, bus_min, bus_max); 3471 if (do_fault) { 3472 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); 3473 } 3474 return false; 3475 } 3476 break; 3477 3478 default: 3479 error_report_once("%s: detected invalid IRTE SVT " 3480 "(index=%u, type=%d)", __func__, 3481 index, entry->irte.sid_vtype); 3482 /* Take this as verification failure. */ 3483 if (do_fault) { 3484 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); 3485 } 3486 return false; 3487 } 3488 } 3489 3490 return true; 3491 } 3492 3493 /* Fetch IRQ information of specific IR index */ 3494 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 3495 X86IOMMUIrq *irq, uint16_t sid, bool do_fault) 3496 { 3497 VTD_IR_TableEntry irte = {}; 3498 3499 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) { 3500 return false; 3501 } 3502 3503 irq->trigger_mode = irte.irte.trigger_mode; 3504 irq->vector = irte.irte.vector; 3505 irq->delivery_mode = irte.irte.delivery_mode; 3506 irq->dest = irte.irte.dest_id; 3507 if (!iommu->intr_eime) { 3508 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 3509 #define VTD_IR_APIC_DEST_SHIFT (8) 3510 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 3511 VTD_IR_APIC_DEST_SHIFT; 3512 } 3513 irq->dest_mode = irte.irte.dest_mode; 3514 irq->redir_hint = irte.irte.redir_hint; 3515 3516 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 3517 irq->delivery_mode, irq->dest, irq->dest_mode); 3518 3519 return true; 3520 } 3521 3522 /* Interrupt remapping for MSI/MSI-X entry */ 3523 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 3524 MSIMessage *origin, 3525 MSIMessage *translated, 3526 uint16_t sid, bool do_fault) 3527 { 3528 VTD_IR_MSIAddress addr; 3529 uint16_t index; 3530 X86IOMMUIrq irq = {}; 3531 3532 assert(origin && translated); 3533 3534 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 3535 3536 if (!iommu || !iommu->intr_enabled) { 3537 memcpy(translated, origin, sizeof(*origin)); 3538 goto out; 3539 } 3540 3541 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 3542 error_report_once("%s: MSI address high 32 bits non-zero detected: " 3543 "address=0x%" PRIx64, __func__, origin->address); 3544 if (do_fault) { 3545 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); 3546 } 3547 return -EINVAL; 3548 } 3549 3550 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 3551 if (addr.addr.__head != 0xfee) { 3552 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 3553 __func__, addr.data); 3554 if (do_fault) { 3555 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); 3556 } 3557 return -EINVAL; 3558 } 3559 3560 /* This is compatible mode. */ 3561 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 3562 memcpy(translated, origin, sizeof(*origin)); 3563 goto out; 3564 } 3565 3566 index = addr.addr.index_h << 15 | addr.addr.index_l; 3567 3568 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 3569 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 3570 3571 if (addr.addr.sub_valid) { 3572 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 3573 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 3574 } 3575 3576 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) { 3577 return -EINVAL; 3578 } 3579 3580 if (addr.addr.sub_valid) { 3581 trace_vtd_ir_remap_type("MSI"); 3582 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 3583 error_report_once("%s: invalid IR MSI " 3584 "(sid=%u, address=0x%" PRIx64 3585 ", data=0x%" PRIx32 ")", 3586 __func__, sid, origin->address, origin->data); 3587 if (do_fault) { 3588 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); 3589 } 3590 return -EINVAL; 3591 } 3592 } else { 3593 uint8_t vector = origin->data & 0xff; 3594 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 3595 3596 trace_vtd_ir_remap_type("IOAPIC"); 3597 /* IOAPIC entry vector should be aligned with IRTE vector 3598 * (see vt-d spec 5.1.5.1). */ 3599 if (vector != irq.vector) { 3600 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 3601 } 3602 3603 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 3604 * (see vt-d spec 5.1.5.1). */ 3605 if (trigger_mode != irq.trigger_mode) { 3606 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 3607 irq.trigger_mode); 3608 } 3609 } 3610 3611 /* 3612 * We'd better keep the last two bits, assuming that guest OS 3613 * might modify it. Keep it does not hurt after all. 3614 */ 3615 irq.msi_addr_last_bits = addr.addr.__not_care; 3616 3617 /* Translate X86IOMMUIrq to MSI message */ 3618 x86_iommu_irq_to_msi_message(&irq, translated); 3619 3620 out: 3621 trace_vtd_ir_remap_msi(origin->address, origin->data, 3622 translated->address, translated->data); 3623 return 0; 3624 } 3625 3626 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 3627 MSIMessage *dst, uint16_t sid) 3628 { 3629 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 3630 src, dst, sid, false); 3631 } 3632 3633 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 3634 uint64_t *data, unsigned size, 3635 MemTxAttrs attrs) 3636 { 3637 return MEMTX_OK; 3638 } 3639 3640 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 3641 uint64_t value, unsigned size, 3642 MemTxAttrs attrs) 3643 { 3644 int ret = 0; 3645 MSIMessage from = {}, to = {}; 3646 uint16_t sid = X86_IOMMU_SID_INVALID; 3647 3648 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 3649 from.data = (uint32_t) value; 3650 3651 if (!attrs.unspecified) { 3652 /* We have explicit Source ID */ 3653 sid = attrs.requester_id; 3654 } 3655 3656 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true); 3657 if (ret) { 3658 /* Drop this interrupt */ 3659 return MEMTX_ERROR; 3660 } 3661 3662 apic_get_class(NULL)->send_msi(&to); 3663 3664 return MEMTX_OK; 3665 } 3666 3667 static const MemoryRegionOps vtd_mem_ir_ops = { 3668 .read_with_attrs = vtd_mem_ir_read, 3669 .write_with_attrs = vtd_mem_ir_write, 3670 .endianness = DEVICE_LITTLE_ENDIAN, 3671 .impl = { 3672 .min_access_size = 4, 3673 .max_access_size = 4, 3674 }, 3675 .valid = { 3676 .min_access_size = 4, 3677 .max_access_size = 4, 3678 }, 3679 }; 3680 3681 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as, 3682 hwaddr addr, bool is_write) 3683 { 3684 IntelIOMMUState *s = vtd_as->iommu_state; 3685 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3686 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn); 3687 bool is_fpd_set = false; 3688 VTDContextEntry ce; 3689 3690 assert(vtd_as->pasid != PCI_NO_PASID); 3691 3692 /* Try out best to fetch FPD, we can't do anything more */ 3693 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3694 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 3695 if (!is_fpd_set && s->root_scalable) { 3696 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid); 3697 } 3698 } 3699 3700 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR, 3701 is_fpd_set, sid, addr, is_write, 3702 true, vtd_as->pasid); 3703 } 3704 3705 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr, 3706 uint64_t *data, unsigned size, 3707 MemTxAttrs attrs) 3708 { 3709 vtd_report_ir_illegal_access(opaque, addr, false); 3710 3711 return MEMTX_ERROR; 3712 } 3713 3714 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr, 3715 uint64_t value, unsigned size, 3716 MemTxAttrs attrs) 3717 { 3718 vtd_report_ir_illegal_access(opaque, addr, true); 3719 3720 return MEMTX_ERROR; 3721 } 3722 3723 static const MemoryRegionOps vtd_mem_ir_fault_ops = { 3724 .read_with_attrs = vtd_mem_ir_fault_read, 3725 .write_with_attrs = vtd_mem_ir_fault_write, 3726 .endianness = DEVICE_LITTLE_ENDIAN, 3727 .impl = { 3728 .min_access_size = 1, 3729 .max_access_size = 8, 3730 }, 3731 .valid = { 3732 .min_access_size = 1, 3733 .max_access_size = 8, 3734 }, 3735 }; 3736 3737 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, 3738 int devfn, unsigned int pasid) 3739 { 3740 /* 3741 * We can't simply use sid here since the bus number might not be 3742 * initialized by the guest. 3743 */ 3744 struct vtd_as_key key = { 3745 .bus = bus, 3746 .devfn = devfn, 3747 .pasid = pasid, 3748 }; 3749 VTDAddressSpace *vtd_dev_as; 3750 char name[128]; 3751 3752 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); 3753 if (!vtd_dev_as) { 3754 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key)); 3755 3756 new_key->bus = bus; 3757 new_key->devfn = devfn; 3758 new_key->pasid = pasid; 3759 3760 if (pasid == PCI_NO_PASID) { 3761 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), 3762 PCI_FUNC(devfn)); 3763 } else { 3764 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn), 3765 PCI_FUNC(devfn), pasid); 3766 } 3767 3768 vtd_dev_as = g_new0(VTDAddressSpace, 1); 3769 3770 vtd_dev_as->bus = bus; 3771 vtd_dev_as->devfn = (uint8_t)devfn; 3772 vtd_dev_as->pasid = pasid; 3773 vtd_dev_as->iommu_state = s; 3774 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 3775 vtd_dev_as->iova_tree = iova_tree_new(); 3776 3777 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); 3778 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); 3779 3780 /* 3781 * Build the DMAR-disabled container with aliases to the 3782 * shared MRs. Note that aliasing to a shared memory region 3783 * could help the memory API to detect same FlatViews so we 3784 * can have devices to share the same FlatView when DMAR is 3785 * disabled (either by not providing "intel_iommu=on" or with 3786 * "iommu=pt"). It will greatly reduce the total number of 3787 * FlatViews of the system hence VM runs faster. 3788 */ 3789 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), 3790 "vtd-nodmar", &s->mr_nodmar, 0, 3791 memory_region_size(&s->mr_nodmar)); 3792 3793 /* 3794 * Build the per-device DMAR-enabled container. 3795 * 3796 * TODO: currently we have per-device IOMMU memory region only 3797 * because we have per-device IOMMU notifiers for devices. If 3798 * one day we can abstract the IOMMU notifiers out of the 3799 * memory regions then we can also share the same memory 3800 * region here just like what we've done above with the nodmar 3801 * region. 3802 */ 3803 strcat(name, "-dmar"); 3804 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 3805 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 3806 name, UINT64_MAX); 3807 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", 3808 &s->mr_ir, 0, memory_region_size(&s->mr_ir)); 3809 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), 3810 VTD_INTERRUPT_ADDR_FIRST, 3811 &vtd_dev_as->iommu_ir, 1); 3812 3813 /* 3814 * This region is used for catching fault to access interrupt 3815 * range via passthrough + PASID. See also 3816 * vtd_switch_address_space(). We can't use alias since we 3817 * need to know the sid which is valid for MSI who uses 3818 * bus_master_as (see msi_send_message()). 3819 */ 3820 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s), 3821 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir", 3822 VTD_INTERRUPT_ADDR_SIZE); 3823 /* 3824 * Hook to root since when PT is enabled vtd_dev_as->iommu 3825 * will be disabled. 3826 */ 3827 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root), 3828 VTD_INTERRUPT_ADDR_FIRST, 3829 &vtd_dev_as->iommu_ir_fault, 2); 3830 3831 /* 3832 * Hook both the containers under the root container, we 3833 * switch between DMAR & noDMAR by enable/disable 3834 * corresponding sub-containers 3835 */ 3836 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3837 MEMORY_REGION(&vtd_dev_as->iommu), 3838 0); 3839 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3840 &vtd_dev_as->nodmar, 0); 3841 3842 vtd_switch_address_space(vtd_dev_as); 3843 3844 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as); 3845 } 3846 return vtd_dev_as; 3847 } 3848 3849 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod, 3850 Error **errp) 3851 { 3852 HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod); 3853 int ret; 3854 3855 if (!hiodc->get_cap) { 3856 error_setg(errp, ".get_cap() not implemented"); 3857 return false; 3858 } 3859 3860 /* Common checks */ 3861 ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp); 3862 if (ret < 0) { 3863 return false; 3864 } 3865 if (s->aw_bits > ret) { 3866 error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret); 3867 return false; 3868 } 3869 3870 return true; 3871 } 3872 3873 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn, 3874 HostIOMMUDevice *hiod, Error **errp) 3875 { 3876 IntelIOMMUState *s = opaque; 3877 struct vtd_as_key key = { 3878 .bus = bus, 3879 .devfn = devfn, 3880 }; 3881 struct vtd_as_key *new_key; 3882 3883 assert(hiod); 3884 3885 vtd_iommu_lock(s); 3886 3887 if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) { 3888 error_setg(errp, "Host IOMMU device already exist"); 3889 vtd_iommu_unlock(s); 3890 return false; 3891 } 3892 3893 if (!vtd_check_hiod(s, hiod, errp)) { 3894 vtd_iommu_unlock(s); 3895 return false; 3896 } 3897 3898 new_key = g_malloc(sizeof(*new_key)); 3899 new_key->bus = bus; 3900 new_key->devfn = devfn; 3901 3902 object_ref(hiod); 3903 g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod); 3904 3905 vtd_iommu_unlock(s); 3906 3907 return true; 3908 } 3909 3910 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn) 3911 { 3912 IntelIOMMUState *s = opaque; 3913 struct vtd_as_key key = { 3914 .bus = bus, 3915 .devfn = devfn, 3916 }; 3917 3918 vtd_iommu_lock(s); 3919 3920 if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) { 3921 vtd_iommu_unlock(s); 3922 return; 3923 } 3924 3925 g_hash_table_remove(s->vtd_host_iommu_dev, &key); 3926 3927 vtd_iommu_unlock(s); 3928 } 3929 3930 /* Unmap the whole range in the notifier's scope. */ 3931 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 3932 { 3933 hwaddr total, remain; 3934 hwaddr start = n->start; 3935 hwaddr end = n->end; 3936 IntelIOMMUState *s = as->iommu_state; 3937 DMAMap map; 3938 3939 /* 3940 * Note: all the codes in this function has a assumption that IOVA 3941 * bits are no more than VTD_MGAW bits (which is restricted by 3942 * VT-d spec), otherwise we need to consider overflow of 64 bits. 3943 */ 3944 3945 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) { 3946 /* 3947 * Don't need to unmap regions that is bigger than the whole 3948 * VT-d supported address space size 3949 */ 3950 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1; 3951 } 3952 3953 assert(start <= end); 3954 total = remain = end - start + 1; 3955 3956 while (remain >= VTD_PAGE_SIZE) { 3957 IOMMUTLBEvent event; 3958 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits); 3959 uint64_t size = mask + 1; 3960 3961 assert(size); 3962 3963 event.type = IOMMU_NOTIFIER_UNMAP; 3964 event.entry.iova = start; 3965 event.entry.addr_mask = mask; 3966 event.entry.target_as = &address_space_memory; 3967 event.entry.perm = IOMMU_NONE; 3968 /* This field is meaningless for unmap */ 3969 event.entry.translated_addr = 0; 3970 3971 memory_region_notify_iommu_one(n, &event); 3972 3973 start += size; 3974 remain -= size; 3975 } 3976 3977 assert(!remain); 3978 3979 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 3980 VTD_PCI_SLOT(as->devfn), 3981 VTD_PCI_FUNC(as->devfn), 3982 n->start, total); 3983 3984 map.iova = n->start; 3985 map.size = total - 1; /* Inclusive */ 3986 iova_tree_remove(as->iova_tree, map); 3987 } 3988 3989 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 3990 { 3991 VTDAddressSpace *vtd_as; 3992 IOMMUNotifier *n; 3993 3994 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 3995 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 3996 vtd_address_space_unmap(vtd_as, n); 3997 } 3998 } 3999 } 4000 4001 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 4002 { 4003 vtd_address_space_unmap_all(s); 4004 vtd_switch_address_space_all(s); 4005 } 4006 4007 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private) 4008 { 4009 memory_region_notify_iommu_one(private, event); 4010 return 0; 4011 } 4012 4013 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 4014 { 4015 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 4016 IntelIOMMUState *s = vtd_as->iommu_state; 4017 uint8_t bus_n = pci_bus_num(vtd_as->bus); 4018 VTDContextEntry ce; 4019 DMAMap map = { .iova = 0, .size = HWADDR_MAX }; 4020 4021 /* replay is protected by BQL, page walk will re-setup it safely */ 4022 iova_tree_remove(vtd_as->iova_tree, map); 4023 4024 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 4025 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : 4026 "legacy mode", 4027 bus_n, PCI_SLOT(vtd_as->devfn), 4028 PCI_FUNC(vtd_as->devfn), 4029 vtd_get_domain_id(s, &ce, vtd_as->pasid), 4030 ce.hi, ce.lo); 4031 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) { 4032 /* This is required only for MAP typed notifiers */ 4033 vtd_page_walk_info info = { 4034 .hook_fn = vtd_replay_hook, 4035 .private = (void *)n, 4036 .notify_unmap = false, 4037 .aw = s->aw_bits, 4038 .as = vtd_as, 4039 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid), 4040 }; 4041 4042 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid); 4043 } 4044 } else { 4045 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 4046 PCI_FUNC(vtd_as->devfn)); 4047 } 4048 4049 return; 4050 } 4051 4052 static void vtd_cap_init(IntelIOMMUState *s) 4053 { 4054 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4055 4056 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 4057 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 4058 VTD_CAP_MGAW(s->aw_bits); 4059 if (s->dma_drain) { 4060 s->cap |= VTD_CAP_DRAIN; 4061 } 4062 if (s->dma_translation) { 4063 if (s->aw_bits >= VTD_HOST_AW_39BIT) { 4064 s->cap |= VTD_CAP_SAGAW_39bit; 4065 } 4066 if (s->aw_bits >= VTD_HOST_AW_48BIT) { 4067 s->cap |= VTD_CAP_SAGAW_48bit; 4068 } 4069 } 4070 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 4071 4072 if (x86_iommu_ir_supported(x86_iommu)) { 4073 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 4074 if (s->intr_eim == ON_OFF_AUTO_ON) { 4075 s->ecap |= VTD_ECAP_EIM; 4076 } 4077 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 4078 } 4079 4080 if (x86_iommu->dt_supported) { 4081 s->ecap |= VTD_ECAP_DT; 4082 } 4083 4084 if (x86_iommu->pt_supported) { 4085 s->ecap |= VTD_ECAP_PT; 4086 } 4087 4088 if (s->caching_mode) { 4089 s->cap |= VTD_CAP_CM; 4090 } 4091 4092 /* TODO: read cap/ecap from host to decide which cap to be exposed. */ 4093 if (s->scalable_mode) { 4094 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; 4095 } 4096 4097 if (s->snoop_control) { 4098 s->ecap |= VTD_ECAP_SC; 4099 } 4100 4101 if (s->pasid) { 4102 s->ecap |= VTD_ECAP_PASID; 4103 } 4104 } 4105 4106 /* 4107 * Do the initialization. It will also be called when reset, so pay 4108 * attention when adding new initialization stuff. 4109 */ 4110 static void vtd_init(IntelIOMMUState *s) 4111 { 4112 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4113 4114 memset(s->csr, 0, DMAR_REG_SIZE); 4115 memset(s->wmask, 0, DMAR_REG_SIZE); 4116 memset(s->w1cmask, 0, DMAR_REG_SIZE); 4117 memset(s->womask, 0, DMAR_REG_SIZE); 4118 4119 s->root = 0; 4120 s->root_scalable = false; 4121 s->dmar_enabled = false; 4122 s->intr_enabled = false; 4123 s->iq_head = 0; 4124 s->iq_tail = 0; 4125 s->iq = 0; 4126 s->iq_size = 0; 4127 s->qi_enabled = false; 4128 s->iq_last_desc_type = VTD_INV_DESC_NONE; 4129 s->iq_dw = false; 4130 s->next_frcd_reg = 0; 4131 4132 vtd_cap_init(s); 4133 4134 /* 4135 * Rsvd field masks for spte 4136 */ 4137 vtd_spte_rsvd[0] = ~0ULL; 4138 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits, 4139 x86_iommu->dt_supported); 4140 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 4141 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 4142 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 4143 4144 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits, 4145 x86_iommu->dt_supported); 4146 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits, 4147 x86_iommu->dt_supported); 4148 4149 if (s->scalable_mode || s->snoop_control) { 4150 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP; 4151 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP; 4152 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP; 4153 } 4154 4155 vtd_reset_caches(s); 4156 4157 /* Define registers with default values and bit semantics */ 4158 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 4159 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 4160 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 4161 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 4162 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 4163 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 4164 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); 4165 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 4166 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 4167 4168 /* Advanced Fault Logging not supported */ 4169 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 4170 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 4171 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 4172 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 4173 4174 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 4175 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 4176 */ 4177 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 4178 4179 /* Treated as RO for implementations that PLMR and PHMR fields reported 4180 * as Clear in the CAP_REG. 4181 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 4182 */ 4183 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 4184 4185 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 4186 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 4187 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); 4188 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 4189 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 4190 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 4191 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 4192 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 4193 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 4194 4195 /* IOTLB registers */ 4196 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 4197 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 4198 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 4199 4200 /* Fault Recording Registers, 128-bit */ 4201 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 4202 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 4203 4204 /* 4205 * Interrupt remapping registers. 4206 */ 4207 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 4208 } 4209 4210 /* Should not reset address_spaces when reset because devices will still use 4211 * the address space they got at first (won't ask the bus again). 4212 */ 4213 static void vtd_reset(DeviceState *dev) 4214 { 4215 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4216 4217 vtd_init(s); 4218 vtd_address_space_refresh_all(s); 4219 } 4220 4221 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 4222 { 4223 IntelIOMMUState *s = opaque; 4224 VTDAddressSpace *vtd_as; 4225 4226 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 4227 4228 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID); 4229 return &vtd_as->as; 4230 } 4231 4232 static PCIIOMMUOps vtd_iommu_ops = { 4233 .get_address_space = vtd_host_dma_iommu, 4234 .set_iommu_device = vtd_dev_set_iommu_device, 4235 .unset_iommu_device = vtd_dev_unset_iommu_device, 4236 }; 4237 4238 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 4239 { 4240 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4241 4242 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 4243 error_setg(errp, "eim=on cannot be selected without intremap=on"); 4244 return false; 4245 } 4246 4247 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 4248 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 4249 && x86_iommu_ir_supported(x86_iommu) ? 4250 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 4251 } 4252 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 4253 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) { 4254 error_setg(errp, "eim=on requires support on the KVM side" 4255 "(X2APIC_API, first shipped in v4.7)"); 4256 return false; 4257 } 4258 } 4259 4260 /* Currently only address widths supported are 39 and 48 bits */ 4261 if ((s->aw_bits != VTD_HOST_AW_39BIT) && 4262 (s->aw_bits != VTD_HOST_AW_48BIT)) { 4263 error_setg(errp, "Supported values for aw-bits are: %d, %d", 4264 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 4265 return false; 4266 } 4267 4268 if (s->scalable_mode && !s->dma_drain) { 4269 error_setg(errp, "Need to set dma_drain for scalable mode"); 4270 return false; 4271 } 4272 4273 if (s->pasid && !s->scalable_mode) { 4274 error_setg(errp, "Need to set scalable mode for PASID"); 4275 return false; 4276 } 4277 4278 return true; 4279 } 4280 4281 static int vtd_machine_done_notify_one(Object *child, void *unused) 4282 { 4283 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 4284 4285 /* 4286 * We hard-coded here because vfio-pci is the only special case 4287 * here. Let's be more elegant in the future when we can, but so 4288 * far there seems to be no better way. 4289 */ 4290 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) { 4291 vtd_panic_require_caching_mode(); 4292 } 4293 4294 return 0; 4295 } 4296 4297 static void vtd_machine_done_hook(Notifier *notifier, void *unused) 4298 { 4299 object_child_foreach_recursive(object_get_root(), 4300 vtd_machine_done_notify_one, NULL); 4301 } 4302 4303 static Notifier vtd_machine_done_notify = { 4304 .notify = vtd_machine_done_hook, 4305 }; 4306 4307 static void vtd_realize(DeviceState *dev, Error **errp) 4308 { 4309 MachineState *ms = MACHINE(qdev_get_machine()); 4310 PCMachineState *pcms = PC_MACHINE(ms); 4311 X86MachineState *x86ms = X86_MACHINE(ms); 4312 PCIBus *bus = pcms->pcibus; 4313 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4314 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4315 4316 if (s->pasid && x86_iommu->dt_supported) { 4317 /* 4318 * PASID-based-Device-TLB Invalidate Descriptor is not 4319 * implemented and it requires support from vhost layer which 4320 * needs to be implemented in the future. 4321 */ 4322 error_setg(errp, "PASID based device IOTLB is not supported"); 4323 return; 4324 } 4325 4326 if (!vtd_decide_config(s, errp)) { 4327 return; 4328 } 4329 4330 QLIST_INIT(&s->vtd_as_with_notifiers); 4331 qemu_mutex_init(&s->iommu_lock); 4332 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 4333 "intel_iommu", DMAR_REG_SIZE); 4334 memory_region_add_subregion(get_system_memory(), 4335 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem); 4336 4337 /* Create the shared memory regions by all devices */ 4338 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", 4339 UINT64_MAX); 4340 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, 4341 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); 4342 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), 4343 "vtd-sys-alias", get_system_memory(), 0, 4344 memory_region_size(get_system_memory())); 4345 memory_region_add_subregion_overlap(&s->mr_nodmar, 0, 4346 &s->mr_sys_alias, 0); 4347 memory_region_add_subregion_overlap(&s->mr_nodmar, 4348 VTD_INTERRUPT_ADDR_FIRST, 4349 &s->mr_ir, 1); 4350 /* No corresponding destroy */ 4351 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal, 4352 g_free, g_free); 4353 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal, 4354 g_free, g_free); 4355 s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal, 4356 g_free, vtd_hiod_destroy); 4357 vtd_init(s); 4358 pci_setup_iommu(bus, &vtd_iommu_ops, dev); 4359 /* Pseudo address space under root PCI bus. */ 4360 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 4361 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify); 4362 } 4363 4364 static void vtd_class_init(ObjectClass *klass, void *data) 4365 { 4366 DeviceClass *dc = DEVICE_CLASS(klass); 4367 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass); 4368 4369 dc->reset = vtd_reset; 4370 dc->vmsd = &vtd_vmstate; 4371 device_class_set_props(dc, vtd_properties); 4372 dc->hotpluggable = false; 4373 x86_class->realize = vtd_realize; 4374 x86_class->int_remap = vtd_int_remap; 4375 /* Supported by the pc-q35-* machine types */ 4376 dc->user_creatable = true; 4377 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 4378 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device"; 4379 } 4380 4381 static const TypeInfo vtd_info = { 4382 .name = TYPE_INTEL_IOMMU_DEVICE, 4383 .parent = TYPE_X86_IOMMU_DEVICE, 4384 .instance_size = sizeof(IntelIOMMUState), 4385 .class_init = vtd_class_init, 4386 }; 4387 4388 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 4389 void *data) 4390 { 4391 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 4392 4393 imrc->translate = vtd_iommu_translate; 4394 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 4395 imrc->replay = vtd_iommu_replay; 4396 } 4397 4398 static const TypeInfo vtd_iommu_memory_region_info = { 4399 .parent = TYPE_IOMMU_MEMORY_REGION, 4400 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 4401 .class_init = vtd_iommu_memory_region_class_init, 4402 }; 4403 4404 static void vtd_register_types(void) 4405 { 4406 type_register_static(&vtd_info); 4407 type_register_static(&vtd_iommu_memory_region_info); 4408 } 4409 4410 type_init(vtd_register_types) 4411