1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qemu/main-loop.h" 25 #include "qapi/error.h" 26 #include "hw/sysbus.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/i386/pc.h" 32 #include "hw/i386/apic-msidef.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "sysemu/dma.h" 37 #include "sysemu/sysemu.h" 38 #include "hw/i386/apic_internal.h" 39 #include "kvm/kvm_i386.h" 40 #include "migration/vmstate.h" 41 #include "trace.h" 42 43 /* context entry operations */ 44 #define VTD_CE_GET_RID2PASID(ce) \ 45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) 46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ 47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) 48 49 /* pe operations */ 50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) 51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) 52 53 /* 54 * PCI bus number (or SID) is not reliable since the device is usaully 55 * initalized before guest can configure the PCI bridge 56 * (SECONDARY_BUS_NUMBER). 57 */ 58 struct vtd_as_key { 59 PCIBus *bus; 60 uint8_t devfn; 61 uint32_t pasid; 62 }; 63 64 struct vtd_iotlb_key { 65 uint64_t gfn; 66 uint32_t pasid; 67 uint32_t level; 68 uint16_t sid; 69 }; 70 71 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 73 74 static void vtd_panic_require_caching_mode(void) 75 { 76 error_report("We need to set caching-mode=on for intel-iommu to enable " 77 "device assignment with IOMMU protection."); 78 exit(1); 79 } 80 81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 82 uint64_t wmask, uint64_t w1cmask) 83 { 84 stq_le_p(&s->csr[addr], val); 85 stq_le_p(&s->wmask[addr], wmask); 86 stq_le_p(&s->w1cmask[addr], w1cmask); 87 } 88 89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 90 { 91 stq_le_p(&s->womask[addr], mask); 92 } 93 94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 95 uint32_t wmask, uint32_t w1cmask) 96 { 97 stl_le_p(&s->csr[addr], val); 98 stl_le_p(&s->wmask[addr], wmask); 99 stl_le_p(&s->w1cmask[addr], w1cmask); 100 } 101 102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 103 { 104 stl_le_p(&s->womask[addr], mask); 105 } 106 107 /* "External" get/set operations */ 108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 109 { 110 uint64_t oldval = ldq_le_p(&s->csr[addr]); 111 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 113 stq_le_p(&s->csr[addr], 114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 115 } 116 117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 118 { 119 uint32_t oldval = ldl_le_p(&s->csr[addr]); 120 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 122 stl_le_p(&s->csr[addr], 123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 124 } 125 126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 127 { 128 uint64_t val = ldq_le_p(&s->csr[addr]); 129 uint64_t womask = ldq_le_p(&s->womask[addr]); 130 return val & ~womask; 131 } 132 133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 134 { 135 uint32_t val = ldl_le_p(&s->csr[addr]); 136 uint32_t womask = ldl_le_p(&s->womask[addr]); 137 return val & ~womask; 138 } 139 140 /* "Internal" get/set operations */ 141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 142 { 143 return ldq_le_p(&s->csr[addr]); 144 } 145 146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 147 { 148 return ldl_le_p(&s->csr[addr]); 149 } 150 151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 152 { 153 stq_le_p(&s->csr[addr], val); 154 } 155 156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 157 uint32_t clear, uint32_t mask) 158 { 159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 160 stl_le_p(&s->csr[addr], new_val); 161 return new_val; 162 } 163 164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 165 uint64_t clear, uint64_t mask) 166 { 167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 168 stq_le_p(&s->csr[addr], new_val); 169 return new_val; 170 } 171 172 static inline void vtd_iommu_lock(IntelIOMMUState *s) 173 { 174 qemu_mutex_lock(&s->iommu_lock); 175 } 176 177 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 178 { 179 qemu_mutex_unlock(&s->iommu_lock); 180 } 181 182 static void vtd_update_scalable_state(IntelIOMMUState *s) 183 { 184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 185 186 if (s->scalable_mode) { 187 s->root_scalable = val & VTD_RTADDR_SMT; 188 } 189 } 190 191 static void vtd_update_iq_dw(IntelIOMMUState *s) 192 { 193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG); 194 195 if (s->ecap & VTD_ECAP_SMTS && 196 val & VTD_IQA_DW_MASK) { 197 s->iq_dw = true; 198 } else { 199 s->iq_dw = false; 200 } 201 } 202 203 /* Whether the address space needs to notify new mappings */ 204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 205 { 206 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 207 } 208 209 /* GHashTable functions */ 210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2) 211 { 212 const struct vtd_iotlb_key *key1 = v1; 213 const struct vtd_iotlb_key *key2 = v2; 214 215 return key1->sid == key2->sid && 216 key1->pasid == key2->pasid && 217 key1->level == key2->level && 218 key1->gfn == key2->gfn; 219 } 220 221 static guint vtd_iotlb_hash(gconstpointer v) 222 { 223 const struct vtd_iotlb_key *key = v; 224 225 return key->gfn | ((key->sid) << VTD_IOTLB_SID_SHIFT) | 226 (key->level) << VTD_IOTLB_LVL_SHIFT | 227 (key->pasid) << VTD_IOTLB_PASID_SHIFT; 228 } 229 230 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2) 231 { 232 const struct vtd_as_key *key1 = v1; 233 const struct vtd_as_key *key2 = v2; 234 235 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) && 236 (key1->pasid == key2->pasid); 237 } 238 239 /* 240 * Note that we use pointer to PCIBus as the key, so hashing/shifting 241 * based on the pointer value is intended. Note that we deal with 242 * collisions through vtd_as_equal(). 243 */ 244 static guint vtd_as_hash(gconstpointer v) 245 { 246 const struct vtd_as_key *key = v; 247 guint value = (guint)(uintptr_t)key->bus; 248 249 return (guint)(value << 8 | key->devfn); 250 } 251 252 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 253 gpointer user_data) 254 { 255 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 256 uint16_t domain_id = *(uint16_t *)user_data; 257 return entry->domain_id == domain_id; 258 } 259 260 /* The shift of an addr for a certain level of paging structure */ 261 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 262 { 263 assert(level != 0); 264 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 265 } 266 267 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 268 { 269 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 270 } 271 272 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 273 gpointer user_data) 274 { 275 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 276 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 277 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 278 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 279 return (entry->domain_id == info->domain_id) && 280 (((entry->gfn & info->mask) == gfn) || 281 (entry->gfn == gfn_tlb)); 282 } 283 284 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 285 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 286 */ 287 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 288 { 289 VTDAddressSpace *vtd_as; 290 GHashTableIter as_it; 291 292 trace_vtd_context_cache_reset(); 293 294 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 295 296 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 297 vtd_as->context_cache_entry.context_cache_gen = 0; 298 } 299 s->context_cache_gen = 1; 300 } 301 302 /* Must be called with IOMMU lock held. */ 303 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 304 { 305 assert(s->iotlb); 306 g_hash_table_remove_all(s->iotlb); 307 } 308 309 static void vtd_reset_iotlb(IntelIOMMUState *s) 310 { 311 vtd_iommu_lock(s); 312 vtd_reset_iotlb_locked(s); 313 vtd_iommu_unlock(s); 314 } 315 316 static void vtd_reset_caches(IntelIOMMUState *s) 317 { 318 vtd_iommu_lock(s); 319 vtd_reset_iotlb_locked(s); 320 vtd_reset_context_cache_locked(s); 321 vtd_iommu_unlock(s); 322 } 323 324 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 325 { 326 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 327 } 328 329 /* Must be called with IOMMU lock held */ 330 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 331 uint32_t pasid, hwaddr addr) 332 { 333 struct vtd_iotlb_key key; 334 VTDIOTLBEntry *entry; 335 int level; 336 337 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 338 key.gfn = vtd_get_iotlb_gfn(addr, level); 339 key.level = level; 340 key.sid = source_id; 341 key.pasid = pasid; 342 entry = g_hash_table_lookup(s->iotlb, &key); 343 if (entry) { 344 goto out; 345 } 346 } 347 348 out: 349 return entry; 350 } 351 352 /* Must be with IOMMU lock held */ 353 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 354 uint16_t domain_id, hwaddr addr, uint64_t slpte, 355 uint8_t access_flags, uint32_t level, 356 uint32_t pasid) 357 { 358 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 359 struct vtd_iotlb_key *key = g_malloc(sizeof(*key)); 360 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 361 362 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 363 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 364 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 365 vtd_reset_iotlb_locked(s); 366 } 367 368 entry->gfn = gfn; 369 entry->domain_id = domain_id; 370 entry->slpte = slpte; 371 entry->access_flags = access_flags; 372 entry->mask = vtd_slpt_level_page_mask(level); 373 entry->pasid = pasid; 374 375 key->gfn = gfn; 376 key->sid = source_id; 377 key->level = level; 378 key->pasid = pasid; 379 380 g_hash_table_replace(s->iotlb, key, entry); 381 } 382 383 /* Given the reg addr of both the message data and address, generate an 384 * interrupt via MSI. 385 */ 386 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 387 hwaddr mesg_data_reg) 388 { 389 MSIMessage msi; 390 391 assert(mesg_data_reg < DMAR_REG_SIZE); 392 assert(mesg_addr_reg < DMAR_REG_SIZE); 393 394 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 395 msi.data = vtd_get_long_raw(s, mesg_data_reg); 396 397 trace_vtd_irq_generate(msi.address, msi.data); 398 399 apic_get_class(NULL)->send_msi(&msi); 400 } 401 402 /* Generate a fault event to software via MSI if conditions are met. 403 * Notice that the value of FSTS_REG being passed to it should be the one 404 * before any update. 405 */ 406 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 407 { 408 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 409 pre_fsts & VTD_FSTS_IQE) { 410 error_report_once("There are previous interrupt conditions " 411 "to be serviced by software, fault event " 412 "is not generated"); 413 return; 414 } 415 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 416 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 417 error_report_once("Interrupt Mask set, irq is not generated"); 418 } else { 419 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 420 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 421 } 422 } 423 424 /* Check if the Fault (F) field of the Fault Recording Register referenced by 425 * @index is Set. 426 */ 427 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 428 { 429 /* Each reg is 128-bit */ 430 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 431 addr += 8; /* Access the high 64-bit half */ 432 433 assert(index < DMAR_FRCD_REG_NR); 434 435 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 436 } 437 438 /* Update the PPF field of Fault Status Register. 439 * Should be called whenever change the F field of any fault recording 440 * registers. 441 */ 442 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 443 { 444 uint32_t i; 445 uint32_t ppf_mask = 0; 446 447 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 448 if (vtd_is_frcd_set(s, i)) { 449 ppf_mask = VTD_FSTS_PPF; 450 break; 451 } 452 } 453 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 454 trace_vtd_fsts_ppf(!!ppf_mask); 455 } 456 457 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 458 { 459 /* Each reg is 128-bit */ 460 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 461 addr += 8; /* Access the high 64-bit half */ 462 463 assert(index < DMAR_FRCD_REG_NR); 464 465 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 466 vtd_update_fsts_ppf(s); 467 } 468 469 /* Must not update F field now, should be done later */ 470 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 471 uint16_t source_id, hwaddr addr, 472 VTDFaultReason fault, bool is_write, 473 bool is_pasid, uint32_t pasid) 474 { 475 uint64_t hi = 0, lo; 476 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 477 478 assert(index < DMAR_FRCD_REG_NR); 479 480 lo = VTD_FRCD_FI(addr); 481 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) | 482 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid); 483 if (!is_write) { 484 hi |= VTD_FRCD_T; 485 } 486 vtd_set_quad_raw(s, frcd_reg_addr, lo); 487 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 488 489 trace_vtd_frr_new(index, hi, lo); 490 } 491 492 /* Try to collapse multiple pending faults from the same requester */ 493 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 494 { 495 uint32_t i; 496 uint64_t frcd_reg; 497 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 498 499 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 500 frcd_reg = vtd_get_quad_raw(s, addr); 501 if ((frcd_reg & VTD_FRCD_F) && 502 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 503 return true; 504 } 505 addr += 16; /* 128-bit for each */ 506 } 507 return false; 508 } 509 510 /* Log and report an DMAR (address translation) fault to software */ 511 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 512 hwaddr addr, VTDFaultReason fault, 513 bool is_write, bool is_pasid, 514 uint32_t pasid) 515 { 516 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 517 518 assert(fault < VTD_FR_MAX); 519 520 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 521 522 if (fsts_reg & VTD_FSTS_PFO) { 523 error_report_once("New fault is not recorded due to " 524 "Primary Fault Overflow"); 525 return; 526 } 527 528 if (vtd_try_collapse_fault(s, source_id)) { 529 error_report_once("New fault is not recorded due to " 530 "compression of faults"); 531 return; 532 } 533 534 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 535 error_report_once("Next Fault Recording Reg is used, " 536 "new fault is not recorded, set PFO field"); 537 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 538 return; 539 } 540 541 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, 542 is_write, is_pasid, pasid); 543 544 if (fsts_reg & VTD_FSTS_PPF) { 545 error_report_once("There are pending faults already, " 546 "fault event is not generated"); 547 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 548 s->next_frcd_reg++; 549 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 550 s->next_frcd_reg = 0; 551 } 552 } else { 553 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 554 VTD_FSTS_FRI(s->next_frcd_reg)); 555 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 556 s->next_frcd_reg++; 557 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 558 s->next_frcd_reg = 0; 559 } 560 /* This case actually cause the PPF to be Set. 561 * So generate fault event (interrupt). 562 */ 563 vtd_generate_fault_event(s, fsts_reg); 564 } 565 } 566 567 /* Handle Invalidation Queue Errors of queued invalidation interface error 568 * conditions. 569 */ 570 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 571 { 572 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 573 574 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 575 vtd_generate_fault_event(s, fsts_reg); 576 } 577 578 /* Set the IWC field and try to generate an invalidation completion interrupt */ 579 static void vtd_generate_completion_event(IntelIOMMUState *s) 580 { 581 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 582 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 583 return; 584 } 585 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 586 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 587 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 588 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 589 "new event not generated"); 590 return; 591 } else { 592 /* Generate the interrupt event */ 593 trace_vtd_inv_desc_wait_irq("Generating complete event"); 594 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 595 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 596 } 597 } 598 599 static inline bool vtd_root_entry_present(IntelIOMMUState *s, 600 VTDRootEntry *re, 601 uint8_t devfn) 602 { 603 if (s->root_scalable && devfn > UINT8_MAX / 2) { 604 return re->hi & VTD_ROOT_ENTRY_P; 605 } 606 607 return re->lo & VTD_ROOT_ENTRY_P; 608 } 609 610 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 611 VTDRootEntry *re) 612 { 613 dma_addr_t addr; 614 615 addr = s->root + index * sizeof(*re); 616 if (dma_memory_read(&address_space_memory, addr, 617 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) { 618 re->lo = 0; 619 return -VTD_FR_ROOT_TABLE_INV; 620 } 621 re->lo = le64_to_cpu(re->lo); 622 re->hi = le64_to_cpu(re->hi); 623 return 0; 624 } 625 626 static inline bool vtd_ce_present(VTDContextEntry *context) 627 { 628 return context->lo & VTD_CONTEXT_ENTRY_P; 629 } 630 631 static int vtd_get_context_entry_from_root(IntelIOMMUState *s, 632 VTDRootEntry *re, 633 uint8_t index, 634 VTDContextEntry *ce) 635 { 636 dma_addr_t addr, ce_size; 637 638 /* we have checked that root entry is present */ 639 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : 640 VTD_CTX_ENTRY_LEGACY_SIZE; 641 642 if (s->root_scalable && index > UINT8_MAX / 2) { 643 index = index & (~VTD_DEVFN_CHECK_MASK); 644 addr = re->hi & VTD_ROOT_ENTRY_CTP; 645 } else { 646 addr = re->lo & VTD_ROOT_ENTRY_CTP; 647 } 648 649 addr = addr + index * ce_size; 650 if (dma_memory_read(&address_space_memory, addr, 651 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) { 652 return -VTD_FR_CONTEXT_TABLE_INV; 653 } 654 655 ce->lo = le64_to_cpu(ce->lo); 656 ce->hi = le64_to_cpu(ce->hi); 657 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { 658 ce->val[2] = le64_to_cpu(ce->val[2]); 659 ce->val[3] = le64_to_cpu(ce->val[3]); 660 } 661 return 0; 662 } 663 664 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 665 { 666 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 667 } 668 669 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) 670 { 671 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); 672 } 673 674 /* Whether the pte indicates the address of the page frame */ 675 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 676 { 677 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 678 } 679 680 /* Get the content of a spte located in @base_addr[@index] */ 681 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 682 { 683 uint64_t slpte; 684 685 assert(index < VTD_SL_PT_ENTRY_NR); 686 687 if (dma_memory_read(&address_space_memory, 688 base_addr + index * sizeof(slpte), 689 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) { 690 slpte = (uint64_t)-1; 691 return slpte; 692 } 693 slpte = le64_to_cpu(slpte); 694 return slpte; 695 } 696 697 /* Given an iova and the level of paging structure, return the offset 698 * of current level. 699 */ 700 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 701 { 702 return (iova >> vtd_slpt_level_shift(level)) & 703 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 704 } 705 706 /* Check Capability Register to see if the @level of page-table is supported */ 707 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 708 { 709 return VTD_CAP_SAGAW_MASK & s->cap & 710 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 711 } 712 713 /* Return true if check passed, otherwise false */ 714 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, 715 VTDPASIDEntry *pe) 716 { 717 switch (VTD_PE_GET_TYPE(pe)) { 718 case VTD_SM_PASID_ENTRY_FLT: 719 case VTD_SM_PASID_ENTRY_SLT: 720 case VTD_SM_PASID_ENTRY_NESTED: 721 break; 722 case VTD_SM_PASID_ENTRY_PT: 723 if (!x86_iommu->pt_supported) { 724 return false; 725 } 726 break; 727 default: 728 /* Unknown type */ 729 return false; 730 } 731 return true; 732 } 733 734 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire) 735 { 736 return pdire->val & 1; 737 } 738 739 /** 740 * Caller of this function should check present bit if wants 741 * to use pdir entry for further usage except for fpd bit check. 742 */ 743 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base, 744 uint32_t pasid, 745 VTDPASIDDirEntry *pdire) 746 { 747 uint32_t index; 748 dma_addr_t addr, entry_size; 749 750 index = VTD_PASID_DIR_INDEX(pasid); 751 entry_size = VTD_PASID_DIR_ENTRY_SIZE; 752 addr = pasid_dir_base + index * entry_size; 753 if (dma_memory_read(&address_space_memory, addr, 754 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) { 755 return -VTD_FR_PASID_TABLE_INV; 756 } 757 758 return 0; 759 } 760 761 static inline bool vtd_pe_present(VTDPASIDEntry *pe) 762 { 763 return pe->val[0] & VTD_PASID_ENTRY_P; 764 } 765 766 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s, 767 uint32_t pasid, 768 dma_addr_t addr, 769 VTDPASIDEntry *pe) 770 { 771 uint32_t index; 772 dma_addr_t entry_size; 773 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 774 775 index = VTD_PASID_TABLE_INDEX(pasid); 776 entry_size = VTD_PASID_ENTRY_SIZE; 777 addr = addr + index * entry_size; 778 if (dma_memory_read(&address_space_memory, addr, 779 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) { 780 return -VTD_FR_PASID_TABLE_INV; 781 } 782 783 /* Do translation type check */ 784 if (!vtd_pe_type_check(x86_iommu, pe)) { 785 return -VTD_FR_PASID_TABLE_INV; 786 } 787 788 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { 789 return -VTD_FR_PASID_TABLE_INV; 790 } 791 792 return 0; 793 } 794 795 /** 796 * Caller of this function should check present bit if wants 797 * to use pasid entry for further usage except for fpd bit check. 798 */ 799 static int vtd_get_pe_from_pdire(IntelIOMMUState *s, 800 uint32_t pasid, 801 VTDPASIDDirEntry *pdire, 802 VTDPASIDEntry *pe) 803 { 804 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; 805 806 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe); 807 } 808 809 /** 810 * This function gets a pasid entry from a specified pasid 811 * table (includes dir and leaf table) with a specified pasid. 812 * Sanity check should be done to ensure return a present 813 * pasid entry to caller. 814 */ 815 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s, 816 dma_addr_t pasid_dir_base, 817 uint32_t pasid, 818 VTDPASIDEntry *pe) 819 { 820 int ret; 821 VTDPASIDDirEntry pdire; 822 823 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, 824 pasid, &pdire); 825 if (ret) { 826 return ret; 827 } 828 829 if (!vtd_pdire_present(&pdire)) { 830 return -VTD_FR_PASID_TABLE_INV; 831 } 832 833 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe); 834 if (ret) { 835 return ret; 836 } 837 838 if (!vtd_pe_present(pe)) { 839 return -VTD_FR_PASID_TABLE_INV; 840 } 841 842 return 0; 843 } 844 845 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, 846 VTDContextEntry *ce, 847 VTDPASIDEntry *pe, 848 uint32_t pasid) 849 { 850 dma_addr_t pasid_dir_base; 851 int ret = 0; 852 853 if (pasid == PCI_NO_PASID) { 854 pasid = VTD_CE_GET_RID2PASID(ce); 855 } 856 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 857 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe); 858 859 return ret; 860 } 861 862 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, 863 VTDContextEntry *ce, 864 bool *pe_fpd_set, 865 uint32_t pasid) 866 { 867 int ret; 868 dma_addr_t pasid_dir_base; 869 VTDPASIDDirEntry pdire; 870 VTDPASIDEntry pe; 871 872 if (pasid == PCI_NO_PASID) { 873 pasid = VTD_CE_GET_RID2PASID(ce); 874 } 875 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 876 877 /* 878 * No present bit check since fpd is meaningful even 879 * if the present bit is clear. 880 */ 881 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); 882 if (ret) { 883 return ret; 884 } 885 886 if (pdire.val & VTD_PASID_DIR_FPD) { 887 *pe_fpd_set = true; 888 return 0; 889 } 890 891 if (!vtd_pdire_present(&pdire)) { 892 return -VTD_FR_PASID_TABLE_INV; 893 } 894 895 /* 896 * No present bit check since fpd is meaningful even 897 * if the present bit is clear. 898 */ 899 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe); 900 if (ret) { 901 return ret; 902 } 903 904 if (pe.val[0] & VTD_PASID_ENTRY_FPD) { 905 *pe_fpd_set = true; 906 } 907 908 return 0; 909 } 910 911 /* Get the page-table level that hardware should use for the second-level 912 * page-table walk from the Address Width field of context-entry. 913 */ 914 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 915 { 916 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 917 } 918 919 static uint32_t vtd_get_iova_level(IntelIOMMUState *s, 920 VTDContextEntry *ce, 921 uint32_t pasid) 922 { 923 VTDPASIDEntry pe; 924 925 if (s->root_scalable) { 926 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 927 return VTD_PE_GET_LEVEL(&pe); 928 } 929 930 return vtd_ce_get_level(ce); 931 } 932 933 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 934 { 935 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 936 } 937 938 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, 939 VTDContextEntry *ce, 940 uint32_t pasid) 941 { 942 VTDPASIDEntry pe; 943 944 if (s->root_scalable) { 945 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 946 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; 947 } 948 949 return vtd_ce_get_agaw(ce); 950 } 951 952 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 953 { 954 return ce->lo & VTD_CONTEXT_ENTRY_TT; 955 } 956 957 /* Only for Legacy Mode. Return true if check passed, otherwise false */ 958 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 959 VTDContextEntry *ce) 960 { 961 switch (vtd_ce_get_type(ce)) { 962 case VTD_CONTEXT_TT_MULTI_LEVEL: 963 /* Always supported */ 964 break; 965 case VTD_CONTEXT_TT_DEV_IOTLB: 966 if (!x86_iommu->dt_supported) { 967 error_report_once("%s: DT specified but not supported", __func__); 968 return false; 969 } 970 break; 971 case VTD_CONTEXT_TT_PASS_THROUGH: 972 if (!x86_iommu->pt_supported) { 973 error_report_once("%s: PT specified but not supported", __func__); 974 return false; 975 } 976 break; 977 default: 978 /* Unknown type */ 979 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 980 vtd_ce_get_type(ce)); 981 return false; 982 } 983 return true; 984 } 985 986 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, 987 VTDContextEntry *ce, uint8_t aw, 988 uint32_t pasid) 989 { 990 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid); 991 return 1ULL << MIN(ce_agaw, aw); 992 } 993 994 /* Return true if IOVA passes range check, otherwise false. */ 995 static inline bool vtd_iova_range_check(IntelIOMMUState *s, 996 uint64_t iova, VTDContextEntry *ce, 997 uint8_t aw, uint32_t pasid) 998 { 999 /* 1000 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 1001 * in CAP_REG and AW in context-entry. 1002 */ 1003 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1)); 1004 } 1005 1006 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, 1007 VTDContextEntry *ce, 1008 uint32_t pasid) 1009 { 1010 VTDPASIDEntry pe; 1011 1012 if (s->root_scalable) { 1013 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1014 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; 1015 } 1016 1017 return vtd_ce_get_slpt_base(ce); 1018 } 1019 1020 /* 1021 * Rsvd field masks for spte: 1022 * vtd_spte_rsvd 4k pages 1023 * vtd_spte_rsvd_large large pages 1024 */ 1025 static uint64_t vtd_spte_rsvd[5]; 1026 static uint64_t vtd_spte_rsvd_large[5]; 1027 1028 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 1029 { 1030 uint64_t rsvd_mask = vtd_spte_rsvd[level]; 1031 1032 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) && 1033 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) { 1034 /* large page */ 1035 rsvd_mask = vtd_spte_rsvd_large[level]; 1036 } 1037 1038 return slpte & rsvd_mask; 1039 } 1040 1041 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 1042 * of the translation, can be used for deciding the size of large page. 1043 */ 1044 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, 1045 uint64_t iova, bool is_write, 1046 uint64_t *slptep, uint32_t *slpte_level, 1047 bool *reads, bool *writes, uint8_t aw_bits, 1048 uint32_t pasid) 1049 { 1050 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1051 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1052 uint32_t offset; 1053 uint64_t slpte; 1054 uint64_t access_right_check; 1055 uint64_t xlat, size; 1056 1057 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) { 1058 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 "," 1059 "pasid=0x%" PRIx32 ")", __func__, iova, pasid); 1060 return -VTD_FR_ADDR_BEYOND_MGAW; 1061 } 1062 1063 /* FIXME: what is the Atomics request here? */ 1064 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 1065 1066 while (true) { 1067 offset = vtd_iova_level_offset(iova, level); 1068 slpte = vtd_get_slpte(addr, offset); 1069 1070 if (slpte == (uint64_t)-1) { 1071 error_report_once("%s: detected read error on DMAR slpte " 1072 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")", 1073 __func__, iova, pasid); 1074 if (level == vtd_get_iova_level(s, ce, pasid)) { 1075 /* Invalid programming of context-entry */ 1076 return -VTD_FR_CONTEXT_ENTRY_INV; 1077 } else { 1078 return -VTD_FR_PAGING_ENTRY_INV; 1079 } 1080 } 1081 *reads = (*reads) && (slpte & VTD_SL_R); 1082 *writes = (*writes) && (slpte & VTD_SL_W); 1083 if (!(slpte & access_right_check)) { 1084 error_report_once("%s: detected slpte permission error " 1085 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1086 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%" 1087 PRIx32 ")", __func__, iova, level, 1088 slpte, is_write, pasid); 1089 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 1090 } 1091 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1092 error_report_once("%s: detected splte reserve non-zero " 1093 "iova=0x%" PRIx64 ", level=0x%" PRIx32 1094 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", 1095 __func__, iova, level, slpte, pasid); 1096 return -VTD_FR_PAGING_ENTRY_RSVD; 1097 } 1098 1099 if (vtd_is_last_slpte(slpte, level)) { 1100 *slptep = slpte; 1101 *slpte_level = level; 1102 break; 1103 } 1104 addr = vtd_get_slpte_addr(slpte, aw_bits); 1105 level--; 1106 } 1107 1108 xlat = vtd_get_slpte_addr(*slptep, aw_bits); 1109 size = ~vtd_slpt_level_page_mask(level) + 1; 1110 1111 /* 1112 * From VT-d spec 3.14: Untranslated requests and translation 1113 * requests that result in an address in the interrupt range will be 1114 * blocked with condition code LGN.4 or SGN.8. 1115 */ 1116 if ((xlat > VTD_INTERRUPT_ADDR_LAST || 1117 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) { 1118 return 0; 1119 } else { 1120 error_report_once("%s: xlat address is in interrupt range " 1121 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1122 "slpte=0x%" PRIx64 ", write=%d, " 1123 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", " 1124 "pasid=0x%" PRIx32 ")", 1125 __func__, iova, level, slpte, is_write, 1126 xlat, size, pasid); 1127 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR : 1128 -VTD_FR_INTERRUPT_ADDR; 1129 } 1130 } 1131 1132 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private); 1133 1134 /** 1135 * Constant information used during page walking 1136 * 1137 * @hook_fn: hook func to be called when detected page 1138 * @private: private data to be passed into hook func 1139 * @notify_unmap: whether we should notify invalid entries 1140 * @as: VT-d address space of the device 1141 * @aw: maximum address width 1142 * @domain: domain ID of the page walk 1143 */ 1144 typedef struct { 1145 VTDAddressSpace *as; 1146 vtd_page_walk_hook hook_fn; 1147 void *private; 1148 bool notify_unmap; 1149 uint8_t aw; 1150 uint16_t domain_id; 1151 } vtd_page_walk_info; 1152 1153 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info) 1154 { 1155 VTDAddressSpace *as = info->as; 1156 vtd_page_walk_hook hook_fn = info->hook_fn; 1157 void *private = info->private; 1158 IOMMUTLBEntry *entry = &event->entry; 1159 DMAMap target = { 1160 .iova = entry->iova, 1161 .size = entry->addr_mask, 1162 .translated_addr = entry->translated_addr, 1163 .perm = entry->perm, 1164 }; 1165 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 1166 1167 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) { 1168 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1169 return 0; 1170 } 1171 1172 assert(hook_fn); 1173 1174 /* Update local IOVA mapped ranges */ 1175 if (event->type == IOMMU_NOTIFIER_MAP) { 1176 if (mapped) { 1177 /* If it's exactly the same translation, skip */ 1178 if (!memcmp(mapped, &target, sizeof(target))) { 1179 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 1180 entry->translated_addr); 1181 return 0; 1182 } else { 1183 /* 1184 * Translation changed. Normally this should not 1185 * happen, but it can happen when with buggy guest 1186 * OSes. Note that there will be a small window that 1187 * we don't have map at all. But that's the best 1188 * effort we can do. The ideal way to emulate this is 1189 * atomically modify the PTE to follow what has 1190 * changed, but we can't. One example is that vfio 1191 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 1192 * interface to modify a mapping (meanwhile it seems 1193 * meaningless to even provide one). Anyway, let's 1194 * mark this as a TODO in case one day we'll have 1195 * a better solution. 1196 */ 1197 IOMMUAccessFlags cache_perm = entry->perm; 1198 int ret; 1199 1200 /* Emulate an UNMAP */ 1201 event->type = IOMMU_NOTIFIER_UNMAP; 1202 entry->perm = IOMMU_NONE; 1203 trace_vtd_page_walk_one(info->domain_id, 1204 entry->iova, 1205 entry->translated_addr, 1206 entry->addr_mask, 1207 entry->perm); 1208 ret = hook_fn(event, private); 1209 if (ret) { 1210 return ret; 1211 } 1212 /* Drop any existing mapping */ 1213 iova_tree_remove(as->iova_tree, target); 1214 /* Recover the correct type */ 1215 event->type = IOMMU_NOTIFIER_MAP; 1216 entry->perm = cache_perm; 1217 } 1218 } 1219 iova_tree_insert(as->iova_tree, &target); 1220 } else { 1221 if (!mapped) { 1222 /* Skip since we didn't map this range at all */ 1223 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1224 return 0; 1225 } 1226 iova_tree_remove(as->iova_tree, target); 1227 } 1228 1229 trace_vtd_page_walk_one(info->domain_id, entry->iova, 1230 entry->translated_addr, entry->addr_mask, 1231 entry->perm); 1232 return hook_fn(event, private); 1233 } 1234 1235 /** 1236 * vtd_page_walk_level - walk over specific level for IOVA range 1237 * 1238 * @addr: base GPA addr to start the walk 1239 * @start: IOVA range start address 1240 * @end: IOVA range end address (start <= addr < end) 1241 * @read: whether parent level has read permission 1242 * @write: whether parent level has write permission 1243 * @info: constant information for the page walk 1244 */ 1245 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 1246 uint64_t end, uint32_t level, bool read, 1247 bool write, vtd_page_walk_info *info) 1248 { 1249 bool read_cur, write_cur, entry_valid; 1250 uint32_t offset; 1251 uint64_t slpte; 1252 uint64_t subpage_size, subpage_mask; 1253 IOMMUTLBEvent event; 1254 uint64_t iova = start; 1255 uint64_t iova_next; 1256 int ret = 0; 1257 1258 trace_vtd_page_walk_level(addr, level, start, end); 1259 1260 subpage_size = 1ULL << vtd_slpt_level_shift(level); 1261 subpage_mask = vtd_slpt_level_page_mask(level); 1262 1263 while (iova < end) { 1264 iova_next = (iova & subpage_mask) + subpage_size; 1265 1266 offset = vtd_iova_level_offset(iova, level); 1267 slpte = vtd_get_slpte(addr, offset); 1268 1269 if (slpte == (uint64_t)-1) { 1270 trace_vtd_page_walk_skip_read(iova, iova_next); 1271 goto next; 1272 } 1273 1274 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1275 trace_vtd_page_walk_skip_reserve(iova, iova_next); 1276 goto next; 1277 } 1278 1279 /* Permissions are stacked with parents' */ 1280 read_cur = read && (slpte & VTD_SL_R); 1281 write_cur = write && (slpte & VTD_SL_W); 1282 1283 /* 1284 * As long as we have either read/write permission, this is a 1285 * valid entry. The rule works for both page entries and page 1286 * table entries. 1287 */ 1288 entry_valid = read_cur | write_cur; 1289 1290 if (!vtd_is_last_slpte(slpte, level) && entry_valid) { 1291 /* 1292 * This is a valid PDE (or even bigger than PDE). We need 1293 * to walk one further level. 1294 */ 1295 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), 1296 iova, MIN(iova_next, end), level - 1, 1297 read_cur, write_cur, info); 1298 } else { 1299 /* 1300 * This means we are either: 1301 * 1302 * (1) the real page entry (either 4K page, or huge page) 1303 * (2) the whole range is invalid 1304 * 1305 * In either case, we send an IOTLB notification down. 1306 */ 1307 event.entry.target_as = &address_space_memory; 1308 event.entry.iova = iova & subpage_mask; 1309 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 1310 event.entry.addr_mask = ~subpage_mask; 1311 /* NOTE: this is only meaningful if entry_valid == true */ 1312 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); 1313 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP : 1314 IOMMU_NOTIFIER_UNMAP; 1315 ret = vtd_page_walk_one(&event, info); 1316 } 1317 1318 if (ret < 0) { 1319 return ret; 1320 } 1321 1322 next: 1323 iova = iova_next; 1324 } 1325 1326 return 0; 1327 } 1328 1329 /** 1330 * vtd_page_walk - walk specific IOVA range, and call the hook 1331 * 1332 * @s: intel iommu state 1333 * @ce: context entry to walk upon 1334 * @start: IOVA address to start the walk 1335 * @end: IOVA range end address (start <= addr < end) 1336 * @info: page walking information struct 1337 */ 1338 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, 1339 uint64_t start, uint64_t end, 1340 vtd_page_walk_info *info, 1341 uint32_t pasid) 1342 { 1343 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1344 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1345 1346 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) { 1347 return -VTD_FR_ADDR_BEYOND_MGAW; 1348 } 1349 1350 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) { 1351 /* Fix end so that it reaches the maximum */ 1352 end = vtd_iova_limit(s, ce, info->aw, pasid); 1353 } 1354 1355 return vtd_page_walk_level(addr, start, end, level, true, true, info); 1356 } 1357 1358 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, 1359 VTDRootEntry *re) 1360 { 1361 /* Legacy Mode reserved bits check */ 1362 if (!s->root_scalable && 1363 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1364 goto rsvd_err; 1365 1366 /* Scalable Mode reserved bits check */ 1367 if (s->root_scalable && 1368 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || 1369 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1370 goto rsvd_err; 1371 1372 return 0; 1373 1374 rsvd_err: 1375 error_report_once("%s: invalid root entry: hi=0x%"PRIx64 1376 ", lo=0x%"PRIx64, 1377 __func__, re->hi, re->lo); 1378 return -VTD_FR_ROOT_ENTRY_RSVD; 1379 } 1380 1381 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, 1382 VTDContextEntry *ce) 1383 { 1384 if (!s->root_scalable && 1385 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || 1386 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1387 error_report_once("%s: invalid context entry: hi=%"PRIx64 1388 ", lo=%"PRIx64" (reserved nonzero)", 1389 __func__, ce->hi, ce->lo); 1390 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1391 } 1392 1393 if (s->root_scalable && 1394 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || 1395 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || 1396 ce->val[2] || 1397 ce->val[3])) { 1398 error_report_once("%s: invalid context entry: val[3]=%"PRIx64 1399 ", val[2]=%"PRIx64 1400 ", val[1]=%"PRIx64 1401 ", val[0]=%"PRIx64" (reserved nonzero)", 1402 __func__, ce->val[3], ce->val[2], 1403 ce->val[1], ce->val[0]); 1404 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1405 } 1406 1407 return 0; 1408 } 1409 1410 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, 1411 VTDContextEntry *ce) 1412 { 1413 VTDPASIDEntry pe; 1414 1415 /* 1416 * Make sure in Scalable Mode, a present context entry 1417 * has valid rid2pasid setting, which includes valid 1418 * rid2pasid field and corresponding pasid entry setting 1419 */ 1420 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID); 1421 } 1422 1423 /* Map a device to its corresponding domain (context-entry) */ 1424 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 1425 uint8_t devfn, VTDContextEntry *ce) 1426 { 1427 VTDRootEntry re; 1428 int ret_fr; 1429 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 1430 1431 ret_fr = vtd_get_root_entry(s, bus_num, &re); 1432 if (ret_fr) { 1433 return ret_fr; 1434 } 1435 1436 if (!vtd_root_entry_present(s, &re, devfn)) { 1437 /* Not error - it's okay we don't have root entry. */ 1438 trace_vtd_re_not_present(bus_num); 1439 return -VTD_FR_ROOT_ENTRY_P; 1440 } 1441 1442 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); 1443 if (ret_fr) { 1444 return ret_fr; 1445 } 1446 1447 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); 1448 if (ret_fr) { 1449 return ret_fr; 1450 } 1451 1452 if (!vtd_ce_present(ce)) { 1453 /* Not error - it's okay we don't have context entry. */ 1454 trace_vtd_ce_not_present(bus_num, devfn); 1455 return -VTD_FR_CONTEXT_ENTRY_P; 1456 } 1457 1458 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); 1459 if (ret_fr) { 1460 return ret_fr; 1461 } 1462 1463 /* Check if the programming of context-entry is valid */ 1464 if (!s->root_scalable && 1465 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 1466 error_report_once("%s: invalid context entry: hi=%"PRIx64 1467 ", lo=%"PRIx64" (level %d not supported)", 1468 __func__, ce->hi, ce->lo, 1469 vtd_ce_get_level(ce)); 1470 return -VTD_FR_CONTEXT_ENTRY_INV; 1471 } 1472 1473 if (!s->root_scalable) { 1474 /* Do translation type check */ 1475 if (!vtd_ce_type_check(x86_iommu, ce)) { 1476 /* Errors dumped in vtd_ce_type_check() */ 1477 return -VTD_FR_CONTEXT_ENTRY_INV; 1478 } 1479 } else { 1480 /* 1481 * Check if the programming of context-entry.rid2pasid 1482 * and corresponding pasid setting is valid, and thus 1483 * avoids to check pasid entry fetching result in future 1484 * helper function calling. 1485 */ 1486 ret_fr = vtd_ce_rid2pasid_check(s, ce); 1487 if (ret_fr) { 1488 return ret_fr; 1489 } 1490 } 1491 1492 return 0; 1493 } 1494 1495 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event, 1496 void *private) 1497 { 1498 memory_region_notify_iommu(private, 0, *event); 1499 return 0; 1500 } 1501 1502 static uint16_t vtd_get_domain_id(IntelIOMMUState *s, 1503 VTDContextEntry *ce, 1504 uint32_t pasid) 1505 { 1506 VTDPASIDEntry pe; 1507 1508 if (s->root_scalable) { 1509 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1510 return VTD_SM_PASID_ENTRY_DID(pe.val[1]); 1511 } 1512 1513 return VTD_CONTEXT_ENTRY_DID(ce->hi); 1514 } 1515 1516 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1517 VTDContextEntry *ce, 1518 hwaddr addr, hwaddr size) 1519 { 1520 IntelIOMMUState *s = vtd_as->iommu_state; 1521 vtd_page_walk_info info = { 1522 .hook_fn = vtd_sync_shadow_page_hook, 1523 .private = (void *)&vtd_as->iommu, 1524 .notify_unmap = true, 1525 .aw = s->aw_bits, 1526 .as = vtd_as, 1527 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid), 1528 }; 1529 1530 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid); 1531 } 1532 1533 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as) 1534 { 1535 int ret; 1536 VTDContextEntry ce; 1537 IOMMUNotifier *n; 1538 1539 if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) { 1540 return 0; 1541 } 1542 1543 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1544 pci_bus_num(vtd_as->bus), 1545 vtd_as->devfn, &ce); 1546 if (ret) { 1547 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1548 /* 1549 * It's a valid scenario to have a context entry that is 1550 * not present. For example, when a device is removed 1551 * from an existing domain then the context entry will be 1552 * zeroed by the guest before it was put into another 1553 * domain. When this happens, instead of synchronizing 1554 * the shadow pages we should invalidate all existing 1555 * mappings and notify the backends. 1556 */ 1557 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1558 vtd_address_space_unmap(vtd_as, n); 1559 } 1560 ret = 0; 1561 } 1562 return ret; 1563 } 1564 1565 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1566 } 1567 1568 /* 1569 * Check if specific device is configured to bypass address 1570 * translation for DMA requests. In Scalable Mode, bypass 1571 * 1st-level translation or 2nd-level translation, it depends 1572 * on PGTT setting. 1573 */ 1574 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce, 1575 uint32_t pasid) 1576 { 1577 VTDPASIDEntry pe; 1578 int ret; 1579 1580 if (s->root_scalable) { 1581 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1582 if (ret) { 1583 /* 1584 * This error is guest triggerable. We should assumt PT 1585 * not enabled for safety. 1586 */ 1587 return false; 1588 } 1589 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); 1590 } 1591 1592 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH); 1593 1594 } 1595 1596 static bool vtd_as_pt_enabled(VTDAddressSpace *as) 1597 { 1598 IntelIOMMUState *s; 1599 VTDContextEntry ce; 1600 1601 assert(as); 1602 1603 s = as->iommu_state; 1604 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn, 1605 &ce)) { 1606 /* 1607 * Possibly failed to parse the context entry for some reason 1608 * (e.g., during init, or any guest configuration errors on 1609 * context entries). We should assume PT not enabled for 1610 * safety. 1611 */ 1612 return false; 1613 } 1614 1615 return vtd_dev_pt_enabled(s, &ce, as->pasid); 1616 } 1617 1618 /* Return whether the device is using IOMMU translation. */ 1619 static bool vtd_switch_address_space(VTDAddressSpace *as) 1620 { 1621 bool use_iommu, pt; 1622 /* Whether we need to take the BQL on our own */ 1623 bool take_bql = !qemu_mutex_iothread_locked(); 1624 1625 assert(as); 1626 1627 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as); 1628 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as); 1629 1630 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1631 VTD_PCI_SLOT(as->devfn), 1632 VTD_PCI_FUNC(as->devfn), 1633 use_iommu); 1634 1635 /* 1636 * It's possible that we reach here without BQL, e.g., when called 1637 * from vtd_pt_enable_fast_path(). However the memory APIs need 1638 * it. We'd better make sure we have had it already, or, take it. 1639 */ 1640 if (take_bql) { 1641 qemu_mutex_lock_iothread(); 1642 } 1643 1644 /* Turn off first then on the other */ 1645 if (use_iommu) { 1646 memory_region_set_enabled(&as->nodmar, false); 1647 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1648 /* 1649 * vt-d spec v3.4 3.14: 1650 * 1651 * """ 1652 * Requests-with-PASID with input address in range 0xFEEx_xxxx 1653 * are translated normally like any other request-with-PASID 1654 * through DMA-remapping hardware. 1655 * """ 1656 * 1657 * Need to disable ir for as with PASID. 1658 */ 1659 if (as->pasid != PCI_NO_PASID) { 1660 memory_region_set_enabled(&as->iommu_ir, false); 1661 } else { 1662 memory_region_set_enabled(&as->iommu_ir, true); 1663 } 1664 } else { 1665 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1666 memory_region_set_enabled(&as->nodmar, true); 1667 } 1668 1669 /* 1670 * vtd-spec v3.4 3.14: 1671 * 1672 * """ 1673 * Requests-with-PASID with input address in range 0xFEEx_xxxx are 1674 * translated normally like any other request-with-PASID through 1675 * DMA-remapping hardware. However, if such a request is processed 1676 * using pass-through translation, it will be blocked as described 1677 * in the paragraph below. 1678 * 1679 * Software must not program paging-structure entries to remap any 1680 * address to the interrupt address range. Untranslated requests 1681 * and translation requests that result in an address in the 1682 * interrupt range will be blocked with condition code LGN.4 or 1683 * SGN.8. 1684 * """ 1685 * 1686 * We enable per as memory region (iommu_ir_fault) for catching 1687 * the tranlsation for interrupt range through PASID + PT. 1688 */ 1689 if (pt && as->pasid != PCI_NO_PASID) { 1690 memory_region_set_enabled(&as->iommu_ir_fault, true); 1691 } else { 1692 memory_region_set_enabled(&as->iommu_ir_fault, false); 1693 } 1694 1695 if (take_bql) { 1696 qemu_mutex_unlock_iothread(); 1697 } 1698 1699 return use_iommu; 1700 } 1701 1702 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1703 { 1704 VTDAddressSpace *vtd_as; 1705 GHashTableIter iter; 1706 1707 g_hash_table_iter_init(&iter, s->vtd_address_spaces); 1708 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) { 1709 vtd_switch_address_space(vtd_as); 1710 } 1711 } 1712 1713 static const bool vtd_qualified_faults[] = { 1714 [VTD_FR_RESERVED] = false, 1715 [VTD_FR_ROOT_ENTRY_P] = false, 1716 [VTD_FR_CONTEXT_ENTRY_P] = true, 1717 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1718 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1719 [VTD_FR_WRITE] = true, 1720 [VTD_FR_READ] = true, 1721 [VTD_FR_PAGING_ENTRY_INV] = true, 1722 [VTD_FR_ROOT_TABLE_INV] = false, 1723 [VTD_FR_CONTEXT_TABLE_INV] = false, 1724 [VTD_FR_INTERRUPT_ADDR] = true, 1725 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1726 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1727 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1728 [VTD_FR_PASID_TABLE_INV] = false, 1729 [VTD_FR_SM_INTERRUPT_ADDR] = true, 1730 [VTD_FR_MAX] = false, 1731 }; 1732 1733 /* To see if a fault condition is "qualified", which is reported to software 1734 * only if the FPD field in the context-entry used to process the faulting 1735 * request is 0. 1736 */ 1737 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1738 { 1739 return vtd_qualified_faults[fault]; 1740 } 1741 1742 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1743 { 1744 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1745 } 1746 1747 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value, 1748 gpointer user_data) 1749 { 1750 struct vtd_as_key *as_key = (struct vtd_as_key *)key; 1751 uint16_t target_sid = *(uint16_t *)user_data; 1752 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn); 1753 return sid == target_sid; 1754 } 1755 1756 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid) 1757 { 1758 uint8_t bus_num = PCI_BUS_NUM(sid); 1759 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num]; 1760 1761 if (vtd_as && 1762 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) { 1763 return vtd_as; 1764 } 1765 1766 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid); 1767 s->vtd_as_cache[bus_num] = vtd_as; 1768 1769 return vtd_as; 1770 } 1771 1772 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1773 { 1774 VTDAddressSpace *vtd_as; 1775 bool success = false; 1776 1777 vtd_as = vtd_get_as_by_sid(s, source_id); 1778 if (!vtd_as) { 1779 goto out; 1780 } 1781 1782 if (vtd_switch_address_space(vtd_as) == false) { 1783 /* We switched off IOMMU region successfully. */ 1784 success = true; 1785 } 1786 1787 out: 1788 trace_vtd_pt_enable_fast_path(source_id, success); 1789 } 1790 1791 static void vtd_report_fault(IntelIOMMUState *s, 1792 int err, bool is_fpd_set, 1793 uint16_t source_id, 1794 hwaddr addr, 1795 bool is_write, 1796 bool is_pasid, 1797 uint32_t pasid) 1798 { 1799 if (is_fpd_set && vtd_is_qualified_fault(err)) { 1800 trace_vtd_fault_disabled(); 1801 } else { 1802 vtd_report_dmar_fault(s, source_id, addr, err, is_write, 1803 is_pasid, pasid); 1804 } 1805 } 1806 1807 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1808 * translation. 1809 * 1810 * Called from RCU critical section. 1811 * 1812 * @bus_num: The bus number 1813 * @devfn: The devfn, which is the combined of device and function number 1814 * @is_write: The access is a write operation 1815 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1816 * 1817 * Returns true if translation is successful, otherwise false. 1818 */ 1819 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1820 uint8_t devfn, hwaddr addr, bool is_write, 1821 IOMMUTLBEntry *entry) 1822 { 1823 IntelIOMMUState *s = vtd_as->iommu_state; 1824 VTDContextEntry ce; 1825 uint8_t bus_num = pci_bus_num(bus); 1826 VTDContextCacheEntry *cc_entry; 1827 uint64_t slpte, page_mask; 1828 uint32_t level, pasid = vtd_as->pasid; 1829 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn); 1830 int ret_fr; 1831 bool is_fpd_set = false; 1832 bool reads = true; 1833 bool writes = true; 1834 uint8_t access_flags; 1835 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable; 1836 VTDIOTLBEntry *iotlb_entry; 1837 1838 /* 1839 * We have standalone memory region for interrupt addresses, we 1840 * should never receive translation requests in this region. 1841 */ 1842 assert(!vtd_is_interrupt_addr(addr)); 1843 1844 vtd_iommu_lock(s); 1845 1846 cc_entry = &vtd_as->context_cache_entry; 1847 1848 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */ 1849 if (!rid2pasid) { 1850 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1851 if (iotlb_entry) { 1852 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1853 iotlb_entry->domain_id); 1854 slpte = iotlb_entry->slpte; 1855 access_flags = iotlb_entry->access_flags; 1856 page_mask = iotlb_entry->mask; 1857 goto out; 1858 } 1859 } 1860 1861 /* Try to fetch context-entry from cache first */ 1862 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1863 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1864 cc_entry->context_entry.lo, 1865 cc_entry->context_cache_gen); 1866 ce = cc_entry->context_entry; 1867 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1868 if (!is_fpd_set && s->root_scalable) { 1869 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1870 if (ret_fr) { 1871 vtd_report_fault(s, -ret_fr, is_fpd_set, 1872 source_id, addr, is_write, 1873 false, 0); 1874 goto error; 1875 } 1876 } 1877 } else { 1878 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1879 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1880 if (!ret_fr && !is_fpd_set && s->root_scalable) { 1881 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1882 } 1883 if (ret_fr) { 1884 vtd_report_fault(s, -ret_fr, is_fpd_set, 1885 source_id, addr, is_write, 1886 false, 0); 1887 goto error; 1888 } 1889 /* Update context-cache */ 1890 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1891 cc_entry->context_cache_gen, 1892 s->context_cache_gen); 1893 cc_entry->context_entry = ce; 1894 cc_entry->context_cache_gen = s->context_cache_gen; 1895 } 1896 1897 if (rid2pasid) { 1898 pasid = VTD_CE_GET_RID2PASID(&ce); 1899 } 1900 1901 /* 1902 * We don't need to translate for pass-through context entries. 1903 * Also, let's ignore IOTLB caching as well for PT devices. 1904 */ 1905 if (vtd_dev_pt_enabled(s, &ce, pasid)) { 1906 entry->iova = addr & VTD_PAGE_MASK_4K; 1907 entry->translated_addr = entry->iova; 1908 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1909 entry->perm = IOMMU_RW; 1910 trace_vtd_translate_pt(source_id, entry->iova); 1911 1912 /* 1913 * When this happens, it means firstly caching-mode is not 1914 * enabled, and this is the first passthrough translation for 1915 * the device. Let's enable the fast path for passthrough. 1916 * 1917 * When passthrough is disabled again for the device, we can 1918 * capture it via the context entry invalidation, then the 1919 * IOMMU region can be swapped back. 1920 */ 1921 vtd_pt_enable_fast_path(s, source_id); 1922 vtd_iommu_unlock(s); 1923 return true; 1924 } 1925 1926 /* Try to fetch slpte form IOTLB for RID2PASID slow path */ 1927 if (rid2pasid) { 1928 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1929 if (iotlb_entry) { 1930 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1931 iotlb_entry->domain_id); 1932 slpte = iotlb_entry->slpte; 1933 access_flags = iotlb_entry->access_flags; 1934 page_mask = iotlb_entry->mask; 1935 goto out; 1936 } 1937 } 1938 1939 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, 1940 &reads, &writes, s->aw_bits, pasid); 1941 if (ret_fr) { 1942 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, 1943 addr, is_write, pasid != PCI_NO_PASID, pasid); 1944 goto error; 1945 } 1946 1947 page_mask = vtd_slpt_level_page_mask(level); 1948 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 1949 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid), 1950 addr, slpte, access_flags, level, pasid); 1951 out: 1952 vtd_iommu_unlock(s); 1953 entry->iova = addr & page_mask; 1954 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; 1955 entry->addr_mask = ~page_mask; 1956 entry->perm = access_flags; 1957 return true; 1958 1959 error: 1960 vtd_iommu_unlock(s); 1961 entry->iova = 0; 1962 entry->translated_addr = 0; 1963 entry->addr_mask = 0; 1964 entry->perm = IOMMU_NONE; 1965 return false; 1966 } 1967 1968 static void vtd_root_table_setup(IntelIOMMUState *s) 1969 { 1970 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 1971 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 1972 1973 vtd_update_scalable_state(s); 1974 1975 trace_vtd_reg_dmar_root(s->root, s->root_scalable); 1976 } 1977 1978 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 1979 uint32_t index, uint32_t mask) 1980 { 1981 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 1982 } 1983 1984 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 1985 { 1986 uint64_t value = 0; 1987 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 1988 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 1989 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 1990 s->intr_eime = value & VTD_IRTA_EIME; 1991 1992 /* Notify global invalidation */ 1993 vtd_iec_notify_all(s, true, 0, 0); 1994 1995 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 1996 } 1997 1998 static void vtd_iommu_replay_all(IntelIOMMUState *s) 1999 { 2000 VTDAddressSpace *vtd_as; 2001 2002 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2003 vtd_sync_shadow_page_table(vtd_as); 2004 } 2005 } 2006 2007 static void vtd_context_global_invalidate(IntelIOMMUState *s) 2008 { 2009 trace_vtd_inv_desc_cc_global(); 2010 /* Protects context cache */ 2011 vtd_iommu_lock(s); 2012 s->context_cache_gen++; 2013 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 2014 vtd_reset_context_cache_locked(s); 2015 } 2016 vtd_iommu_unlock(s); 2017 vtd_address_space_refresh_all(s); 2018 /* 2019 * From VT-d spec 6.5.2.1, a global context entry invalidation 2020 * should be followed by a IOTLB global invalidation, so we should 2021 * be safe even without this. Hoewever, let's replay the region as 2022 * well to be safer, and go back here when we need finer tunes for 2023 * VT-d emulation codes. 2024 */ 2025 vtd_iommu_replay_all(s); 2026 } 2027 2028 /* Do a context-cache device-selective invalidation. 2029 * @func_mask: FM field after shifting 2030 */ 2031 static void vtd_context_device_invalidate(IntelIOMMUState *s, 2032 uint16_t source_id, 2033 uint16_t func_mask) 2034 { 2035 GHashTableIter as_it; 2036 uint16_t mask; 2037 VTDAddressSpace *vtd_as; 2038 uint8_t bus_n, devfn; 2039 2040 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 2041 2042 switch (func_mask & 3) { 2043 case 0: 2044 mask = 0; /* No bits in the SID field masked */ 2045 break; 2046 case 1: 2047 mask = 4; /* Mask bit 2 in the SID field */ 2048 break; 2049 case 2: 2050 mask = 6; /* Mask bit 2:1 in the SID field */ 2051 break; 2052 case 3: 2053 mask = 7; /* Mask bit 2:0 in the SID field */ 2054 break; 2055 default: 2056 g_assert_not_reached(); 2057 } 2058 mask = ~mask; 2059 2060 bus_n = VTD_SID_TO_BUS(source_id); 2061 devfn = VTD_SID_TO_DEVFN(source_id); 2062 2063 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 2064 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 2065 if ((pci_bus_num(vtd_as->bus) == bus_n) && 2066 (vtd_as->devfn & mask) == (devfn & mask)) { 2067 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn), 2068 VTD_PCI_FUNC(vtd_as->devfn)); 2069 vtd_iommu_lock(s); 2070 vtd_as->context_cache_entry.context_cache_gen = 0; 2071 vtd_iommu_unlock(s); 2072 /* 2073 * Do switch address space when needed, in case if the 2074 * device passthrough bit is switched. 2075 */ 2076 vtd_switch_address_space(vtd_as); 2077 /* 2078 * So a device is moving out of (or moving into) a 2079 * domain, resync the shadow page table. 2080 * This won't bring bad even if we have no such 2081 * notifier registered - the IOMMU notification 2082 * framework will skip MAP notifications if that 2083 * happened. 2084 */ 2085 vtd_sync_shadow_page_table(vtd_as); 2086 } 2087 } 2088 } 2089 2090 /* Context-cache invalidation 2091 * Returns the Context Actual Invalidation Granularity. 2092 * @val: the content of the CCMD_REG 2093 */ 2094 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 2095 { 2096 uint64_t caig; 2097 uint64_t type = val & VTD_CCMD_CIRG_MASK; 2098 2099 switch (type) { 2100 case VTD_CCMD_DOMAIN_INVL: 2101 /* Fall through */ 2102 case VTD_CCMD_GLOBAL_INVL: 2103 caig = VTD_CCMD_GLOBAL_INVL_A; 2104 vtd_context_global_invalidate(s); 2105 break; 2106 2107 case VTD_CCMD_DEVICE_INVL: 2108 caig = VTD_CCMD_DEVICE_INVL_A; 2109 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 2110 break; 2111 2112 default: 2113 error_report_once("%s: invalid context: 0x%" PRIx64, 2114 __func__, val); 2115 caig = 0; 2116 } 2117 return caig; 2118 } 2119 2120 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 2121 { 2122 trace_vtd_inv_desc_iotlb_global(); 2123 vtd_reset_iotlb(s); 2124 vtd_iommu_replay_all(s); 2125 } 2126 2127 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 2128 { 2129 VTDContextEntry ce; 2130 VTDAddressSpace *vtd_as; 2131 2132 trace_vtd_inv_desc_iotlb_domain(domain_id); 2133 2134 vtd_iommu_lock(s); 2135 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 2136 &domain_id); 2137 vtd_iommu_unlock(s); 2138 2139 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2140 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2141 vtd_as->devfn, &ce) && 2142 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2143 vtd_sync_shadow_page_table(vtd_as); 2144 } 2145 } 2146 } 2147 2148 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 2149 uint16_t domain_id, hwaddr addr, 2150 uint8_t am, uint32_t pasid) 2151 { 2152 VTDAddressSpace *vtd_as; 2153 VTDContextEntry ce; 2154 int ret; 2155 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 2156 2157 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 2158 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) { 2159 continue; 2160 } 2161 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2162 vtd_as->devfn, &ce); 2163 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2164 if (vtd_as_has_map_notifier(vtd_as)) { 2165 /* 2166 * As long as we have MAP notifications registered in 2167 * any of our IOMMU notifiers, we need to sync the 2168 * shadow page table. 2169 */ 2170 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 2171 } else { 2172 /* 2173 * For UNMAP-only notifiers, we don't need to walk the 2174 * page tables. We just deliver the PSI down to 2175 * invalidate caches. 2176 */ 2177 IOMMUTLBEvent event = { 2178 .type = IOMMU_NOTIFIER_UNMAP, 2179 .entry = { 2180 .target_as = &address_space_memory, 2181 .iova = addr, 2182 .translated_addr = 0, 2183 .addr_mask = size - 1, 2184 .perm = IOMMU_NONE, 2185 }, 2186 }; 2187 memory_region_notify_iommu(&vtd_as->iommu, 0, event); 2188 } 2189 } 2190 } 2191 } 2192 2193 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 2194 hwaddr addr, uint8_t am) 2195 { 2196 VTDIOTLBPageInvInfo info; 2197 2198 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 2199 2200 assert(am <= VTD_MAMV); 2201 info.domain_id = domain_id; 2202 info.addr = addr; 2203 info.mask = ~((1 << am) - 1); 2204 vtd_iommu_lock(s); 2205 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 2206 vtd_iommu_unlock(s); 2207 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID); 2208 } 2209 2210 /* Flush IOTLB 2211 * Returns the IOTLB Actual Invalidation Granularity. 2212 * @val: the content of the IOTLB_REG 2213 */ 2214 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 2215 { 2216 uint64_t iaig; 2217 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 2218 uint16_t domain_id; 2219 hwaddr addr; 2220 uint8_t am; 2221 2222 switch (type) { 2223 case VTD_TLB_GLOBAL_FLUSH: 2224 iaig = VTD_TLB_GLOBAL_FLUSH_A; 2225 vtd_iotlb_global_invalidate(s); 2226 break; 2227 2228 case VTD_TLB_DSI_FLUSH: 2229 domain_id = VTD_TLB_DID(val); 2230 iaig = VTD_TLB_DSI_FLUSH_A; 2231 vtd_iotlb_domain_invalidate(s, domain_id); 2232 break; 2233 2234 case VTD_TLB_PSI_FLUSH: 2235 domain_id = VTD_TLB_DID(val); 2236 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 2237 am = VTD_IVA_AM(addr); 2238 addr = VTD_IVA_ADDR(addr); 2239 if (am > VTD_MAMV) { 2240 error_report_once("%s: address mask overflow: 0x%" PRIx64, 2241 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 2242 iaig = 0; 2243 break; 2244 } 2245 iaig = VTD_TLB_PSI_FLUSH_A; 2246 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2247 break; 2248 2249 default: 2250 error_report_once("%s: invalid granularity: 0x%" PRIx64, 2251 __func__, val); 2252 iaig = 0; 2253 } 2254 return iaig; 2255 } 2256 2257 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 2258 2259 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 2260 { 2261 return s->qi_enabled && (s->iq_tail == s->iq_head) && 2262 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 2263 } 2264 2265 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 2266 { 2267 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 2268 2269 trace_vtd_inv_qi_enable(en); 2270 2271 if (en) { 2272 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 2273 /* 2^(x+8) entries */ 2274 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); 2275 s->qi_enabled = true; 2276 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 2277 /* Ok - report back to driver */ 2278 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 2279 2280 if (s->iq_tail != 0) { 2281 /* 2282 * This is a spec violation but Windows guests are known to set up 2283 * Queued Invalidation this way so we allow the write and process 2284 * Invalidation Descriptors right away. 2285 */ 2286 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 2287 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2288 vtd_fetch_inv_desc(s); 2289 } 2290 } 2291 } else { 2292 if (vtd_queued_inv_disable_check(s)) { 2293 /* disable Queued Invalidation */ 2294 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 2295 s->iq_head = 0; 2296 s->qi_enabled = false; 2297 /* Ok - report back to driver */ 2298 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 2299 } else { 2300 error_report_once("%s: detected improper state when disable QI " 2301 "(head=0x%x, tail=0x%x, last_type=%d)", 2302 __func__, 2303 s->iq_head, s->iq_tail, s->iq_last_desc_type); 2304 } 2305 } 2306 } 2307 2308 /* Set Root Table Pointer */ 2309 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 2310 { 2311 vtd_root_table_setup(s); 2312 /* Ok - report back to driver */ 2313 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 2314 vtd_reset_caches(s); 2315 vtd_address_space_refresh_all(s); 2316 } 2317 2318 /* Set Interrupt Remap Table Pointer */ 2319 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 2320 { 2321 vtd_interrupt_remap_table_setup(s); 2322 /* Ok - report back to driver */ 2323 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 2324 } 2325 2326 /* Handle Translation Enable/Disable */ 2327 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 2328 { 2329 if (s->dmar_enabled == en) { 2330 return; 2331 } 2332 2333 trace_vtd_dmar_enable(en); 2334 2335 if (en) { 2336 s->dmar_enabled = true; 2337 /* Ok - report back to driver */ 2338 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 2339 } else { 2340 s->dmar_enabled = false; 2341 2342 /* Clear the index of Fault Recording Register */ 2343 s->next_frcd_reg = 0; 2344 /* Ok - report back to driver */ 2345 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 2346 } 2347 2348 vtd_reset_caches(s); 2349 vtd_address_space_refresh_all(s); 2350 } 2351 2352 /* Handle Interrupt Remap Enable/Disable */ 2353 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 2354 { 2355 trace_vtd_ir_enable(en); 2356 2357 if (en) { 2358 s->intr_enabled = true; 2359 /* Ok - report back to driver */ 2360 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 2361 } else { 2362 s->intr_enabled = false; 2363 /* Ok - report back to driver */ 2364 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 2365 } 2366 } 2367 2368 /* Handle write to Global Command Register */ 2369 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 2370 { 2371 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2372 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 2373 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 2374 uint32_t changed = status ^ val; 2375 2376 trace_vtd_reg_write_gcmd(status, val); 2377 if ((changed & VTD_GCMD_TE) && s->dma_translation) { 2378 /* Translation enable/disable */ 2379 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 2380 } 2381 if (val & VTD_GCMD_SRTP) { 2382 /* Set/update the root-table pointer */ 2383 vtd_handle_gcmd_srtp(s); 2384 } 2385 if (changed & VTD_GCMD_QIE) { 2386 /* Queued Invalidation Enable */ 2387 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 2388 } 2389 if (val & VTD_GCMD_SIRTP) { 2390 /* Set/update the interrupt remapping root-table pointer */ 2391 vtd_handle_gcmd_sirtp(s); 2392 } 2393 if ((changed & VTD_GCMD_IRE) && 2394 x86_iommu_ir_supported(x86_iommu)) { 2395 /* Interrupt remap enable/disable */ 2396 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 2397 } 2398 } 2399 2400 /* Handle write to Context Command Register */ 2401 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 2402 { 2403 uint64_t ret; 2404 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 2405 2406 /* Context-cache invalidation request */ 2407 if (val & VTD_CCMD_ICC) { 2408 if (s->qi_enabled) { 2409 error_report_once("Queued Invalidation enabled, " 2410 "should not use register-based invalidation"); 2411 return; 2412 } 2413 ret = vtd_context_cache_invalidate(s, val); 2414 /* Invalidation completed. Change something to show */ 2415 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 2416 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 2417 ret); 2418 } 2419 } 2420 2421 /* Handle write to IOTLB Invalidation Register */ 2422 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 2423 { 2424 uint64_t ret; 2425 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 2426 2427 /* IOTLB invalidation request */ 2428 if (val & VTD_TLB_IVT) { 2429 if (s->qi_enabled) { 2430 error_report_once("Queued Invalidation enabled, " 2431 "should not use register-based invalidation"); 2432 return; 2433 } 2434 ret = vtd_iotlb_flush(s, val); 2435 /* Invalidation completed. Change something to show */ 2436 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 2437 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 2438 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 2439 } 2440 } 2441 2442 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 2443 static bool vtd_get_inv_desc(IntelIOMMUState *s, 2444 VTDInvDesc *inv_desc) 2445 { 2446 dma_addr_t base_addr = s->iq; 2447 uint32_t offset = s->iq_head; 2448 uint32_t dw = s->iq_dw ? 32 : 16; 2449 dma_addr_t addr = base_addr + offset * dw; 2450 2451 if (dma_memory_read(&address_space_memory, addr, 2452 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) { 2453 error_report_once("Read INV DESC failed."); 2454 return false; 2455 } 2456 inv_desc->lo = le64_to_cpu(inv_desc->lo); 2457 inv_desc->hi = le64_to_cpu(inv_desc->hi); 2458 if (dw == 32) { 2459 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); 2460 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); 2461 } 2462 return true; 2463 } 2464 2465 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2466 { 2467 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 2468 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 2469 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2470 " (reserved nonzero)", __func__, inv_desc->hi, 2471 inv_desc->lo); 2472 return false; 2473 } 2474 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 2475 /* Status Write */ 2476 uint32_t status_data = (uint32_t)(inv_desc->lo >> 2477 VTD_INV_DESC_WAIT_DATA_SHIFT); 2478 2479 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 2480 2481 /* FIXME: need to be masked with HAW? */ 2482 dma_addr_t status_addr = inv_desc->hi; 2483 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 2484 status_data = cpu_to_le32(status_data); 2485 if (dma_memory_write(&address_space_memory, status_addr, 2486 &status_data, sizeof(status_data), 2487 MEMTXATTRS_UNSPECIFIED)) { 2488 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 2489 return false; 2490 } 2491 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 2492 /* Interrupt flag */ 2493 vtd_generate_completion_event(s); 2494 } else { 2495 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2496 " (unknown type)", __func__, inv_desc->hi, 2497 inv_desc->lo); 2498 return false; 2499 } 2500 return true; 2501 } 2502 2503 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 2504 VTDInvDesc *inv_desc) 2505 { 2506 uint16_t sid, fmask; 2507 2508 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 2509 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2510 " (reserved nonzero)", __func__, inv_desc->hi, 2511 inv_desc->lo); 2512 return false; 2513 } 2514 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 2515 case VTD_INV_DESC_CC_DOMAIN: 2516 trace_vtd_inv_desc_cc_domain( 2517 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 2518 /* Fall through */ 2519 case VTD_INV_DESC_CC_GLOBAL: 2520 vtd_context_global_invalidate(s); 2521 break; 2522 2523 case VTD_INV_DESC_CC_DEVICE: 2524 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 2525 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 2526 vtd_context_device_invalidate(s, sid, fmask); 2527 break; 2528 2529 default: 2530 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2531 " (invalid type)", __func__, inv_desc->hi, 2532 inv_desc->lo); 2533 return false; 2534 } 2535 return true; 2536 } 2537 2538 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2539 { 2540 uint16_t domain_id; 2541 uint8_t am; 2542 hwaddr addr; 2543 2544 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 2545 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 2546 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2547 ", lo=0x%"PRIx64" (reserved bits unzero)", 2548 __func__, inv_desc->hi, inv_desc->lo); 2549 return false; 2550 } 2551 2552 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 2553 case VTD_INV_DESC_IOTLB_GLOBAL: 2554 vtd_iotlb_global_invalidate(s); 2555 break; 2556 2557 case VTD_INV_DESC_IOTLB_DOMAIN: 2558 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2559 vtd_iotlb_domain_invalidate(s, domain_id); 2560 break; 2561 2562 case VTD_INV_DESC_IOTLB_PAGE: 2563 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2564 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 2565 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 2566 if (am > VTD_MAMV) { 2567 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2568 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)", 2569 __func__, inv_desc->hi, inv_desc->lo, 2570 am, (unsigned)VTD_MAMV); 2571 return false; 2572 } 2573 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2574 break; 2575 2576 default: 2577 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2578 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", 2579 __func__, inv_desc->hi, inv_desc->lo, 2580 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2581 return false; 2582 } 2583 return true; 2584 } 2585 2586 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 2587 VTDInvDesc *inv_desc) 2588 { 2589 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 2590 inv_desc->iec.index, 2591 inv_desc->iec.index_mask); 2592 2593 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 2594 inv_desc->iec.index, 2595 inv_desc->iec.index_mask); 2596 return true; 2597 } 2598 2599 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 2600 VTDInvDesc *inv_desc) 2601 { 2602 VTDAddressSpace *vtd_dev_as; 2603 IOMMUTLBEvent event; 2604 hwaddr addr; 2605 uint64_t sz; 2606 uint16_t sid; 2607 bool size; 2608 2609 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 2610 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 2611 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 2612 2613 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 2614 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 2615 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 2616 ", lo=%"PRIx64" (reserved nonzero)", __func__, 2617 inv_desc->hi, inv_desc->lo); 2618 return false; 2619 } 2620 2621 /* 2622 * Using sid is OK since the guest should have finished the 2623 * initialization of both the bus and device. 2624 */ 2625 vtd_dev_as = vtd_get_as_by_sid(s, sid); 2626 if (!vtd_dev_as) { 2627 goto done; 2628 } 2629 2630 /* According to ATS spec table 2.4: 2631 * S = 0, bits 15:12 = xxxx range size: 4K 2632 * S = 1, bits 15:12 = xxx0 range size: 8K 2633 * S = 1, bits 15:12 = xx01 range size: 16K 2634 * S = 1, bits 15:12 = x011 range size: 32K 2635 * S = 1, bits 15:12 = 0111 range size: 64K 2636 * ... 2637 */ 2638 if (size) { 2639 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 2640 addr &= ~(sz - 1); 2641 } else { 2642 sz = VTD_PAGE_SIZE; 2643 } 2644 2645 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP; 2646 event.entry.target_as = &vtd_dev_as->as; 2647 event.entry.addr_mask = sz - 1; 2648 event.entry.iova = addr; 2649 event.entry.perm = IOMMU_NONE; 2650 event.entry.translated_addr = 0; 2651 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event); 2652 2653 done: 2654 return true; 2655 } 2656 2657 static bool vtd_process_inv_desc(IntelIOMMUState *s) 2658 { 2659 VTDInvDesc inv_desc; 2660 uint8_t desc_type; 2661 2662 trace_vtd_inv_qi_head(s->iq_head); 2663 if (!vtd_get_inv_desc(s, &inv_desc)) { 2664 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2665 return false; 2666 } 2667 2668 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 2669 /* FIXME: should update at first or at last? */ 2670 s->iq_last_desc_type = desc_type; 2671 2672 switch (desc_type) { 2673 case VTD_INV_DESC_CC: 2674 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 2675 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 2676 return false; 2677 } 2678 break; 2679 2680 case VTD_INV_DESC_IOTLB: 2681 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 2682 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 2683 return false; 2684 } 2685 break; 2686 2687 /* 2688 * TODO: the entity of below two cases will be implemented in future series. 2689 * To make guest (which integrates scalable mode support patch set in 2690 * iommu driver) work, just return true is enough so far. 2691 */ 2692 case VTD_INV_DESC_PC: 2693 break; 2694 2695 case VTD_INV_DESC_PIOTLB: 2696 break; 2697 2698 case VTD_INV_DESC_WAIT: 2699 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 2700 if (!vtd_process_wait_desc(s, &inv_desc)) { 2701 return false; 2702 } 2703 break; 2704 2705 case VTD_INV_DESC_IEC: 2706 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 2707 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 2708 return false; 2709 } 2710 break; 2711 2712 case VTD_INV_DESC_DEVICE: 2713 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 2714 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 2715 return false; 2716 } 2717 break; 2718 2719 default: 2720 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 2721 " (unknown type)", __func__, inv_desc.hi, 2722 inv_desc.lo); 2723 return false; 2724 } 2725 s->iq_head++; 2726 if (s->iq_head == s->iq_size) { 2727 s->iq_head = 0; 2728 } 2729 return true; 2730 } 2731 2732 /* Try to fetch and process more Invalidation Descriptors */ 2733 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 2734 { 2735 int qi_shift; 2736 2737 /* Refer to 10.4.23 of VT-d spec 3.0 */ 2738 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4; 2739 2740 trace_vtd_inv_qi_fetch(); 2741 2742 if (s->iq_tail >= s->iq_size) { 2743 /* Detects an invalid Tail pointer */ 2744 error_report_once("%s: detected invalid QI tail " 2745 "(tail=0x%x, size=0x%x)", 2746 __func__, s->iq_tail, s->iq_size); 2747 vtd_handle_inv_queue_error(s); 2748 return; 2749 } 2750 while (s->iq_head != s->iq_tail) { 2751 if (!vtd_process_inv_desc(s)) { 2752 /* Invalidation Queue Errors */ 2753 vtd_handle_inv_queue_error(s); 2754 break; 2755 } 2756 /* Must update the IQH_REG in time */ 2757 vtd_set_quad_raw(s, DMAR_IQH_REG, 2758 (((uint64_t)(s->iq_head)) << qi_shift) & 2759 VTD_IQH_QH_MASK); 2760 } 2761 } 2762 2763 /* Handle write to Invalidation Queue Tail Register */ 2764 static void vtd_handle_iqt_write(IntelIOMMUState *s) 2765 { 2766 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 2767 2768 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { 2769 error_report_once("%s: RSV bit is set: val=0x%"PRIx64, 2770 __func__, val); 2771 return; 2772 } 2773 s->iq_tail = VTD_IQT_QT(s->iq_dw, val); 2774 trace_vtd_inv_qi_tail(s->iq_tail); 2775 2776 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2777 /* Process Invalidation Queue here */ 2778 vtd_fetch_inv_desc(s); 2779 } 2780 } 2781 2782 static void vtd_handle_fsts_write(IntelIOMMUState *s) 2783 { 2784 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2785 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2786 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 2787 2788 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 2789 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2790 trace_vtd_fsts_clear_ip(); 2791 } 2792 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 2793 * Descriptors if there are any when Queued Invalidation is enabled? 2794 */ 2795 } 2796 2797 static void vtd_handle_fectl_write(IntelIOMMUState *s) 2798 { 2799 uint32_t fectl_reg; 2800 /* FIXME: when software clears the IM field, check the IP field. But do we 2801 * need to compare the old value and the new value to conclude that 2802 * software clears the IM field? Or just check if the IM field is zero? 2803 */ 2804 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2805 2806 trace_vtd_reg_write_fectl(fectl_reg); 2807 2808 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 2809 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 2810 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2811 } 2812 } 2813 2814 static void vtd_handle_ics_write(IntelIOMMUState *s) 2815 { 2816 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 2817 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2818 2819 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 2820 trace_vtd_reg_ics_clear_ip(); 2821 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2822 } 2823 } 2824 2825 static void vtd_handle_iectl_write(IntelIOMMUState *s) 2826 { 2827 uint32_t iectl_reg; 2828 /* FIXME: when software clears the IM field, check the IP field. But do we 2829 * need to compare the old value and the new value to conclude that 2830 * software clears the IM field? Or just check if the IM field is zero? 2831 */ 2832 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2833 2834 trace_vtd_reg_write_iectl(iectl_reg); 2835 2836 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 2837 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 2838 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2839 } 2840 } 2841 2842 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 2843 { 2844 IntelIOMMUState *s = opaque; 2845 uint64_t val; 2846 2847 trace_vtd_reg_read(addr, size); 2848 2849 if (addr + size > DMAR_REG_SIZE) { 2850 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2851 " size=0x%x", __func__, addr, size); 2852 return (uint64_t)-1; 2853 } 2854 2855 switch (addr) { 2856 /* Root Table Address Register, 64-bit */ 2857 case DMAR_RTADDR_REG: 2858 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 2859 if (size == 4) { 2860 val = val & ((1ULL << 32) - 1); 2861 } 2862 break; 2863 2864 case DMAR_RTADDR_REG_HI: 2865 assert(size == 4); 2866 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32; 2867 break; 2868 2869 /* Invalidation Queue Address Register, 64-bit */ 2870 case DMAR_IQA_REG: 2871 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2872 if (size == 4) { 2873 val = val & ((1ULL << 32) - 1); 2874 } 2875 break; 2876 2877 case DMAR_IQA_REG_HI: 2878 assert(size == 4); 2879 val = s->iq >> 32; 2880 break; 2881 2882 default: 2883 if (size == 4) { 2884 val = vtd_get_long(s, addr); 2885 } else { 2886 val = vtd_get_quad(s, addr); 2887 } 2888 } 2889 2890 return val; 2891 } 2892 2893 static void vtd_mem_write(void *opaque, hwaddr addr, 2894 uint64_t val, unsigned size) 2895 { 2896 IntelIOMMUState *s = opaque; 2897 2898 trace_vtd_reg_write(addr, size, val); 2899 2900 if (addr + size > DMAR_REG_SIZE) { 2901 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2902 " size=0x%x", __func__, addr, size); 2903 return; 2904 } 2905 2906 switch (addr) { 2907 /* Global Command Register, 32-bit */ 2908 case DMAR_GCMD_REG: 2909 vtd_set_long(s, addr, val); 2910 vtd_handle_gcmd_write(s); 2911 break; 2912 2913 /* Context Command Register, 64-bit */ 2914 case DMAR_CCMD_REG: 2915 if (size == 4) { 2916 vtd_set_long(s, addr, val); 2917 } else { 2918 vtd_set_quad(s, addr, val); 2919 vtd_handle_ccmd_write(s); 2920 } 2921 break; 2922 2923 case DMAR_CCMD_REG_HI: 2924 assert(size == 4); 2925 vtd_set_long(s, addr, val); 2926 vtd_handle_ccmd_write(s); 2927 break; 2928 2929 /* IOTLB Invalidation Register, 64-bit */ 2930 case DMAR_IOTLB_REG: 2931 if (size == 4) { 2932 vtd_set_long(s, addr, val); 2933 } else { 2934 vtd_set_quad(s, addr, val); 2935 vtd_handle_iotlb_write(s); 2936 } 2937 break; 2938 2939 case DMAR_IOTLB_REG_HI: 2940 assert(size == 4); 2941 vtd_set_long(s, addr, val); 2942 vtd_handle_iotlb_write(s); 2943 break; 2944 2945 /* Invalidate Address Register, 64-bit */ 2946 case DMAR_IVA_REG: 2947 if (size == 4) { 2948 vtd_set_long(s, addr, val); 2949 } else { 2950 vtd_set_quad(s, addr, val); 2951 } 2952 break; 2953 2954 case DMAR_IVA_REG_HI: 2955 assert(size == 4); 2956 vtd_set_long(s, addr, val); 2957 break; 2958 2959 /* Fault Status Register, 32-bit */ 2960 case DMAR_FSTS_REG: 2961 assert(size == 4); 2962 vtd_set_long(s, addr, val); 2963 vtd_handle_fsts_write(s); 2964 break; 2965 2966 /* Fault Event Control Register, 32-bit */ 2967 case DMAR_FECTL_REG: 2968 assert(size == 4); 2969 vtd_set_long(s, addr, val); 2970 vtd_handle_fectl_write(s); 2971 break; 2972 2973 /* Fault Event Data Register, 32-bit */ 2974 case DMAR_FEDATA_REG: 2975 assert(size == 4); 2976 vtd_set_long(s, addr, val); 2977 break; 2978 2979 /* Fault Event Address Register, 32-bit */ 2980 case DMAR_FEADDR_REG: 2981 if (size == 4) { 2982 vtd_set_long(s, addr, val); 2983 } else { 2984 /* 2985 * While the register is 32-bit only, some guests (Xen...) write to 2986 * it with 64-bit. 2987 */ 2988 vtd_set_quad(s, addr, val); 2989 } 2990 break; 2991 2992 /* Fault Event Upper Address Register, 32-bit */ 2993 case DMAR_FEUADDR_REG: 2994 assert(size == 4); 2995 vtd_set_long(s, addr, val); 2996 break; 2997 2998 /* Protected Memory Enable Register, 32-bit */ 2999 case DMAR_PMEN_REG: 3000 assert(size == 4); 3001 vtd_set_long(s, addr, val); 3002 break; 3003 3004 /* Root Table Address Register, 64-bit */ 3005 case DMAR_RTADDR_REG: 3006 if (size == 4) { 3007 vtd_set_long(s, addr, val); 3008 } else { 3009 vtd_set_quad(s, addr, val); 3010 } 3011 break; 3012 3013 case DMAR_RTADDR_REG_HI: 3014 assert(size == 4); 3015 vtd_set_long(s, addr, val); 3016 break; 3017 3018 /* Invalidation Queue Tail Register, 64-bit */ 3019 case DMAR_IQT_REG: 3020 if (size == 4) { 3021 vtd_set_long(s, addr, val); 3022 } else { 3023 vtd_set_quad(s, addr, val); 3024 } 3025 vtd_handle_iqt_write(s); 3026 break; 3027 3028 case DMAR_IQT_REG_HI: 3029 assert(size == 4); 3030 vtd_set_long(s, addr, val); 3031 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 3032 break; 3033 3034 /* Invalidation Queue Address Register, 64-bit */ 3035 case DMAR_IQA_REG: 3036 if (size == 4) { 3037 vtd_set_long(s, addr, val); 3038 } else { 3039 vtd_set_quad(s, addr, val); 3040 } 3041 vtd_update_iq_dw(s); 3042 break; 3043 3044 case DMAR_IQA_REG_HI: 3045 assert(size == 4); 3046 vtd_set_long(s, addr, val); 3047 break; 3048 3049 /* Invalidation Completion Status Register, 32-bit */ 3050 case DMAR_ICS_REG: 3051 assert(size == 4); 3052 vtd_set_long(s, addr, val); 3053 vtd_handle_ics_write(s); 3054 break; 3055 3056 /* Invalidation Event Control Register, 32-bit */ 3057 case DMAR_IECTL_REG: 3058 assert(size == 4); 3059 vtd_set_long(s, addr, val); 3060 vtd_handle_iectl_write(s); 3061 break; 3062 3063 /* Invalidation Event Data Register, 32-bit */ 3064 case DMAR_IEDATA_REG: 3065 assert(size == 4); 3066 vtd_set_long(s, addr, val); 3067 break; 3068 3069 /* Invalidation Event Address Register, 32-bit */ 3070 case DMAR_IEADDR_REG: 3071 assert(size == 4); 3072 vtd_set_long(s, addr, val); 3073 break; 3074 3075 /* Invalidation Event Upper Address Register, 32-bit */ 3076 case DMAR_IEUADDR_REG: 3077 assert(size == 4); 3078 vtd_set_long(s, addr, val); 3079 break; 3080 3081 /* Fault Recording Registers, 128-bit */ 3082 case DMAR_FRCD_REG_0_0: 3083 if (size == 4) { 3084 vtd_set_long(s, addr, val); 3085 } else { 3086 vtd_set_quad(s, addr, val); 3087 } 3088 break; 3089 3090 case DMAR_FRCD_REG_0_1: 3091 assert(size == 4); 3092 vtd_set_long(s, addr, val); 3093 break; 3094 3095 case DMAR_FRCD_REG_0_2: 3096 if (size == 4) { 3097 vtd_set_long(s, addr, val); 3098 } else { 3099 vtd_set_quad(s, addr, val); 3100 /* May clear bit 127 (Fault), update PPF */ 3101 vtd_update_fsts_ppf(s); 3102 } 3103 break; 3104 3105 case DMAR_FRCD_REG_0_3: 3106 assert(size == 4); 3107 vtd_set_long(s, addr, val); 3108 /* May clear bit 127 (Fault), update PPF */ 3109 vtd_update_fsts_ppf(s); 3110 break; 3111 3112 case DMAR_IRTA_REG: 3113 if (size == 4) { 3114 vtd_set_long(s, addr, val); 3115 } else { 3116 vtd_set_quad(s, addr, val); 3117 } 3118 break; 3119 3120 case DMAR_IRTA_REG_HI: 3121 assert(size == 4); 3122 vtd_set_long(s, addr, val); 3123 break; 3124 3125 default: 3126 if (size == 4) { 3127 vtd_set_long(s, addr, val); 3128 } else { 3129 vtd_set_quad(s, addr, val); 3130 } 3131 } 3132 } 3133 3134 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 3135 IOMMUAccessFlags flag, int iommu_idx) 3136 { 3137 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3138 IntelIOMMUState *s = vtd_as->iommu_state; 3139 IOMMUTLBEntry iotlb = { 3140 /* We'll fill in the rest later. */ 3141 .target_as = &address_space_memory, 3142 }; 3143 bool success; 3144 3145 if (likely(s->dmar_enabled)) { 3146 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 3147 addr, flag & IOMMU_WO, &iotlb); 3148 } else { 3149 /* DMAR disabled, passthrough, use 4k-page*/ 3150 iotlb.iova = addr & VTD_PAGE_MASK_4K; 3151 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 3152 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 3153 iotlb.perm = IOMMU_RW; 3154 success = true; 3155 } 3156 3157 if (likely(success)) { 3158 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 3159 VTD_PCI_SLOT(vtd_as->devfn), 3160 VTD_PCI_FUNC(vtd_as->devfn), 3161 iotlb.iova, iotlb.translated_addr, 3162 iotlb.addr_mask); 3163 } else { 3164 error_report_once("%s: detected translation failure " 3165 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 3166 __func__, pci_bus_num(vtd_as->bus), 3167 VTD_PCI_SLOT(vtd_as->devfn), 3168 VTD_PCI_FUNC(vtd_as->devfn), 3169 addr); 3170 } 3171 3172 return iotlb; 3173 } 3174 3175 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 3176 IOMMUNotifierFlag old, 3177 IOMMUNotifierFlag new, 3178 Error **errp) 3179 { 3180 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3181 IntelIOMMUState *s = vtd_as->iommu_state; 3182 3183 /* TODO: add support for VFIO and vhost users */ 3184 if (s->snoop_control) { 3185 error_setg_errno(errp, ENOTSUP, 3186 "Snoop Control with vhost or VFIO is not supported"); 3187 return -ENOTSUP; 3188 } 3189 3190 /* Update per-address-space notifier flags */ 3191 vtd_as->notifier_flags = new; 3192 3193 if (old == IOMMU_NOTIFIER_NONE) { 3194 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 3195 } else if (new == IOMMU_NOTIFIER_NONE) { 3196 QLIST_REMOVE(vtd_as, next); 3197 } 3198 return 0; 3199 } 3200 3201 static int vtd_post_load(void *opaque, int version_id) 3202 { 3203 IntelIOMMUState *iommu = opaque; 3204 3205 /* 3206 * We don't need to migrate the root_scalable because we can 3207 * simply do the calculation after the loading is complete. We 3208 * can actually do similar things with root, dmar_enabled, etc. 3209 * however since we've had them already so we'd better keep them 3210 * for compatibility of migration. 3211 */ 3212 vtd_update_scalable_state(iommu); 3213 3214 vtd_update_iq_dw(iommu); 3215 3216 /* 3217 * Memory regions are dynamically turned on/off depending on 3218 * context entry configurations from the guest. After migration, 3219 * we need to make sure the memory regions are still correct. 3220 */ 3221 vtd_switch_address_space_all(iommu); 3222 3223 return 0; 3224 } 3225 3226 static const VMStateDescription vtd_vmstate = { 3227 .name = "iommu-intel", 3228 .version_id = 1, 3229 .minimum_version_id = 1, 3230 .priority = MIG_PRI_IOMMU, 3231 .post_load = vtd_post_load, 3232 .fields = (VMStateField[]) { 3233 VMSTATE_UINT64(root, IntelIOMMUState), 3234 VMSTATE_UINT64(intr_root, IntelIOMMUState), 3235 VMSTATE_UINT64(iq, IntelIOMMUState), 3236 VMSTATE_UINT32(intr_size, IntelIOMMUState), 3237 VMSTATE_UINT16(iq_head, IntelIOMMUState), 3238 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 3239 VMSTATE_UINT16(iq_size, IntelIOMMUState), 3240 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 3241 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 3242 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 3243 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */ 3244 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 3245 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 3246 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 3247 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 3248 VMSTATE_END_OF_LIST() 3249 } 3250 }; 3251 3252 static const MemoryRegionOps vtd_mem_ops = { 3253 .read = vtd_mem_read, 3254 .write = vtd_mem_write, 3255 .endianness = DEVICE_LITTLE_ENDIAN, 3256 .impl = { 3257 .min_access_size = 4, 3258 .max_access_size = 8, 3259 }, 3260 .valid = { 3261 .min_access_size = 4, 3262 .max_access_size = 8, 3263 }, 3264 }; 3265 3266 static Property vtd_properties[] = { 3267 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 3268 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 3269 ON_OFF_AUTO_AUTO), 3270 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 3271 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 3272 VTD_HOST_ADDRESS_WIDTH), 3273 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 3274 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), 3275 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false), 3276 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false), 3277 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 3278 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true), 3279 DEFINE_PROP_END_OF_LIST(), 3280 }; 3281 3282 /* Read IRTE entry with specific index */ 3283 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 3284 VTD_IR_TableEntry *entry, uint16_t sid) 3285 { 3286 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 3287 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 3288 dma_addr_t addr = 0x00; 3289 uint16_t mask, source_id; 3290 uint8_t bus, bus_max, bus_min; 3291 3292 if (index >= iommu->intr_size) { 3293 error_report_once("%s: index too large: ind=0x%x", 3294 __func__, index); 3295 return -VTD_FR_IR_INDEX_OVER; 3296 } 3297 3298 addr = iommu->intr_root + index * sizeof(*entry); 3299 if (dma_memory_read(&address_space_memory, addr, 3300 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) { 3301 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 3302 __func__, index, addr); 3303 return -VTD_FR_IR_ROOT_INVAL; 3304 } 3305 3306 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]), 3307 le64_to_cpu(entry->data[0])); 3308 3309 if (!entry->irte.present) { 3310 error_report_once("%s: detected non-present IRTE " 3311 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3312 __func__, index, le64_to_cpu(entry->data[1]), 3313 le64_to_cpu(entry->data[0])); 3314 return -VTD_FR_IR_ENTRY_P; 3315 } 3316 3317 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 3318 entry->irte.__reserved_2) { 3319 error_report_once("%s: detected non-zero reserved IRTE " 3320 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3321 __func__, index, le64_to_cpu(entry->data[1]), 3322 le64_to_cpu(entry->data[0])); 3323 return -VTD_FR_IR_IRTE_RSVD; 3324 } 3325 3326 if (sid != X86_IOMMU_SID_INVALID) { 3327 /* Validate IRTE SID */ 3328 source_id = le32_to_cpu(entry->irte.source_id); 3329 switch (entry->irte.sid_vtype) { 3330 case VTD_SVT_NONE: 3331 break; 3332 3333 case VTD_SVT_ALL: 3334 mask = vtd_svt_mask[entry->irte.sid_q]; 3335 if ((source_id & mask) != (sid & mask)) { 3336 error_report_once("%s: invalid IRTE SID " 3337 "(index=%u, sid=%u, source_id=%u)", 3338 __func__, index, sid, source_id); 3339 return -VTD_FR_IR_SID_ERR; 3340 } 3341 break; 3342 3343 case VTD_SVT_BUS: 3344 bus_max = source_id >> 8; 3345 bus_min = source_id & 0xff; 3346 bus = sid >> 8; 3347 if (bus > bus_max || bus < bus_min) { 3348 error_report_once("%s: invalid SVT_BUS " 3349 "(index=%u, bus=%u, min=%u, max=%u)", 3350 __func__, index, bus, bus_min, bus_max); 3351 return -VTD_FR_IR_SID_ERR; 3352 } 3353 break; 3354 3355 default: 3356 error_report_once("%s: detected invalid IRTE SVT " 3357 "(index=%u, type=%d)", __func__, 3358 index, entry->irte.sid_vtype); 3359 /* Take this as verification failure. */ 3360 return -VTD_FR_IR_SID_ERR; 3361 } 3362 } 3363 3364 return 0; 3365 } 3366 3367 /* Fetch IRQ information of specific IR index */ 3368 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 3369 X86IOMMUIrq *irq, uint16_t sid) 3370 { 3371 VTD_IR_TableEntry irte = {}; 3372 int ret = 0; 3373 3374 ret = vtd_irte_get(iommu, index, &irte, sid); 3375 if (ret) { 3376 return ret; 3377 } 3378 3379 irq->trigger_mode = irte.irte.trigger_mode; 3380 irq->vector = irte.irte.vector; 3381 irq->delivery_mode = irte.irte.delivery_mode; 3382 irq->dest = le32_to_cpu(irte.irte.dest_id); 3383 if (!iommu->intr_eime) { 3384 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 3385 #define VTD_IR_APIC_DEST_SHIFT (8) 3386 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 3387 VTD_IR_APIC_DEST_SHIFT; 3388 } 3389 irq->dest_mode = irte.irte.dest_mode; 3390 irq->redir_hint = irte.irte.redir_hint; 3391 3392 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 3393 irq->delivery_mode, irq->dest, irq->dest_mode); 3394 3395 return 0; 3396 } 3397 3398 /* Interrupt remapping for MSI/MSI-X entry */ 3399 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 3400 MSIMessage *origin, 3401 MSIMessage *translated, 3402 uint16_t sid) 3403 { 3404 int ret = 0; 3405 VTD_IR_MSIAddress addr; 3406 uint16_t index; 3407 X86IOMMUIrq irq = {}; 3408 3409 assert(origin && translated); 3410 3411 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 3412 3413 if (!iommu || !iommu->intr_enabled) { 3414 memcpy(translated, origin, sizeof(*origin)); 3415 goto out; 3416 } 3417 3418 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 3419 error_report_once("%s: MSI address high 32 bits non-zero detected: " 3420 "address=0x%" PRIx64, __func__, origin->address); 3421 return -VTD_FR_IR_REQ_RSVD; 3422 } 3423 3424 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 3425 if (addr.addr.__head != 0xfee) { 3426 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 3427 __func__, addr.data); 3428 return -VTD_FR_IR_REQ_RSVD; 3429 } 3430 3431 /* This is compatible mode. */ 3432 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 3433 memcpy(translated, origin, sizeof(*origin)); 3434 goto out; 3435 } 3436 3437 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l); 3438 3439 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 3440 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 3441 3442 if (addr.addr.sub_valid) { 3443 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 3444 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 3445 } 3446 3447 ret = vtd_remap_irq_get(iommu, index, &irq, sid); 3448 if (ret) { 3449 return ret; 3450 } 3451 3452 if (addr.addr.sub_valid) { 3453 trace_vtd_ir_remap_type("MSI"); 3454 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 3455 error_report_once("%s: invalid IR MSI " 3456 "(sid=%u, address=0x%" PRIx64 3457 ", data=0x%" PRIx32 ")", 3458 __func__, sid, origin->address, origin->data); 3459 return -VTD_FR_IR_REQ_RSVD; 3460 } 3461 } else { 3462 uint8_t vector = origin->data & 0xff; 3463 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 3464 3465 trace_vtd_ir_remap_type("IOAPIC"); 3466 /* IOAPIC entry vector should be aligned with IRTE vector 3467 * (see vt-d spec 5.1.5.1). */ 3468 if (vector != irq.vector) { 3469 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 3470 } 3471 3472 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 3473 * (see vt-d spec 5.1.5.1). */ 3474 if (trigger_mode != irq.trigger_mode) { 3475 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 3476 irq.trigger_mode); 3477 } 3478 } 3479 3480 /* 3481 * We'd better keep the last two bits, assuming that guest OS 3482 * might modify it. Keep it does not hurt after all. 3483 */ 3484 irq.msi_addr_last_bits = addr.addr.__not_care; 3485 3486 /* Translate X86IOMMUIrq to MSI message */ 3487 x86_iommu_irq_to_msi_message(&irq, translated); 3488 3489 out: 3490 trace_vtd_ir_remap_msi(origin->address, origin->data, 3491 translated->address, translated->data); 3492 return 0; 3493 } 3494 3495 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 3496 MSIMessage *dst, uint16_t sid) 3497 { 3498 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 3499 src, dst, sid); 3500 } 3501 3502 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 3503 uint64_t *data, unsigned size, 3504 MemTxAttrs attrs) 3505 { 3506 return MEMTX_OK; 3507 } 3508 3509 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 3510 uint64_t value, unsigned size, 3511 MemTxAttrs attrs) 3512 { 3513 int ret = 0; 3514 MSIMessage from = {}, to = {}; 3515 uint16_t sid = X86_IOMMU_SID_INVALID; 3516 3517 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 3518 from.data = (uint32_t) value; 3519 3520 if (!attrs.unspecified) { 3521 /* We have explicit Source ID */ 3522 sid = attrs.requester_id; 3523 } 3524 3525 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); 3526 if (ret) { 3527 /* TODO: report error */ 3528 /* Drop this interrupt */ 3529 return MEMTX_ERROR; 3530 } 3531 3532 apic_get_class(NULL)->send_msi(&to); 3533 3534 return MEMTX_OK; 3535 } 3536 3537 static const MemoryRegionOps vtd_mem_ir_ops = { 3538 .read_with_attrs = vtd_mem_ir_read, 3539 .write_with_attrs = vtd_mem_ir_write, 3540 .endianness = DEVICE_LITTLE_ENDIAN, 3541 .impl = { 3542 .min_access_size = 4, 3543 .max_access_size = 4, 3544 }, 3545 .valid = { 3546 .min_access_size = 4, 3547 .max_access_size = 4, 3548 }, 3549 }; 3550 3551 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as, 3552 hwaddr addr, bool is_write) 3553 { 3554 IntelIOMMUState *s = vtd_as->iommu_state; 3555 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3556 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn); 3557 bool is_fpd_set = false; 3558 VTDContextEntry ce; 3559 3560 assert(vtd_as->pasid != PCI_NO_PASID); 3561 3562 /* Try out best to fetch FPD, we can't do anything more */ 3563 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3564 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 3565 if (!is_fpd_set && s->root_scalable) { 3566 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid); 3567 } 3568 } 3569 3570 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR, 3571 is_fpd_set, sid, addr, is_write, 3572 true, vtd_as->pasid); 3573 } 3574 3575 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr, 3576 uint64_t *data, unsigned size, 3577 MemTxAttrs attrs) 3578 { 3579 vtd_report_ir_illegal_access(opaque, addr, false); 3580 3581 return MEMTX_ERROR; 3582 } 3583 3584 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr, 3585 uint64_t value, unsigned size, 3586 MemTxAttrs attrs) 3587 { 3588 vtd_report_ir_illegal_access(opaque, addr, true); 3589 3590 return MEMTX_ERROR; 3591 } 3592 3593 static const MemoryRegionOps vtd_mem_ir_fault_ops = { 3594 .read_with_attrs = vtd_mem_ir_fault_read, 3595 .write_with_attrs = vtd_mem_ir_fault_write, 3596 .endianness = DEVICE_LITTLE_ENDIAN, 3597 .impl = { 3598 .min_access_size = 1, 3599 .max_access_size = 8, 3600 }, 3601 .valid = { 3602 .min_access_size = 1, 3603 .max_access_size = 8, 3604 }, 3605 }; 3606 3607 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, 3608 int devfn, unsigned int pasid) 3609 { 3610 /* 3611 * We can't simply use sid here since the bus number might not be 3612 * initialized by the guest. 3613 */ 3614 struct vtd_as_key key = { 3615 .bus = bus, 3616 .devfn = devfn, 3617 .pasid = pasid, 3618 }; 3619 VTDAddressSpace *vtd_dev_as; 3620 char name[128]; 3621 3622 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); 3623 if (!vtd_dev_as) { 3624 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key)); 3625 3626 new_key->bus = bus; 3627 new_key->devfn = devfn; 3628 new_key->pasid = pasid; 3629 3630 if (pasid == PCI_NO_PASID) { 3631 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), 3632 PCI_FUNC(devfn)); 3633 } else { 3634 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn), 3635 PCI_FUNC(devfn), pasid); 3636 } 3637 3638 vtd_dev_as = g_new0(VTDAddressSpace, 1); 3639 3640 vtd_dev_as->bus = bus; 3641 vtd_dev_as->devfn = (uint8_t)devfn; 3642 vtd_dev_as->pasid = pasid; 3643 vtd_dev_as->iommu_state = s; 3644 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 3645 vtd_dev_as->iova_tree = iova_tree_new(); 3646 3647 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); 3648 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); 3649 3650 /* 3651 * Build the DMAR-disabled container with aliases to the 3652 * shared MRs. Note that aliasing to a shared memory region 3653 * could help the memory API to detect same FlatViews so we 3654 * can have devices to share the same FlatView when DMAR is 3655 * disabled (either by not providing "intel_iommu=on" or with 3656 * "iommu=pt"). It will greatly reduce the total number of 3657 * FlatViews of the system hence VM runs faster. 3658 */ 3659 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), 3660 "vtd-nodmar", &s->mr_nodmar, 0, 3661 memory_region_size(&s->mr_nodmar)); 3662 3663 /* 3664 * Build the per-device DMAR-enabled container. 3665 * 3666 * TODO: currently we have per-device IOMMU memory region only 3667 * because we have per-device IOMMU notifiers for devices. If 3668 * one day we can abstract the IOMMU notifiers out of the 3669 * memory regions then we can also share the same memory 3670 * region here just like what we've done above with the nodmar 3671 * region. 3672 */ 3673 strcat(name, "-dmar"); 3674 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 3675 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 3676 name, UINT64_MAX); 3677 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", 3678 &s->mr_ir, 0, memory_region_size(&s->mr_ir)); 3679 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), 3680 VTD_INTERRUPT_ADDR_FIRST, 3681 &vtd_dev_as->iommu_ir, 1); 3682 3683 /* 3684 * This region is used for catching fault to access interrupt 3685 * range via passthrough + PASID. See also 3686 * vtd_switch_address_space(). We can't use alias since we 3687 * need to know the sid which is valid for MSI who uses 3688 * bus_master_as (see msi_send_message()). 3689 */ 3690 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s), 3691 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir", 3692 VTD_INTERRUPT_ADDR_SIZE); 3693 /* 3694 * Hook to root since when PT is enabled vtd_dev_as->iommu 3695 * will be disabled. 3696 */ 3697 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root), 3698 VTD_INTERRUPT_ADDR_FIRST, 3699 &vtd_dev_as->iommu_ir_fault, 2); 3700 3701 /* 3702 * Hook both the containers under the root container, we 3703 * switch between DMAR & noDMAR by enable/disable 3704 * corresponding sub-containers 3705 */ 3706 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3707 MEMORY_REGION(&vtd_dev_as->iommu), 3708 0); 3709 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3710 &vtd_dev_as->nodmar, 0); 3711 3712 vtd_switch_address_space(vtd_dev_as); 3713 3714 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as); 3715 } 3716 return vtd_dev_as; 3717 } 3718 3719 /* Unmap the whole range in the notifier's scope. */ 3720 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 3721 { 3722 hwaddr size, remain; 3723 hwaddr start = n->start; 3724 hwaddr end = n->end; 3725 IntelIOMMUState *s = as->iommu_state; 3726 DMAMap map; 3727 3728 /* 3729 * Note: all the codes in this function has a assumption that IOVA 3730 * bits are no more than VTD_MGAW bits (which is restricted by 3731 * VT-d spec), otherwise we need to consider overflow of 64 bits. 3732 */ 3733 3734 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) { 3735 /* 3736 * Don't need to unmap regions that is bigger than the whole 3737 * VT-d supported address space size 3738 */ 3739 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1; 3740 } 3741 3742 assert(start <= end); 3743 size = remain = end - start + 1; 3744 3745 while (remain >= VTD_PAGE_SIZE) { 3746 IOMMUTLBEvent event; 3747 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits); 3748 uint64_t size = mask + 1; 3749 3750 assert(size); 3751 3752 event.type = IOMMU_NOTIFIER_UNMAP; 3753 event.entry.iova = start; 3754 event.entry.addr_mask = mask; 3755 event.entry.target_as = &address_space_memory; 3756 event.entry.perm = IOMMU_NONE; 3757 /* This field is meaningless for unmap */ 3758 event.entry.translated_addr = 0; 3759 3760 memory_region_notify_iommu_one(n, &event); 3761 3762 start += size; 3763 remain -= size; 3764 } 3765 3766 assert(!remain); 3767 3768 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 3769 VTD_PCI_SLOT(as->devfn), 3770 VTD_PCI_FUNC(as->devfn), 3771 n->start, size); 3772 3773 map.iova = n->start; 3774 map.size = size; 3775 iova_tree_remove(as->iova_tree, map); 3776 } 3777 3778 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 3779 { 3780 VTDAddressSpace *vtd_as; 3781 IOMMUNotifier *n; 3782 3783 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 3784 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 3785 vtd_address_space_unmap(vtd_as, n); 3786 } 3787 } 3788 } 3789 3790 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 3791 { 3792 vtd_address_space_unmap_all(s); 3793 vtd_switch_address_space_all(s); 3794 } 3795 3796 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private) 3797 { 3798 memory_region_notify_iommu_one(private, event); 3799 return 0; 3800 } 3801 3802 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 3803 { 3804 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 3805 IntelIOMMUState *s = vtd_as->iommu_state; 3806 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3807 VTDContextEntry ce; 3808 3809 /* 3810 * The replay can be triggered by either a invalidation or a newly 3811 * created entry. No matter what, we release existing mappings 3812 * (it means flushing caches for UNMAP-only registers). 3813 */ 3814 vtd_address_space_unmap(vtd_as, n); 3815 3816 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3817 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : 3818 "legacy mode", 3819 bus_n, PCI_SLOT(vtd_as->devfn), 3820 PCI_FUNC(vtd_as->devfn), 3821 vtd_get_domain_id(s, &ce, vtd_as->pasid), 3822 ce.hi, ce.lo); 3823 if (vtd_as_has_map_notifier(vtd_as)) { 3824 /* This is required only for MAP typed notifiers */ 3825 vtd_page_walk_info info = { 3826 .hook_fn = vtd_replay_hook, 3827 .private = (void *)n, 3828 .notify_unmap = false, 3829 .aw = s->aw_bits, 3830 .as = vtd_as, 3831 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid), 3832 }; 3833 3834 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid); 3835 } 3836 } else { 3837 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 3838 PCI_FUNC(vtd_as->devfn)); 3839 } 3840 3841 return; 3842 } 3843 3844 /* Do the initialization. It will also be called when reset, so pay 3845 * attention when adding new initialization stuff. 3846 */ 3847 static void vtd_init(IntelIOMMUState *s) 3848 { 3849 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3850 3851 memset(s->csr, 0, DMAR_REG_SIZE); 3852 memset(s->wmask, 0, DMAR_REG_SIZE); 3853 memset(s->w1cmask, 0, DMAR_REG_SIZE); 3854 memset(s->womask, 0, DMAR_REG_SIZE); 3855 3856 s->root = 0; 3857 s->root_scalable = false; 3858 s->dmar_enabled = false; 3859 s->intr_enabled = false; 3860 s->iq_head = 0; 3861 s->iq_tail = 0; 3862 s->iq = 0; 3863 s->iq_size = 0; 3864 s->qi_enabled = false; 3865 s->iq_last_desc_type = VTD_INV_DESC_NONE; 3866 s->iq_dw = false; 3867 s->next_frcd_reg = 0; 3868 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 3869 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 3870 VTD_CAP_MGAW(s->aw_bits); 3871 if (s->dma_drain) { 3872 s->cap |= VTD_CAP_DRAIN; 3873 } 3874 if (s->dma_translation) { 3875 if (s->aw_bits >= VTD_HOST_AW_39BIT) { 3876 s->cap |= VTD_CAP_SAGAW_39bit; 3877 } 3878 if (s->aw_bits >= VTD_HOST_AW_48BIT) { 3879 s->cap |= VTD_CAP_SAGAW_48bit; 3880 } 3881 } 3882 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 3883 3884 /* 3885 * Rsvd field masks for spte 3886 */ 3887 vtd_spte_rsvd[0] = ~0ULL; 3888 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits, 3889 x86_iommu->dt_supported); 3890 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 3891 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 3892 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 3893 3894 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits, 3895 x86_iommu->dt_supported); 3896 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits, 3897 x86_iommu->dt_supported); 3898 3899 if (s->scalable_mode || s->snoop_control) { 3900 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP; 3901 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP; 3902 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP; 3903 } 3904 3905 if (x86_iommu_ir_supported(x86_iommu)) { 3906 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 3907 if (s->intr_eim == ON_OFF_AUTO_ON) { 3908 s->ecap |= VTD_ECAP_EIM; 3909 } 3910 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 3911 } 3912 3913 if (x86_iommu->dt_supported) { 3914 s->ecap |= VTD_ECAP_DT; 3915 } 3916 3917 if (x86_iommu->pt_supported) { 3918 s->ecap |= VTD_ECAP_PT; 3919 } 3920 3921 if (s->caching_mode) { 3922 s->cap |= VTD_CAP_CM; 3923 } 3924 3925 /* TODO: read cap/ecap from host to decide which cap to be exposed. */ 3926 if (s->scalable_mode) { 3927 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; 3928 } 3929 3930 if (s->snoop_control) { 3931 s->ecap |= VTD_ECAP_SC; 3932 } 3933 3934 if (s->pasid) { 3935 s->ecap |= VTD_ECAP_PASID; 3936 } 3937 3938 vtd_reset_caches(s); 3939 3940 /* Define registers with default values and bit semantics */ 3941 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 3942 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 3943 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 3944 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 3945 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 3946 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 3947 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); 3948 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 3949 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 3950 3951 /* Advanced Fault Logging not supported */ 3952 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 3953 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3954 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 3955 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 3956 3957 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 3958 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 3959 */ 3960 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 3961 3962 /* Treated as RO for implementations that PLMR and PHMR fields reported 3963 * as Clear in the CAP_REG. 3964 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 3965 */ 3966 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 3967 3968 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 3969 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 3970 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); 3971 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 3972 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3973 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 3974 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 3975 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 3976 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 3977 3978 /* IOTLB registers */ 3979 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 3980 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 3981 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 3982 3983 /* Fault Recording Registers, 128-bit */ 3984 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 3985 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 3986 3987 /* 3988 * Interrupt remapping registers. 3989 */ 3990 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 3991 } 3992 3993 /* Should not reset address_spaces when reset because devices will still use 3994 * the address space they got at first (won't ask the bus again). 3995 */ 3996 static void vtd_reset(DeviceState *dev) 3997 { 3998 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 3999 4000 vtd_init(s); 4001 vtd_address_space_refresh_all(s); 4002 } 4003 4004 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 4005 { 4006 IntelIOMMUState *s = opaque; 4007 VTDAddressSpace *vtd_as; 4008 4009 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 4010 4011 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID); 4012 return &vtd_as->as; 4013 } 4014 4015 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 4016 { 4017 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4018 4019 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 4020 error_setg(errp, "eim=on cannot be selected without intremap=on"); 4021 return false; 4022 } 4023 4024 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 4025 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 4026 && x86_iommu_ir_supported(x86_iommu) ? 4027 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 4028 } 4029 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 4030 if (!kvm_irqchip_is_split()) { 4031 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); 4032 return false; 4033 } 4034 if (!kvm_enable_x2apic()) { 4035 error_setg(errp, "eim=on requires support on the KVM side" 4036 "(X2APIC_API, first shipped in v4.7)"); 4037 return false; 4038 } 4039 } 4040 4041 /* Currently only address widths supported are 39 and 48 bits */ 4042 if ((s->aw_bits != VTD_HOST_AW_39BIT) && 4043 (s->aw_bits != VTD_HOST_AW_48BIT)) { 4044 error_setg(errp, "Supported values for aw-bits are: %d, %d", 4045 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 4046 return false; 4047 } 4048 4049 if (s->scalable_mode && !s->dma_drain) { 4050 error_setg(errp, "Need to set dma_drain for scalable mode"); 4051 return false; 4052 } 4053 4054 if (s->pasid && !s->scalable_mode) { 4055 error_setg(errp, "Need to set scalable mode for PASID"); 4056 return false; 4057 } 4058 4059 return true; 4060 } 4061 4062 static int vtd_machine_done_notify_one(Object *child, void *unused) 4063 { 4064 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 4065 4066 /* 4067 * We hard-coded here because vfio-pci is the only special case 4068 * here. Let's be more elegant in the future when we can, but so 4069 * far there seems to be no better way. 4070 */ 4071 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) { 4072 vtd_panic_require_caching_mode(); 4073 } 4074 4075 return 0; 4076 } 4077 4078 static void vtd_machine_done_hook(Notifier *notifier, void *unused) 4079 { 4080 object_child_foreach_recursive(object_get_root(), 4081 vtd_machine_done_notify_one, NULL); 4082 } 4083 4084 static Notifier vtd_machine_done_notify = { 4085 .notify = vtd_machine_done_hook, 4086 }; 4087 4088 static void vtd_realize(DeviceState *dev, Error **errp) 4089 { 4090 MachineState *ms = MACHINE(qdev_get_machine()); 4091 PCMachineState *pcms = PC_MACHINE(ms); 4092 X86MachineState *x86ms = X86_MACHINE(ms); 4093 PCIBus *bus = pcms->bus; 4094 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4095 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4096 4097 if (s->pasid && x86_iommu->dt_supported) { 4098 /* 4099 * PASID-based-Device-TLB Invalidate Descriptor is not 4100 * implemented and it requires support from vhost layer which 4101 * needs to be implemented in the future. 4102 */ 4103 error_setg(errp, "PASID based device IOTLB is not supported"); 4104 return; 4105 } 4106 4107 if (!vtd_decide_config(s, errp)) { 4108 return; 4109 } 4110 4111 QLIST_INIT(&s->vtd_as_with_notifiers); 4112 qemu_mutex_init(&s->iommu_lock); 4113 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 4114 "intel_iommu", DMAR_REG_SIZE); 4115 4116 /* Create the shared memory regions by all devices */ 4117 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", 4118 UINT64_MAX); 4119 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, 4120 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); 4121 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), 4122 "vtd-sys-alias", get_system_memory(), 0, 4123 memory_region_size(get_system_memory())); 4124 memory_region_add_subregion_overlap(&s->mr_nodmar, 0, 4125 &s->mr_sys_alias, 0); 4126 memory_region_add_subregion_overlap(&s->mr_nodmar, 4127 VTD_INTERRUPT_ADDR_FIRST, 4128 &s->mr_ir, 1); 4129 4130 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); 4131 /* No corresponding destroy */ 4132 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal, 4133 g_free, g_free); 4134 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal, 4135 g_free, g_free); 4136 vtd_init(s); 4137 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR); 4138 pci_setup_iommu(bus, vtd_host_dma_iommu, dev); 4139 /* Pseudo address space under root PCI bus. */ 4140 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 4141 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify); 4142 } 4143 4144 static void vtd_class_init(ObjectClass *klass, void *data) 4145 { 4146 DeviceClass *dc = DEVICE_CLASS(klass); 4147 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass); 4148 4149 dc->reset = vtd_reset; 4150 dc->vmsd = &vtd_vmstate; 4151 device_class_set_props(dc, vtd_properties); 4152 dc->hotpluggable = false; 4153 x86_class->realize = vtd_realize; 4154 x86_class->int_remap = vtd_int_remap; 4155 /* Supported by the pc-q35-* machine types */ 4156 dc->user_creatable = true; 4157 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 4158 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device"; 4159 } 4160 4161 static const TypeInfo vtd_info = { 4162 .name = TYPE_INTEL_IOMMU_DEVICE, 4163 .parent = TYPE_X86_IOMMU_DEVICE, 4164 .instance_size = sizeof(IntelIOMMUState), 4165 .class_init = vtd_class_init, 4166 }; 4167 4168 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 4169 void *data) 4170 { 4171 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 4172 4173 imrc->translate = vtd_iommu_translate; 4174 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 4175 imrc->replay = vtd_iommu_replay; 4176 } 4177 4178 static const TypeInfo vtd_iommu_memory_region_info = { 4179 .parent = TYPE_IOMMU_MEMORY_REGION, 4180 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 4181 .class_init = vtd_iommu_memory_region_class_init, 4182 }; 4183 4184 static void vtd_register_types(void) 4185 { 4186 type_register_static(&vtd_info); 4187 type_register_static(&vtd_iommu_memory_region_info); 4188 } 4189 4190 type_init(vtd_register_types) 4191