xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision 4fe6d78b)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/sysbus.h"
26 #include "exec/address-spaces.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/i386/pc.h"
31 #include "hw/i386/apic-msidef.h"
32 #include "hw/boards.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "hw/i386/apic_internal.h"
37 #include "kvm_i386.h"
38 #include "trace.h"
39 
40 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
41                             uint64_t wmask, uint64_t w1cmask)
42 {
43     stq_le_p(&s->csr[addr], val);
44     stq_le_p(&s->wmask[addr], wmask);
45     stq_le_p(&s->w1cmask[addr], w1cmask);
46 }
47 
48 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
49 {
50     stq_le_p(&s->womask[addr], mask);
51 }
52 
53 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
54                             uint32_t wmask, uint32_t w1cmask)
55 {
56     stl_le_p(&s->csr[addr], val);
57     stl_le_p(&s->wmask[addr], wmask);
58     stl_le_p(&s->w1cmask[addr], w1cmask);
59 }
60 
61 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
62 {
63     stl_le_p(&s->womask[addr], mask);
64 }
65 
66 /* "External" get/set operations */
67 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
68 {
69     uint64_t oldval = ldq_le_p(&s->csr[addr]);
70     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
71     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
72     stq_le_p(&s->csr[addr],
73              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
74 }
75 
76 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
77 {
78     uint32_t oldval = ldl_le_p(&s->csr[addr]);
79     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
80     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
81     stl_le_p(&s->csr[addr],
82              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
83 }
84 
85 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
86 {
87     uint64_t val = ldq_le_p(&s->csr[addr]);
88     uint64_t womask = ldq_le_p(&s->womask[addr]);
89     return val & ~womask;
90 }
91 
92 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
93 {
94     uint32_t val = ldl_le_p(&s->csr[addr]);
95     uint32_t womask = ldl_le_p(&s->womask[addr]);
96     return val & ~womask;
97 }
98 
99 /* "Internal" get/set operations */
100 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
101 {
102     return ldq_le_p(&s->csr[addr]);
103 }
104 
105 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
106 {
107     return ldl_le_p(&s->csr[addr]);
108 }
109 
110 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
111 {
112     stq_le_p(&s->csr[addr], val);
113 }
114 
115 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
116                                         uint32_t clear, uint32_t mask)
117 {
118     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
119     stl_le_p(&s->csr[addr], new_val);
120     return new_val;
121 }
122 
123 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
124                                         uint64_t clear, uint64_t mask)
125 {
126     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
127     stq_le_p(&s->csr[addr], new_val);
128     return new_val;
129 }
130 
131 /* GHashTable functions */
132 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
133 {
134     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
135 }
136 
137 static guint vtd_uint64_hash(gconstpointer v)
138 {
139     return (guint)*(const uint64_t *)v;
140 }
141 
142 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
143                                           gpointer user_data)
144 {
145     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
146     uint16_t domain_id = *(uint16_t *)user_data;
147     return entry->domain_id == domain_id;
148 }
149 
150 /* The shift of an addr for a certain level of paging structure */
151 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
152 {
153     assert(level != 0);
154     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
155 }
156 
157 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
158 {
159     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
160 }
161 
162 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
163                                         gpointer user_data)
164 {
165     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
166     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
167     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
168     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
169     return (entry->domain_id == info->domain_id) &&
170             (((entry->gfn & info->mask) == gfn) ||
171              (entry->gfn == gfn_tlb));
172 }
173 
174 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
175  * IntelIOMMUState to 1.
176  */
177 static void vtd_reset_context_cache(IntelIOMMUState *s)
178 {
179     VTDAddressSpace *vtd_as;
180     VTDBus *vtd_bus;
181     GHashTableIter bus_it;
182     uint32_t devfn_it;
183 
184     trace_vtd_context_cache_reset();
185 
186     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
187 
188     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
189         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
190             vtd_as = vtd_bus->dev_as[devfn_it];
191             if (!vtd_as) {
192                 continue;
193             }
194             vtd_as->context_cache_entry.context_cache_gen = 0;
195         }
196     }
197     s->context_cache_gen = 1;
198 }
199 
200 static void vtd_reset_iotlb(IntelIOMMUState *s)
201 {
202     assert(s->iotlb);
203     g_hash_table_remove_all(s->iotlb);
204 }
205 
206 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
207                                   uint32_t level)
208 {
209     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
210            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
211 }
212 
213 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
214 {
215     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
216 }
217 
218 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
219                                        hwaddr addr)
220 {
221     VTDIOTLBEntry *entry;
222     uint64_t key;
223     int level;
224 
225     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
226         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
227                                 source_id, level);
228         entry = g_hash_table_lookup(s->iotlb, &key);
229         if (entry) {
230             goto out;
231         }
232     }
233 
234 out:
235     return entry;
236 }
237 
238 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
239                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
240                              uint8_t access_flags, uint32_t level)
241 {
242     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
243     uint64_t *key = g_malloc(sizeof(*key));
244     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
245 
246     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
247     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
248         trace_vtd_iotlb_reset("iotlb exceeds size limit");
249         vtd_reset_iotlb(s);
250     }
251 
252     entry->gfn = gfn;
253     entry->domain_id = domain_id;
254     entry->slpte = slpte;
255     entry->access_flags = access_flags;
256     entry->mask = vtd_slpt_level_page_mask(level);
257     *key = vtd_get_iotlb_key(gfn, source_id, level);
258     g_hash_table_replace(s->iotlb, key, entry);
259 }
260 
261 /* Given the reg addr of both the message data and address, generate an
262  * interrupt via MSI.
263  */
264 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
265                                    hwaddr mesg_data_reg)
266 {
267     MSIMessage msi;
268 
269     assert(mesg_data_reg < DMAR_REG_SIZE);
270     assert(mesg_addr_reg < DMAR_REG_SIZE);
271 
272     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
273     msi.data = vtd_get_long_raw(s, mesg_data_reg);
274 
275     trace_vtd_irq_generate(msi.address, msi.data);
276 
277     apic_get_class()->send_msi(&msi);
278 }
279 
280 /* Generate a fault event to software via MSI if conditions are met.
281  * Notice that the value of FSTS_REG being passed to it should be the one
282  * before any update.
283  */
284 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
285 {
286     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
287         pre_fsts & VTD_FSTS_IQE) {
288         trace_vtd_err("There are previous interrupt conditions "
289                       "to be serviced by software, fault event "
290                       "is not generated.");
291         return;
292     }
293     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
294     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
295         trace_vtd_err("Interrupt Mask set, irq is not generated.");
296     } else {
297         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
298         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
299     }
300 }
301 
302 /* Check if the Fault (F) field of the Fault Recording Register referenced by
303  * @index is Set.
304  */
305 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
306 {
307     /* Each reg is 128-bit */
308     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
309     addr += 8; /* Access the high 64-bit half */
310 
311     assert(index < DMAR_FRCD_REG_NR);
312 
313     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
314 }
315 
316 /* Update the PPF field of Fault Status Register.
317  * Should be called whenever change the F field of any fault recording
318  * registers.
319  */
320 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
321 {
322     uint32_t i;
323     uint32_t ppf_mask = 0;
324 
325     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
326         if (vtd_is_frcd_set(s, i)) {
327             ppf_mask = VTD_FSTS_PPF;
328             break;
329         }
330     }
331     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
332     trace_vtd_fsts_ppf(!!ppf_mask);
333 }
334 
335 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
336 {
337     /* Each reg is 128-bit */
338     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
339     addr += 8; /* Access the high 64-bit half */
340 
341     assert(index < DMAR_FRCD_REG_NR);
342 
343     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
344     vtd_update_fsts_ppf(s);
345 }
346 
347 /* Must not update F field now, should be done later */
348 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
349                             uint16_t source_id, hwaddr addr,
350                             VTDFaultReason fault, bool is_write)
351 {
352     uint64_t hi = 0, lo;
353     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
354 
355     assert(index < DMAR_FRCD_REG_NR);
356 
357     lo = VTD_FRCD_FI(addr);
358     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
359     if (!is_write) {
360         hi |= VTD_FRCD_T;
361     }
362     vtd_set_quad_raw(s, frcd_reg_addr, lo);
363     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
364 
365     trace_vtd_frr_new(index, hi, lo);
366 }
367 
368 /* Try to collapse multiple pending faults from the same requester */
369 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
370 {
371     uint32_t i;
372     uint64_t frcd_reg;
373     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
374 
375     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
376         frcd_reg = vtd_get_quad_raw(s, addr);
377         if ((frcd_reg & VTD_FRCD_F) &&
378             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
379             return true;
380         }
381         addr += 16; /* 128-bit for each */
382     }
383     return false;
384 }
385 
386 /* Log and report an DMAR (address translation) fault to software */
387 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
388                                   hwaddr addr, VTDFaultReason fault,
389                                   bool is_write)
390 {
391     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
392 
393     assert(fault < VTD_FR_MAX);
394 
395     if (fault == VTD_FR_RESERVED_ERR) {
396         /* This is not a normal fault reason case. Drop it. */
397         return;
398     }
399 
400     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
401 
402     if (fsts_reg & VTD_FSTS_PFO) {
403         trace_vtd_err("New fault is not recorded due to "
404                       "Primary Fault Overflow.");
405         return;
406     }
407 
408     if (vtd_try_collapse_fault(s, source_id)) {
409         trace_vtd_err("New fault is not recorded due to "
410                       "compression of faults.");
411         return;
412     }
413 
414     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
415         trace_vtd_err("Next Fault Recording Reg is used, "
416                       "new fault is not recorded, set PFO field.");
417         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
418         return;
419     }
420 
421     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
422 
423     if (fsts_reg & VTD_FSTS_PPF) {
424         trace_vtd_err("There are pending faults already, "
425                       "fault event is not generated.");
426         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
427         s->next_frcd_reg++;
428         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
429             s->next_frcd_reg = 0;
430         }
431     } else {
432         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
433                                 VTD_FSTS_FRI(s->next_frcd_reg));
434         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
435         s->next_frcd_reg++;
436         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
437             s->next_frcd_reg = 0;
438         }
439         /* This case actually cause the PPF to be Set.
440          * So generate fault event (interrupt).
441          */
442          vtd_generate_fault_event(s, fsts_reg);
443     }
444 }
445 
446 /* Handle Invalidation Queue Errors of queued invalidation interface error
447  * conditions.
448  */
449 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
450 {
451     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
452 
453     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
454     vtd_generate_fault_event(s, fsts_reg);
455 }
456 
457 /* Set the IWC field and try to generate an invalidation completion interrupt */
458 static void vtd_generate_completion_event(IntelIOMMUState *s)
459 {
460     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
461         trace_vtd_inv_desc_wait_irq("One pending, skip current");
462         return;
463     }
464     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
465     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
466     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
467         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
468                                     "new event not generated");
469         return;
470     } else {
471         /* Generate the interrupt event */
472         trace_vtd_inv_desc_wait_irq("Generating complete event");
473         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
474         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
475     }
476 }
477 
478 static inline bool vtd_root_entry_present(VTDRootEntry *root)
479 {
480     return root->val & VTD_ROOT_ENTRY_P;
481 }
482 
483 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
484                               VTDRootEntry *re)
485 {
486     dma_addr_t addr;
487 
488     addr = s->root + index * sizeof(*re);
489     if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
490         trace_vtd_re_invalid(re->rsvd, re->val);
491         re->val = 0;
492         return -VTD_FR_ROOT_TABLE_INV;
493     }
494     re->val = le64_to_cpu(re->val);
495     return 0;
496 }
497 
498 static inline bool vtd_ce_present(VTDContextEntry *context)
499 {
500     return context->lo & VTD_CONTEXT_ENTRY_P;
501 }
502 
503 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
504                                            VTDContextEntry *ce)
505 {
506     dma_addr_t addr;
507 
508     /* we have checked that root entry is present */
509     addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
510     if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
511         trace_vtd_re_invalid(root->rsvd, root->val);
512         return -VTD_FR_CONTEXT_TABLE_INV;
513     }
514     ce->lo = le64_to_cpu(ce->lo);
515     ce->hi = le64_to_cpu(ce->hi);
516     return 0;
517 }
518 
519 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
520 {
521     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
522 }
523 
524 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
525 {
526     return slpte & VTD_SL_PT_BASE_ADDR_MASK;
527 }
528 
529 /* Whether the pte indicates the address of the page frame */
530 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
531 {
532     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
533 }
534 
535 /* Get the content of a spte located in @base_addr[@index] */
536 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
537 {
538     uint64_t slpte;
539 
540     assert(index < VTD_SL_PT_ENTRY_NR);
541 
542     if (dma_memory_read(&address_space_memory,
543                         base_addr + index * sizeof(slpte), &slpte,
544                         sizeof(slpte))) {
545         slpte = (uint64_t)-1;
546         return slpte;
547     }
548     slpte = le64_to_cpu(slpte);
549     return slpte;
550 }
551 
552 /* Given an iova and the level of paging structure, return the offset
553  * of current level.
554  */
555 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
556 {
557     return (iova >> vtd_slpt_level_shift(level)) &
558             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
559 }
560 
561 /* Check Capability Register to see if the @level of page-table is supported */
562 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
563 {
564     return VTD_CAP_SAGAW_MASK & s->cap &
565            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
566 }
567 
568 /* Get the page-table level that hardware should use for the second-level
569  * page-table walk from the Address Width field of context-entry.
570  */
571 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
572 {
573     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
574 }
575 
576 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
577 {
578     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
579 }
580 
581 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
582 {
583     return ce->lo & VTD_CONTEXT_ENTRY_TT;
584 }
585 
586 /* Return true if check passed, otherwise false */
587 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
588                                      VTDContextEntry *ce)
589 {
590     switch (vtd_ce_get_type(ce)) {
591     case VTD_CONTEXT_TT_MULTI_LEVEL:
592         /* Always supported */
593         break;
594     case VTD_CONTEXT_TT_DEV_IOTLB:
595         if (!x86_iommu->dt_supported) {
596             return false;
597         }
598         break;
599     case VTD_CONTEXT_TT_PASS_THROUGH:
600         if (!x86_iommu->pt_supported) {
601             return false;
602         }
603         break;
604     default:
605         /* Unknwon type */
606         return false;
607     }
608     return true;
609 }
610 
611 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce)
612 {
613     uint32_t ce_agaw = vtd_ce_get_agaw(ce);
614     return 1ULL << MIN(ce_agaw, VTD_MGAW);
615 }
616 
617 /* Return true if IOVA passes range check, otherwise false. */
618 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce)
619 {
620     /*
621      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
622      * in CAP_REG and AW in context-entry.
623      */
624     return !(iova & ~(vtd_iova_limit(ce) - 1));
625 }
626 
627 static const uint64_t vtd_paging_entry_rsvd_field[] = {
628     [0] = ~0ULL,
629     /* For not large page */
630     [1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
631     [2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
632     [3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
633     [4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
634     /* For large page */
635     [5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
636     [6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
637     [7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
638     [8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
639 };
640 
641 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
642 {
643     if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
644         /* Maybe large page */
645         return slpte & vtd_paging_entry_rsvd_field[level + 4];
646     } else {
647         return slpte & vtd_paging_entry_rsvd_field[level];
648     }
649 }
650 
651 /* Find the VTD address space associated with a given bus number */
652 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
653 {
654     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
655     if (!vtd_bus) {
656         /*
657          * Iterate over the registered buses to find the one which
658          * currently hold this bus number, and update the bus_num
659          * lookup table:
660          */
661         GHashTableIter iter;
662 
663         g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
664         while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
665             if (pci_bus_num(vtd_bus->bus) == bus_num) {
666                 s->vtd_as_by_bus_num[bus_num] = vtd_bus;
667                 return vtd_bus;
668             }
669         }
670     }
671     return vtd_bus;
672 }
673 
674 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
675  * of the translation, can be used for deciding the size of large page.
676  */
677 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write,
678                              uint64_t *slptep, uint32_t *slpte_level,
679                              bool *reads, bool *writes)
680 {
681     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
682     uint32_t level = vtd_ce_get_level(ce);
683     uint32_t offset;
684     uint64_t slpte;
685     uint64_t access_right_check;
686 
687     if (!vtd_iova_range_check(iova, ce)) {
688         trace_vtd_err_dmar_iova_overflow(iova);
689         return -VTD_FR_ADDR_BEYOND_MGAW;
690     }
691 
692     /* FIXME: what is the Atomics request here? */
693     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
694 
695     while (true) {
696         offset = vtd_iova_level_offset(iova, level);
697         slpte = vtd_get_slpte(addr, offset);
698 
699         if (slpte == (uint64_t)-1) {
700             trace_vtd_err_dmar_slpte_read_error(iova, level);
701             if (level == vtd_ce_get_level(ce)) {
702                 /* Invalid programming of context-entry */
703                 return -VTD_FR_CONTEXT_ENTRY_INV;
704             } else {
705                 return -VTD_FR_PAGING_ENTRY_INV;
706             }
707         }
708         *reads = (*reads) && (slpte & VTD_SL_R);
709         *writes = (*writes) && (slpte & VTD_SL_W);
710         if (!(slpte & access_right_check)) {
711             trace_vtd_err_dmar_slpte_perm_error(iova, level, slpte, is_write);
712             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
713         }
714         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
715             trace_vtd_err_dmar_slpte_resv_error(iova, level, slpte);
716             return -VTD_FR_PAGING_ENTRY_RSVD;
717         }
718 
719         if (vtd_is_last_slpte(slpte, level)) {
720             *slptep = slpte;
721             *slpte_level = level;
722             return 0;
723         }
724         addr = vtd_get_slpte_addr(slpte);
725         level--;
726     }
727 }
728 
729 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private);
730 
731 /**
732  * vtd_page_walk_level - walk over specific level for IOVA range
733  *
734  * @addr: base GPA addr to start the walk
735  * @start: IOVA range start address
736  * @end: IOVA range end address (start <= addr < end)
737  * @hook_fn: hook func to be called when detected page
738  * @private: private data to be passed into hook func
739  * @read: whether parent level has read permission
740  * @write: whether parent level has write permission
741  * @notify_unmap: whether we should notify invalid entries
742  */
743 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
744                                uint64_t end, vtd_page_walk_hook hook_fn,
745                                void *private, uint32_t level,
746                                bool read, bool write, bool notify_unmap)
747 {
748     bool read_cur, write_cur, entry_valid;
749     uint32_t offset;
750     uint64_t slpte;
751     uint64_t subpage_size, subpage_mask;
752     IOMMUTLBEntry entry;
753     uint64_t iova = start;
754     uint64_t iova_next;
755     int ret = 0;
756 
757     trace_vtd_page_walk_level(addr, level, start, end);
758 
759     subpage_size = 1ULL << vtd_slpt_level_shift(level);
760     subpage_mask = vtd_slpt_level_page_mask(level);
761 
762     while (iova < end) {
763         iova_next = (iova & subpage_mask) + subpage_size;
764 
765         offset = vtd_iova_level_offset(iova, level);
766         slpte = vtd_get_slpte(addr, offset);
767 
768         if (slpte == (uint64_t)-1) {
769             trace_vtd_page_walk_skip_read(iova, iova_next);
770             goto next;
771         }
772 
773         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
774             trace_vtd_page_walk_skip_reserve(iova, iova_next);
775             goto next;
776         }
777 
778         /* Permissions are stacked with parents' */
779         read_cur = read && (slpte & VTD_SL_R);
780         write_cur = write && (slpte & VTD_SL_W);
781 
782         /*
783          * As long as we have either read/write permission, this is a
784          * valid entry. The rule works for both page entries and page
785          * table entries.
786          */
787         entry_valid = read_cur | write_cur;
788 
789         if (vtd_is_last_slpte(slpte, level)) {
790             entry.target_as = &address_space_memory;
791             entry.iova = iova & subpage_mask;
792             /* NOTE: this is only meaningful if entry_valid == true */
793             entry.translated_addr = vtd_get_slpte_addr(slpte);
794             entry.addr_mask = ~subpage_mask;
795             entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
796             if (!entry_valid && !notify_unmap) {
797                 trace_vtd_page_walk_skip_perm(iova, iova_next);
798                 goto next;
799             }
800             trace_vtd_page_walk_one(level, entry.iova, entry.translated_addr,
801                                     entry.addr_mask, entry.perm);
802             if (hook_fn) {
803                 ret = hook_fn(&entry, private);
804                 if (ret < 0) {
805                     return ret;
806                 }
807             }
808         } else {
809             if (!entry_valid) {
810                 trace_vtd_page_walk_skip_perm(iova, iova_next);
811                 goto next;
812             }
813             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte), iova,
814                                       MIN(iova_next, end), hook_fn, private,
815                                       level - 1, read_cur, write_cur,
816                                       notify_unmap);
817             if (ret < 0) {
818                 return ret;
819             }
820         }
821 
822 next:
823         iova = iova_next;
824     }
825 
826     return 0;
827 }
828 
829 /**
830  * vtd_page_walk - walk specific IOVA range, and call the hook
831  *
832  * @ce: context entry to walk upon
833  * @start: IOVA address to start the walk
834  * @end: IOVA range end address (start <= addr < end)
835  * @hook_fn: the hook that to be called for each detected area
836  * @private: private data for the hook function
837  */
838 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end,
839                          vtd_page_walk_hook hook_fn, void *private,
840                          bool notify_unmap)
841 {
842     dma_addr_t addr = vtd_ce_get_slpt_base(ce);
843     uint32_t level = vtd_ce_get_level(ce);
844 
845     if (!vtd_iova_range_check(start, ce)) {
846         return -VTD_FR_ADDR_BEYOND_MGAW;
847     }
848 
849     if (!vtd_iova_range_check(end, ce)) {
850         /* Fix end so that it reaches the maximum */
851         end = vtd_iova_limit(ce);
852     }
853 
854     return vtd_page_walk_level(addr, start, end, hook_fn, private,
855                                level, true, true, notify_unmap);
856 }
857 
858 /* Map a device to its corresponding domain (context-entry) */
859 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
860                                     uint8_t devfn, VTDContextEntry *ce)
861 {
862     VTDRootEntry re;
863     int ret_fr;
864     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
865 
866     ret_fr = vtd_get_root_entry(s, bus_num, &re);
867     if (ret_fr) {
868         return ret_fr;
869     }
870 
871     if (!vtd_root_entry_present(&re)) {
872         /* Not error - it's okay we don't have root entry. */
873         trace_vtd_re_not_present(bus_num);
874         return -VTD_FR_ROOT_ENTRY_P;
875     }
876 
877     if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
878         trace_vtd_re_invalid(re.rsvd, re.val);
879         return -VTD_FR_ROOT_ENTRY_RSVD;
880     }
881 
882     ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
883     if (ret_fr) {
884         return ret_fr;
885     }
886 
887     if (!vtd_ce_present(ce)) {
888         /* Not error - it's okay we don't have context entry. */
889         trace_vtd_ce_not_present(bus_num, devfn);
890         return -VTD_FR_CONTEXT_ENTRY_P;
891     }
892 
893     if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
894         (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
895         trace_vtd_ce_invalid(ce->hi, ce->lo);
896         return -VTD_FR_CONTEXT_ENTRY_RSVD;
897     }
898 
899     /* Check if the programming of context-entry is valid */
900     if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
901         trace_vtd_ce_invalid(ce->hi, ce->lo);
902         return -VTD_FR_CONTEXT_ENTRY_INV;
903     }
904 
905     /* Do translation type check */
906     if (!vtd_ce_type_check(x86_iommu, ce)) {
907         trace_vtd_ce_invalid(ce->hi, ce->lo);
908         return -VTD_FR_CONTEXT_ENTRY_INV;
909     }
910 
911     return 0;
912 }
913 
914 /*
915  * Fetch translation type for specific device. Returns <0 if error
916  * happens, otherwise return the shifted type to check against
917  * VTD_CONTEXT_TT_*.
918  */
919 static int vtd_dev_get_trans_type(VTDAddressSpace *as)
920 {
921     IntelIOMMUState *s;
922     VTDContextEntry ce;
923     int ret;
924 
925     s = as->iommu_state;
926 
927     ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
928                                    as->devfn, &ce);
929     if (ret) {
930         return ret;
931     }
932 
933     return vtd_ce_get_type(&ce);
934 }
935 
936 static bool vtd_dev_pt_enabled(VTDAddressSpace *as)
937 {
938     int ret;
939 
940     assert(as);
941 
942     ret = vtd_dev_get_trans_type(as);
943     if (ret < 0) {
944         /*
945          * Possibly failed to parse the context entry for some reason
946          * (e.g., during init, or any guest configuration errors on
947          * context entries). We should assume PT not enabled for
948          * safety.
949          */
950         return false;
951     }
952 
953     return ret == VTD_CONTEXT_TT_PASS_THROUGH;
954 }
955 
956 /* Return whether the device is using IOMMU translation. */
957 static bool vtd_switch_address_space(VTDAddressSpace *as)
958 {
959     bool use_iommu;
960     /* Whether we need to take the BQL on our own */
961     bool take_bql = !qemu_mutex_iothread_locked();
962 
963     assert(as);
964 
965     use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as);
966 
967     trace_vtd_switch_address_space(pci_bus_num(as->bus),
968                                    VTD_PCI_SLOT(as->devfn),
969                                    VTD_PCI_FUNC(as->devfn),
970                                    use_iommu);
971 
972     /*
973      * It's possible that we reach here without BQL, e.g., when called
974      * from vtd_pt_enable_fast_path(). However the memory APIs need
975      * it. We'd better make sure we have had it already, or, take it.
976      */
977     if (take_bql) {
978         qemu_mutex_lock_iothread();
979     }
980 
981     /* Turn off first then on the other */
982     if (use_iommu) {
983         memory_region_set_enabled(&as->sys_alias, false);
984         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
985     } else {
986         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
987         memory_region_set_enabled(&as->sys_alias, true);
988     }
989 
990     if (take_bql) {
991         qemu_mutex_unlock_iothread();
992     }
993 
994     return use_iommu;
995 }
996 
997 static void vtd_switch_address_space_all(IntelIOMMUState *s)
998 {
999     GHashTableIter iter;
1000     VTDBus *vtd_bus;
1001     int i;
1002 
1003     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1004     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1005         for (i = 0; i < PCI_DEVFN_MAX; i++) {
1006             if (!vtd_bus->dev_as[i]) {
1007                 continue;
1008             }
1009             vtd_switch_address_space(vtd_bus->dev_as[i]);
1010         }
1011     }
1012 }
1013 
1014 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1015 {
1016     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1017 }
1018 
1019 static const bool vtd_qualified_faults[] = {
1020     [VTD_FR_RESERVED] = false,
1021     [VTD_FR_ROOT_ENTRY_P] = false,
1022     [VTD_FR_CONTEXT_ENTRY_P] = true,
1023     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1024     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1025     [VTD_FR_WRITE] = true,
1026     [VTD_FR_READ] = true,
1027     [VTD_FR_PAGING_ENTRY_INV] = true,
1028     [VTD_FR_ROOT_TABLE_INV] = false,
1029     [VTD_FR_CONTEXT_TABLE_INV] = false,
1030     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1031     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1032     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1033     [VTD_FR_RESERVED_ERR] = false,
1034     [VTD_FR_MAX] = false,
1035 };
1036 
1037 /* To see if a fault condition is "qualified", which is reported to software
1038  * only if the FPD field in the context-entry used to process the faulting
1039  * request is 0.
1040  */
1041 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1042 {
1043     return vtd_qualified_faults[fault];
1044 }
1045 
1046 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1047 {
1048     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1049 }
1050 
1051 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1052 {
1053     VTDBus *vtd_bus;
1054     VTDAddressSpace *vtd_as;
1055     bool success = false;
1056 
1057     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1058     if (!vtd_bus) {
1059         goto out;
1060     }
1061 
1062     vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1063     if (!vtd_as) {
1064         goto out;
1065     }
1066 
1067     if (vtd_switch_address_space(vtd_as) == false) {
1068         /* We switched off IOMMU region successfully. */
1069         success = true;
1070     }
1071 
1072 out:
1073     trace_vtd_pt_enable_fast_path(source_id, success);
1074 }
1075 
1076 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1077  * translation.
1078  *
1079  * Called from RCU critical section.
1080  *
1081  * @bus_num: The bus number
1082  * @devfn: The devfn, which is the  combined of device and function number
1083  * @is_write: The access is a write operation
1084  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1085  *
1086  * Returns true if translation is successful, otherwise false.
1087  */
1088 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1089                                    uint8_t devfn, hwaddr addr, bool is_write,
1090                                    IOMMUTLBEntry *entry)
1091 {
1092     IntelIOMMUState *s = vtd_as->iommu_state;
1093     VTDContextEntry ce;
1094     uint8_t bus_num = pci_bus_num(bus);
1095     VTDContextCacheEntry *cc_entry = &vtd_as->context_cache_entry;
1096     uint64_t slpte, page_mask;
1097     uint32_t level;
1098     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1099     int ret_fr;
1100     bool is_fpd_set = false;
1101     bool reads = true;
1102     bool writes = true;
1103     uint8_t access_flags;
1104     VTDIOTLBEntry *iotlb_entry;
1105 
1106     /*
1107      * We have standalone memory region for interrupt addresses, we
1108      * should never receive translation requests in this region.
1109      */
1110     assert(!vtd_is_interrupt_addr(addr));
1111 
1112     /* Try to fetch slpte form IOTLB */
1113     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1114     if (iotlb_entry) {
1115         trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1116                                  iotlb_entry->domain_id);
1117         slpte = iotlb_entry->slpte;
1118         access_flags = iotlb_entry->access_flags;
1119         page_mask = iotlb_entry->mask;
1120         goto out;
1121     }
1122 
1123     /* Try to fetch context-entry from cache first */
1124     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1125         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1126                                cc_entry->context_entry.lo,
1127                                cc_entry->context_cache_gen);
1128         ce = cc_entry->context_entry;
1129         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1130     } else {
1131         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1132         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1133         if (ret_fr) {
1134             ret_fr = -ret_fr;
1135             if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1136                 trace_vtd_fault_disabled();
1137             } else {
1138                 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1139             }
1140             goto error;
1141         }
1142         /* Update context-cache */
1143         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1144                                   cc_entry->context_cache_gen,
1145                                   s->context_cache_gen);
1146         cc_entry->context_entry = ce;
1147         cc_entry->context_cache_gen = s->context_cache_gen;
1148     }
1149 
1150     /*
1151      * We don't need to translate for pass-through context entries.
1152      * Also, let's ignore IOTLB caching as well for PT devices.
1153      */
1154     if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) {
1155         entry->iova = addr & VTD_PAGE_MASK_4K;
1156         entry->translated_addr = entry->iova;
1157         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1158         entry->perm = IOMMU_RW;
1159         trace_vtd_translate_pt(source_id, entry->iova);
1160 
1161         /*
1162          * When this happens, it means firstly caching-mode is not
1163          * enabled, and this is the first passthrough translation for
1164          * the device. Let's enable the fast path for passthrough.
1165          *
1166          * When passthrough is disabled again for the device, we can
1167          * capture it via the context entry invalidation, then the
1168          * IOMMU region can be swapped back.
1169          */
1170         vtd_pt_enable_fast_path(s, source_id);
1171 
1172         return true;
1173     }
1174 
1175     ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level,
1176                                &reads, &writes);
1177     if (ret_fr) {
1178         ret_fr = -ret_fr;
1179         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
1180             trace_vtd_fault_disabled();
1181         } else {
1182             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
1183         }
1184         goto error;
1185     }
1186 
1187     page_mask = vtd_slpt_level_page_mask(level);
1188     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1189     vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte,
1190                      access_flags, level);
1191 out:
1192     entry->iova = addr & page_mask;
1193     entry->translated_addr = vtd_get_slpte_addr(slpte) & page_mask;
1194     entry->addr_mask = ~page_mask;
1195     entry->perm = access_flags;
1196     return true;
1197 
1198 error:
1199     entry->iova = 0;
1200     entry->translated_addr = 0;
1201     entry->addr_mask = 0;
1202     entry->perm = IOMMU_NONE;
1203     return false;
1204 }
1205 
1206 static void vtd_root_table_setup(IntelIOMMUState *s)
1207 {
1208     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1209     s->root_extended = s->root & VTD_RTADDR_RTT;
1210     s->root &= VTD_RTADDR_ADDR_MASK;
1211 
1212     trace_vtd_reg_dmar_root(s->root, s->root_extended);
1213 }
1214 
1215 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1216                                uint32_t index, uint32_t mask)
1217 {
1218     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1219 }
1220 
1221 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1222 {
1223     uint64_t value = 0;
1224     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1225     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1226     s->intr_root = value & VTD_IRTA_ADDR_MASK;
1227     s->intr_eime = value & VTD_IRTA_EIME;
1228 
1229     /* Notify global invalidation */
1230     vtd_iec_notify_all(s, true, 0, 0);
1231 
1232     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1233 }
1234 
1235 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1236 {
1237     IntelIOMMUNotifierNode *node;
1238 
1239     QLIST_FOREACH(node, &s->notifiers_list, next) {
1240         memory_region_iommu_replay_all(&node->vtd_as->iommu);
1241     }
1242 }
1243 
1244 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1245 {
1246     trace_vtd_inv_desc_cc_global();
1247     s->context_cache_gen++;
1248     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1249         vtd_reset_context_cache(s);
1250     }
1251     vtd_switch_address_space_all(s);
1252     /*
1253      * From VT-d spec 6.5.2.1, a global context entry invalidation
1254      * should be followed by a IOTLB global invalidation, so we should
1255      * be safe even without this. Hoewever, let's replay the region as
1256      * well to be safer, and go back here when we need finer tunes for
1257      * VT-d emulation codes.
1258      */
1259     vtd_iommu_replay_all(s);
1260 }
1261 
1262 /* Do a context-cache device-selective invalidation.
1263  * @func_mask: FM field after shifting
1264  */
1265 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1266                                           uint16_t source_id,
1267                                           uint16_t func_mask)
1268 {
1269     uint16_t mask;
1270     VTDBus *vtd_bus;
1271     VTDAddressSpace *vtd_as;
1272     uint8_t bus_n, devfn;
1273     uint16_t devfn_it;
1274 
1275     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1276 
1277     switch (func_mask & 3) {
1278     case 0:
1279         mask = 0;   /* No bits in the SID field masked */
1280         break;
1281     case 1:
1282         mask = 4;   /* Mask bit 2 in the SID field */
1283         break;
1284     case 2:
1285         mask = 6;   /* Mask bit 2:1 in the SID field */
1286         break;
1287     case 3:
1288         mask = 7;   /* Mask bit 2:0 in the SID field */
1289         break;
1290     }
1291     mask = ~mask;
1292 
1293     bus_n = VTD_SID_TO_BUS(source_id);
1294     vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1295     if (vtd_bus) {
1296         devfn = VTD_SID_TO_DEVFN(source_id);
1297         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1298             vtd_as = vtd_bus->dev_as[devfn_it];
1299             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1300                 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1301                                              VTD_PCI_FUNC(devfn_it));
1302                 vtd_as->context_cache_entry.context_cache_gen = 0;
1303                 /*
1304                  * Do switch address space when needed, in case if the
1305                  * device passthrough bit is switched.
1306                  */
1307                 vtd_switch_address_space(vtd_as);
1308                 /*
1309                  * So a device is moving out of (or moving into) a
1310                  * domain, a replay() suites here to notify all the
1311                  * IOMMU_NOTIFIER_MAP registers about this change.
1312                  * This won't bring bad even if we have no such
1313                  * notifier registered - the IOMMU notification
1314                  * framework will skip MAP notifications if that
1315                  * happened.
1316                  */
1317                 memory_region_iommu_replay_all(&vtd_as->iommu);
1318             }
1319         }
1320     }
1321 }
1322 
1323 /* Context-cache invalidation
1324  * Returns the Context Actual Invalidation Granularity.
1325  * @val: the content of the CCMD_REG
1326  */
1327 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1328 {
1329     uint64_t caig;
1330     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1331 
1332     switch (type) {
1333     case VTD_CCMD_DOMAIN_INVL:
1334         /* Fall through */
1335     case VTD_CCMD_GLOBAL_INVL:
1336         caig = VTD_CCMD_GLOBAL_INVL_A;
1337         vtd_context_global_invalidate(s);
1338         break;
1339 
1340     case VTD_CCMD_DEVICE_INVL:
1341         caig = VTD_CCMD_DEVICE_INVL_A;
1342         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1343         break;
1344 
1345     default:
1346         trace_vtd_err("Context cache invalidate type error.");
1347         caig = 0;
1348     }
1349     return caig;
1350 }
1351 
1352 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1353 {
1354     trace_vtd_inv_desc_iotlb_global();
1355     vtd_reset_iotlb(s);
1356     vtd_iommu_replay_all(s);
1357 }
1358 
1359 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
1360 {
1361     IntelIOMMUNotifierNode *node;
1362     VTDContextEntry ce;
1363     VTDAddressSpace *vtd_as;
1364 
1365     trace_vtd_inv_desc_iotlb_domain(domain_id);
1366 
1367     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
1368                                 &domain_id);
1369 
1370     QLIST_FOREACH(node, &s->notifiers_list, next) {
1371         vtd_as = node->vtd_as;
1372         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1373                                       vtd_as->devfn, &ce) &&
1374             domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1375             memory_region_iommu_replay_all(&vtd_as->iommu);
1376         }
1377     }
1378 }
1379 
1380 static int vtd_page_invalidate_notify_hook(IOMMUTLBEntry *entry,
1381                                            void *private)
1382 {
1383     memory_region_notify_iommu((IOMMUMemoryRegion *)private, *entry);
1384     return 0;
1385 }
1386 
1387 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
1388                                            uint16_t domain_id, hwaddr addr,
1389                                            uint8_t am)
1390 {
1391     IntelIOMMUNotifierNode *node;
1392     VTDContextEntry ce;
1393     int ret;
1394 
1395     QLIST_FOREACH(node, &(s->notifiers_list), next) {
1396         VTDAddressSpace *vtd_as = node->vtd_as;
1397         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
1398                                        vtd_as->devfn, &ce);
1399         if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) {
1400             vtd_page_walk(&ce, addr, addr + (1 << am) * VTD_PAGE_SIZE,
1401                           vtd_page_invalidate_notify_hook,
1402                           (void *)&vtd_as->iommu, true);
1403         }
1404     }
1405 }
1406 
1407 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
1408                                       hwaddr addr, uint8_t am)
1409 {
1410     VTDIOTLBPageInvInfo info;
1411 
1412     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
1413 
1414     assert(am <= VTD_MAMV);
1415     info.domain_id = domain_id;
1416     info.addr = addr;
1417     info.mask = ~((1 << am) - 1);
1418     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
1419     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
1420 }
1421 
1422 /* Flush IOTLB
1423  * Returns the IOTLB Actual Invalidation Granularity.
1424  * @val: the content of the IOTLB_REG
1425  */
1426 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
1427 {
1428     uint64_t iaig;
1429     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
1430     uint16_t domain_id;
1431     hwaddr addr;
1432     uint8_t am;
1433 
1434     switch (type) {
1435     case VTD_TLB_GLOBAL_FLUSH:
1436         iaig = VTD_TLB_GLOBAL_FLUSH_A;
1437         vtd_iotlb_global_invalidate(s);
1438         break;
1439 
1440     case VTD_TLB_DSI_FLUSH:
1441         domain_id = VTD_TLB_DID(val);
1442         iaig = VTD_TLB_DSI_FLUSH_A;
1443         vtd_iotlb_domain_invalidate(s, domain_id);
1444         break;
1445 
1446     case VTD_TLB_PSI_FLUSH:
1447         domain_id = VTD_TLB_DID(val);
1448         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
1449         am = VTD_IVA_AM(addr);
1450         addr = VTD_IVA_ADDR(addr);
1451         if (am > VTD_MAMV) {
1452             trace_vtd_err("IOTLB PSI flush: address mask overflow.");
1453             iaig = 0;
1454             break;
1455         }
1456         iaig = VTD_TLB_PSI_FLUSH_A;
1457         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1458         break;
1459 
1460     default:
1461         trace_vtd_err("IOTLB flush: invalid granularity.");
1462         iaig = 0;
1463     }
1464     return iaig;
1465 }
1466 
1467 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
1468 
1469 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
1470 {
1471     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
1472            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
1473 }
1474 
1475 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
1476 {
1477     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
1478 
1479     trace_vtd_inv_qi_enable(en);
1480 
1481     if (en) {
1482         s->iq = iqa_val & VTD_IQA_IQA_MASK;
1483         /* 2^(x+8) entries */
1484         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8);
1485         s->qi_enabled = true;
1486         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
1487         /* Ok - report back to driver */
1488         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
1489 
1490         if (s->iq_tail != 0) {
1491             /*
1492              * This is a spec violation but Windows guests are known to set up
1493              * Queued Invalidation this way so we allow the write and process
1494              * Invalidation Descriptors right away.
1495              */
1496             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
1497             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1498                 vtd_fetch_inv_desc(s);
1499             }
1500         }
1501     } else {
1502         if (vtd_queued_inv_disable_check(s)) {
1503             /* disable Queued Invalidation */
1504             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
1505             s->iq_head = 0;
1506             s->qi_enabled = false;
1507             /* Ok - report back to driver */
1508             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
1509         } else {
1510             trace_vtd_err_qi_disable(s->iq_head, s->iq_tail, s->iq_last_desc_type);
1511         }
1512     }
1513 }
1514 
1515 /* Set Root Table Pointer */
1516 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
1517 {
1518     vtd_root_table_setup(s);
1519     /* Ok - report back to driver */
1520     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
1521 }
1522 
1523 /* Set Interrupt Remap Table Pointer */
1524 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
1525 {
1526     vtd_interrupt_remap_table_setup(s);
1527     /* Ok - report back to driver */
1528     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
1529 }
1530 
1531 /* Handle Translation Enable/Disable */
1532 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
1533 {
1534     if (s->dmar_enabled == en) {
1535         return;
1536     }
1537 
1538     trace_vtd_dmar_enable(en);
1539 
1540     if (en) {
1541         s->dmar_enabled = true;
1542         /* Ok - report back to driver */
1543         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
1544     } else {
1545         s->dmar_enabled = false;
1546 
1547         /* Clear the index of Fault Recording Register */
1548         s->next_frcd_reg = 0;
1549         /* Ok - report back to driver */
1550         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
1551     }
1552 
1553     vtd_switch_address_space_all(s);
1554 }
1555 
1556 /* Handle Interrupt Remap Enable/Disable */
1557 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
1558 {
1559     trace_vtd_ir_enable(en);
1560 
1561     if (en) {
1562         s->intr_enabled = true;
1563         /* Ok - report back to driver */
1564         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
1565     } else {
1566         s->intr_enabled = false;
1567         /* Ok - report back to driver */
1568         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
1569     }
1570 }
1571 
1572 /* Handle write to Global Command Register */
1573 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
1574 {
1575     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
1576     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
1577     uint32_t changed = status ^ val;
1578 
1579     trace_vtd_reg_write_gcmd(status, val);
1580     if (changed & VTD_GCMD_TE) {
1581         /* Translation enable/disable */
1582         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
1583     }
1584     if (val & VTD_GCMD_SRTP) {
1585         /* Set/update the root-table pointer */
1586         vtd_handle_gcmd_srtp(s);
1587     }
1588     if (changed & VTD_GCMD_QIE) {
1589         /* Queued Invalidation Enable */
1590         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
1591     }
1592     if (val & VTD_GCMD_SIRTP) {
1593         /* Set/update the interrupt remapping root-table pointer */
1594         vtd_handle_gcmd_sirtp(s);
1595     }
1596     if (changed & VTD_GCMD_IRE) {
1597         /* Interrupt remap enable/disable */
1598         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
1599     }
1600 }
1601 
1602 /* Handle write to Context Command Register */
1603 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
1604 {
1605     uint64_t ret;
1606     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
1607 
1608     /* Context-cache invalidation request */
1609     if (val & VTD_CCMD_ICC) {
1610         if (s->qi_enabled) {
1611             trace_vtd_err("Queued Invalidation enabled, "
1612                           "should not use register-based invalidation");
1613             return;
1614         }
1615         ret = vtd_context_cache_invalidate(s, val);
1616         /* Invalidation completed. Change something to show */
1617         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
1618         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
1619                                       ret);
1620     }
1621 }
1622 
1623 /* Handle write to IOTLB Invalidation Register */
1624 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
1625 {
1626     uint64_t ret;
1627     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
1628 
1629     /* IOTLB invalidation request */
1630     if (val & VTD_TLB_IVT) {
1631         if (s->qi_enabled) {
1632             trace_vtd_err("Queued Invalidation enabled, "
1633                           "should not use register-based invalidation.");
1634             return;
1635         }
1636         ret = vtd_iotlb_flush(s, val);
1637         /* Invalidation completed. Change something to show */
1638         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
1639         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
1640                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
1641     }
1642 }
1643 
1644 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
1645 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset,
1646                              VTDInvDesc *inv_desc)
1647 {
1648     dma_addr_t addr = base_addr + offset * sizeof(*inv_desc);
1649     if (dma_memory_read(&address_space_memory, addr, inv_desc,
1650         sizeof(*inv_desc))) {
1651         trace_vtd_err("Read INV DESC failed.");
1652         inv_desc->lo = 0;
1653         inv_desc->hi = 0;
1654         return false;
1655     }
1656     inv_desc->lo = le64_to_cpu(inv_desc->lo);
1657     inv_desc->hi = le64_to_cpu(inv_desc->hi);
1658     return true;
1659 }
1660 
1661 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1662 {
1663     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
1664         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
1665         trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1666         return false;
1667     }
1668     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
1669         /* Status Write */
1670         uint32_t status_data = (uint32_t)(inv_desc->lo >>
1671                                VTD_INV_DESC_WAIT_DATA_SHIFT);
1672 
1673         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
1674 
1675         /* FIXME: need to be masked with HAW? */
1676         dma_addr_t status_addr = inv_desc->hi;
1677         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
1678         status_data = cpu_to_le32(status_data);
1679         if (dma_memory_write(&address_space_memory, status_addr, &status_data,
1680                              sizeof(status_data))) {
1681             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
1682             return false;
1683         }
1684     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
1685         /* Interrupt flag */
1686         vtd_generate_completion_event(s);
1687     } else {
1688         trace_vtd_inv_desc_wait_invalid(inv_desc->hi, inv_desc->lo);
1689         return false;
1690     }
1691     return true;
1692 }
1693 
1694 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
1695                                            VTDInvDesc *inv_desc)
1696 {
1697     uint16_t sid, fmask;
1698 
1699     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
1700         trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1701         return false;
1702     }
1703     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
1704     case VTD_INV_DESC_CC_DOMAIN:
1705         trace_vtd_inv_desc_cc_domain(
1706             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
1707         /* Fall through */
1708     case VTD_INV_DESC_CC_GLOBAL:
1709         vtd_context_global_invalidate(s);
1710         break;
1711 
1712     case VTD_INV_DESC_CC_DEVICE:
1713         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
1714         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
1715         vtd_context_device_invalidate(s, sid, fmask);
1716         break;
1717 
1718     default:
1719         trace_vtd_inv_desc_cc_invalid(inv_desc->hi, inv_desc->lo);
1720         return false;
1721     }
1722     return true;
1723 }
1724 
1725 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
1726 {
1727     uint16_t domain_id;
1728     uint8_t am;
1729     hwaddr addr;
1730 
1731     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
1732         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
1733         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1734         return false;
1735     }
1736 
1737     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
1738     case VTD_INV_DESC_IOTLB_GLOBAL:
1739         vtd_iotlb_global_invalidate(s);
1740         break;
1741 
1742     case VTD_INV_DESC_IOTLB_DOMAIN:
1743         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1744         vtd_iotlb_domain_invalidate(s, domain_id);
1745         break;
1746 
1747     case VTD_INV_DESC_IOTLB_PAGE:
1748         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
1749         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
1750         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
1751         if (am > VTD_MAMV) {
1752             trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1753             return false;
1754         }
1755         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
1756         break;
1757 
1758     default:
1759         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1760         return false;
1761     }
1762     return true;
1763 }
1764 
1765 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
1766                                      VTDInvDesc *inv_desc)
1767 {
1768     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
1769                            inv_desc->iec.index,
1770                            inv_desc->iec.index_mask);
1771 
1772     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
1773                        inv_desc->iec.index,
1774                        inv_desc->iec.index_mask);
1775     return true;
1776 }
1777 
1778 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
1779                                           VTDInvDesc *inv_desc)
1780 {
1781     VTDAddressSpace *vtd_dev_as;
1782     IOMMUTLBEntry entry;
1783     struct VTDBus *vtd_bus;
1784     hwaddr addr;
1785     uint64_t sz;
1786     uint16_t sid;
1787     uint8_t devfn;
1788     bool size;
1789     uint8_t bus_num;
1790 
1791     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
1792     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
1793     devfn = sid & 0xff;
1794     bus_num = sid >> 8;
1795     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
1796 
1797     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
1798         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
1799         trace_vtd_inv_desc_iotlb_invalid(inv_desc->hi, inv_desc->lo);
1800         return false;
1801     }
1802 
1803     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
1804     if (!vtd_bus) {
1805         goto done;
1806     }
1807 
1808     vtd_dev_as = vtd_bus->dev_as[devfn];
1809     if (!vtd_dev_as) {
1810         goto done;
1811     }
1812 
1813     /* According to ATS spec table 2.4:
1814      * S = 0, bits 15:12 = xxxx     range size: 4K
1815      * S = 1, bits 15:12 = xxx0     range size: 8K
1816      * S = 1, bits 15:12 = xx01     range size: 16K
1817      * S = 1, bits 15:12 = x011     range size: 32K
1818      * S = 1, bits 15:12 = 0111     range size: 64K
1819      * ...
1820      */
1821     if (size) {
1822         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
1823         addr &= ~(sz - 1);
1824     } else {
1825         sz = VTD_PAGE_SIZE;
1826     }
1827 
1828     entry.target_as = &vtd_dev_as->as;
1829     entry.addr_mask = sz - 1;
1830     entry.iova = addr;
1831     entry.perm = IOMMU_NONE;
1832     entry.translated_addr = 0;
1833     memory_region_notify_iommu(&vtd_dev_as->iommu, entry);
1834 
1835 done:
1836     return true;
1837 }
1838 
1839 static bool vtd_process_inv_desc(IntelIOMMUState *s)
1840 {
1841     VTDInvDesc inv_desc;
1842     uint8_t desc_type;
1843 
1844     trace_vtd_inv_qi_head(s->iq_head);
1845     if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) {
1846         s->iq_last_desc_type = VTD_INV_DESC_NONE;
1847         return false;
1848     }
1849     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
1850     /* FIXME: should update at first or at last? */
1851     s->iq_last_desc_type = desc_type;
1852 
1853     switch (desc_type) {
1854     case VTD_INV_DESC_CC:
1855         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
1856         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
1857             return false;
1858         }
1859         break;
1860 
1861     case VTD_INV_DESC_IOTLB:
1862         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
1863         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
1864             return false;
1865         }
1866         break;
1867 
1868     case VTD_INV_DESC_WAIT:
1869         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
1870         if (!vtd_process_wait_desc(s, &inv_desc)) {
1871             return false;
1872         }
1873         break;
1874 
1875     case VTD_INV_DESC_IEC:
1876         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
1877         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
1878             return false;
1879         }
1880         break;
1881 
1882     case VTD_INV_DESC_DEVICE:
1883         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
1884         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
1885             return false;
1886         }
1887         break;
1888 
1889     default:
1890         trace_vtd_inv_desc_invalid(inv_desc.hi, inv_desc.lo);
1891         return false;
1892     }
1893     s->iq_head++;
1894     if (s->iq_head == s->iq_size) {
1895         s->iq_head = 0;
1896     }
1897     return true;
1898 }
1899 
1900 /* Try to fetch and process more Invalidation Descriptors */
1901 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
1902 {
1903     trace_vtd_inv_qi_fetch();
1904 
1905     if (s->iq_tail >= s->iq_size) {
1906         /* Detects an invalid Tail pointer */
1907         trace_vtd_err_qi_tail(s->iq_tail, s->iq_size);
1908         vtd_handle_inv_queue_error(s);
1909         return;
1910     }
1911     while (s->iq_head != s->iq_tail) {
1912         if (!vtd_process_inv_desc(s)) {
1913             /* Invalidation Queue Errors */
1914             vtd_handle_inv_queue_error(s);
1915             break;
1916         }
1917         /* Must update the IQH_REG in time */
1918         vtd_set_quad_raw(s, DMAR_IQH_REG,
1919                          (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) &
1920                          VTD_IQH_QH_MASK);
1921     }
1922 }
1923 
1924 /* Handle write to Invalidation Queue Tail Register */
1925 static void vtd_handle_iqt_write(IntelIOMMUState *s)
1926 {
1927     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
1928 
1929     s->iq_tail = VTD_IQT_QT(val);
1930     trace_vtd_inv_qi_tail(s->iq_tail);
1931 
1932     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
1933         /* Process Invalidation Queue here */
1934         vtd_fetch_inv_desc(s);
1935     }
1936 }
1937 
1938 static void vtd_handle_fsts_write(IntelIOMMUState *s)
1939 {
1940     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
1941     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1942     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
1943 
1944     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
1945         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1946         trace_vtd_fsts_clear_ip();
1947     }
1948     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
1949      * Descriptors if there are any when Queued Invalidation is enabled?
1950      */
1951 }
1952 
1953 static void vtd_handle_fectl_write(IntelIOMMUState *s)
1954 {
1955     uint32_t fectl_reg;
1956     /* FIXME: when software clears the IM field, check the IP field. But do we
1957      * need to compare the old value and the new value to conclude that
1958      * software clears the IM field? Or just check if the IM field is zero?
1959      */
1960     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
1961 
1962     trace_vtd_reg_write_fectl(fectl_reg);
1963 
1964     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
1965         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
1966         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
1967     }
1968 }
1969 
1970 static void vtd_handle_ics_write(IntelIOMMUState *s)
1971 {
1972     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
1973     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1974 
1975     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
1976         trace_vtd_reg_ics_clear_ip();
1977         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1978     }
1979 }
1980 
1981 static void vtd_handle_iectl_write(IntelIOMMUState *s)
1982 {
1983     uint32_t iectl_reg;
1984     /* FIXME: when software clears the IM field, check the IP field. But do we
1985      * need to compare the old value and the new value to conclude that
1986      * software clears the IM field? Or just check if the IM field is zero?
1987      */
1988     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
1989 
1990     trace_vtd_reg_write_iectl(iectl_reg);
1991 
1992     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
1993         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
1994         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
1995     }
1996 }
1997 
1998 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
1999 {
2000     IntelIOMMUState *s = opaque;
2001     uint64_t val;
2002 
2003     trace_vtd_reg_read(addr, size);
2004 
2005     if (addr + size > DMAR_REG_SIZE) {
2006         trace_vtd_err("Read MMIO over range.");
2007         return (uint64_t)-1;
2008     }
2009 
2010     switch (addr) {
2011     /* Root Table Address Register, 64-bit */
2012     case DMAR_RTADDR_REG:
2013         if (size == 4) {
2014             val = s->root & ((1ULL << 32) - 1);
2015         } else {
2016             val = s->root;
2017         }
2018         break;
2019 
2020     case DMAR_RTADDR_REG_HI:
2021         assert(size == 4);
2022         val = s->root >> 32;
2023         break;
2024 
2025     /* Invalidation Queue Address Register, 64-bit */
2026     case DMAR_IQA_REG:
2027         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2028         if (size == 4) {
2029             val = val & ((1ULL << 32) - 1);
2030         }
2031         break;
2032 
2033     case DMAR_IQA_REG_HI:
2034         assert(size == 4);
2035         val = s->iq >> 32;
2036         break;
2037 
2038     default:
2039         if (size == 4) {
2040             val = vtd_get_long(s, addr);
2041         } else {
2042             val = vtd_get_quad(s, addr);
2043         }
2044     }
2045 
2046     return val;
2047 }
2048 
2049 static void vtd_mem_write(void *opaque, hwaddr addr,
2050                           uint64_t val, unsigned size)
2051 {
2052     IntelIOMMUState *s = opaque;
2053 
2054     trace_vtd_reg_write(addr, size, val);
2055 
2056     if (addr + size > DMAR_REG_SIZE) {
2057         trace_vtd_err("Write MMIO over range.");
2058         return;
2059     }
2060 
2061     switch (addr) {
2062     /* Global Command Register, 32-bit */
2063     case DMAR_GCMD_REG:
2064         vtd_set_long(s, addr, val);
2065         vtd_handle_gcmd_write(s);
2066         break;
2067 
2068     /* Context Command Register, 64-bit */
2069     case DMAR_CCMD_REG:
2070         if (size == 4) {
2071             vtd_set_long(s, addr, val);
2072         } else {
2073             vtd_set_quad(s, addr, val);
2074             vtd_handle_ccmd_write(s);
2075         }
2076         break;
2077 
2078     case DMAR_CCMD_REG_HI:
2079         assert(size == 4);
2080         vtd_set_long(s, addr, val);
2081         vtd_handle_ccmd_write(s);
2082         break;
2083 
2084     /* IOTLB Invalidation Register, 64-bit */
2085     case DMAR_IOTLB_REG:
2086         if (size == 4) {
2087             vtd_set_long(s, addr, val);
2088         } else {
2089             vtd_set_quad(s, addr, val);
2090             vtd_handle_iotlb_write(s);
2091         }
2092         break;
2093 
2094     case DMAR_IOTLB_REG_HI:
2095         assert(size == 4);
2096         vtd_set_long(s, addr, val);
2097         vtd_handle_iotlb_write(s);
2098         break;
2099 
2100     /* Invalidate Address Register, 64-bit */
2101     case DMAR_IVA_REG:
2102         if (size == 4) {
2103             vtd_set_long(s, addr, val);
2104         } else {
2105             vtd_set_quad(s, addr, val);
2106         }
2107         break;
2108 
2109     case DMAR_IVA_REG_HI:
2110         assert(size == 4);
2111         vtd_set_long(s, addr, val);
2112         break;
2113 
2114     /* Fault Status Register, 32-bit */
2115     case DMAR_FSTS_REG:
2116         assert(size == 4);
2117         vtd_set_long(s, addr, val);
2118         vtd_handle_fsts_write(s);
2119         break;
2120 
2121     /* Fault Event Control Register, 32-bit */
2122     case DMAR_FECTL_REG:
2123         assert(size == 4);
2124         vtd_set_long(s, addr, val);
2125         vtd_handle_fectl_write(s);
2126         break;
2127 
2128     /* Fault Event Data Register, 32-bit */
2129     case DMAR_FEDATA_REG:
2130         assert(size == 4);
2131         vtd_set_long(s, addr, val);
2132         break;
2133 
2134     /* Fault Event Address Register, 32-bit */
2135     case DMAR_FEADDR_REG:
2136         assert(size == 4);
2137         vtd_set_long(s, addr, val);
2138         break;
2139 
2140     /* Fault Event Upper Address Register, 32-bit */
2141     case DMAR_FEUADDR_REG:
2142         assert(size == 4);
2143         vtd_set_long(s, addr, val);
2144         break;
2145 
2146     /* Protected Memory Enable Register, 32-bit */
2147     case DMAR_PMEN_REG:
2148         assert(size == 4);
2149         vtd_set_long(s, addr, val);
2150         break;
2151 
2152     /* Root Table Address Register, 64-bit */
2153     case DMAR_RTADDR_REG:
2154         if (size == 4) {
2155             vtd_set_long(s, addr, val);
2156         } else {
2157             vtd_set_quad(s, addr, val);
2158         }
2159         break;
2160 
2161     case DMAR_RTADDR_REG_HI:
2162         assert(size == 4);
2163         vtd_set_long(s, addr, val);
2164         break;
2165 
2166     /* Invalidation Queue Tail Register, 64-bit */
2167     case DMAR_IQT_REG:
2168         if (size == 4) {
2169             vtd_set_long(s, addr, val);
2170         } else {
2171             vtd_set_quad(s, addr, val);
2172         }
2173         vtd_handle_iqt_write(s);
2174         break;
2175 
2176     case DMAR_IQT_REG_HI:
2177         assert(size == 4);
2178         vtd_set_long(s, addr, val);
2179         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2180         break;
2181 
2182     /* Invalidation Queue Address Register, 64-bit */
2183     case DMAR_IQA_REG:
2184         if (size == 4) {
2185             vtd_set_long(s, addr, val);
2186         } else {
2187             vtd_set_quad(s, addr, val);
2188         }
2189         break;
2190 
2191     case DMAR_IQA_REG_HI:
2192         assert(size == 4);
2193         vtd_set_long(s, addr, val);
2194         break;
2195 
2196     /* Invalidation Completion Status Register, 32-bit */
2197     case DMAR_ICS_REG:
2198         assert(size == 4);
2199         vtd_set_long(s, addr, val);
2200         vtd_handle_ics_write(s);
2201         break;
2202 
2203     /* Invalidation Event Control Register, 32-bit */
2204     case DMAR_IECTL_REG:
2205         assert(size == 4);
2206         vtd_set_long(s, addr, val);
2207         vtd_handle_iectl_write(s);
2208         break;
2209 
2210     /* Invalidation Event Data Register, 32-bit */
2211     case DMAR_IEDATA_REG:
2212         assert(size == 4);
2213         vtd_set_long(s, addr, val);
2214         break;
2215 
2216     /* Invalidation Event Address Register, 32-bit */
2217     case DMAR_IEADDR_REG:
2218         assert(size == 4);
2219         vtd_set_long(s, addr, val);
2220         break;
2221 
2222     /* Invalidation Event Upper Address Register, 32-bit */
2223     case DMAR_IEUADDR_REG:
2224         assert(size == 4);
2225         vtd_set_long(s, addr, val);
2226         break;
2227 
2228     /* Fault Recording Registers, 128-bit */
2229     case DMAR_FRCD_REG_0_0:
2230         if (size == 4) {
2231             vtd_set_long(s, addr, val);
2232         } else {
2233             vtd_set_quad(s, addr, val);
2234         }
2235         break;
2236 
2237     case DMAR_FRCD_REG_0_1:
2238         assert(size == 4);
2239         vtd_set_long(s, addr, val);
2240         break;
2241 
2242     case DMAR_FRCD_REG_0_2:
2243         if (size == 4) {
2244             vtd_set_long(s, addr, val);
2245         } else {
2246             vtd_set_quad(s, addr, val);
2247             /* May clear bit 127 (Fault), update PPF */
2248             vtd_update_fsts_ppf(s);
2249         }
2250         break;
2251 
2252     case DMAR_FRCD_REG_0_3:
2253         assert(size == 4);
2254         vtd_set_long(s, addr, val);
2255         /* May clear bit 127 (Fault), update PPF */
2256         vtd_update_fsts_ppf(s);
2257         break;
2258 
2259     case DMAR_IRTA_REG:
2260         if (size == 4) {
2261             vtd_set_long(s, addr, val);
2262         } else {
2263             vtd_set_quad(s, addr, val);
2264         }
2265         break;
2266 
2267     case DMAR_IRTA_REG_HI:
2268         assert(size == 4);
2269         vtd_set_long(s, addr, val);
2270         break;
2271 
2272     default:
2273         if (size == 4) {
2274             vtd_set_long(s, addr, val);
2275         } else {
2276             vtd_set_quad(s, addr, val);
2277         }
2278     }
2279 }
2280 
2281 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
2282                                          IOMMUAccessFlags flag)
2283 {
2284     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2285     IntelIOMMUState *s = vtd_as->iommu_state;
2286     IOMMUTLBEntry iotlb = {
2287         /* We'll fill in the rest later. */
2288         .target_as = &address_space_memory,
2289     };
2290     bool success;
2291 
2292     if (likely(s->dmar_enabled)) {
2293         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
2294                                          addr, flag & IOMMU_WO, &iotlb);
2295     } else {
2296         /* DMAR disabled, passthrough, use 4k-page*/
2297         iotlb.iova = addr & VTD_PAGE_MASK_4K;
2298         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
2299         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
2300         iotlb.perm = IOMMU_RW;
2301         success = true;
2302     }
2303 
2304     if (likely(success)) {
2305         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
2306                                  VTD_PCI_SLOT(vtd_as->devfn),
2307                                  VTD_PCI_FUNC(vtd_as->devfn),
2308                                  iotlb.iova, iotlb.translated_addr,
2309                                  iotlb.addr_mask);
2310     } else {
2311         trace_vtd_err_dmar_translate(pci_bus_num(vtd_as->bus),
2312                                      VTD_PCI_SLOT(vtd_as->devfn),
2313                                      VTD_PCI_FUNC(vtd_as->devfn),
2314                                      iotlb.iova);
2315     }
2316 
2317     return iotlb;
2318 }
2319 
2320 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
2321                                           IOMMUNotifierFlag old,
2322                                           IOMMUNotifierFlag new)
2323 {
2324     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
2325     IntelIOMMUState *s = vtd_as->iommu_state;
2326     IntelIOMMUNotifierNode *node = NULL;
2327     IntelIOMMUNotifierNode *next_node = NULL;
2328 
2329     if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) {
2330         error_report("We need to set caching-mode=1 for intel-iommu to enable "
2331                      "device assignment with IOMMU protection.");
2332         exit(1);
2333     }
2334 
2335     if (old == IOMMU_NOTIFIER_NONE) {
2336         node = g_malloc0(sizeof(*node));
2337         node->vtd_as = vtd_as;
2338         QLIST_INSERT_HEAD(&s->notifiers_list, node, next);
2339         return;
2340     }
2341 
2342     /* update notifier node with new flags */
2343     QLIST_FOREACH_SAFE(node, &s->notifiers_list, next, next_node) {
2344         if (node->vtd_as == vtd_as) {
2345             if (new == IOMMU_NOTIFIER_NONE) {
2346                 QLIST_REMOVE(node, next);
2347                 g_free(node);
2348             }
2349             return;
2350         }
2351     }
2352 }
2353 
2354 static int vtd_post_load(void *opaque, int version_id)
2355 {
2356     IntelIOMMUState *iommu = opaque;
2357 
2358     /*
2359      * Memory regions are dynamically turned on/off depending on
2360      * context entry configurations from the guest. After migration,
2361      * we need to make sure the memory regions are still correct.
2362      */
2363     vtd_switch_address_space_all(iommu);
2364 
2365     return 0;
2366 }
2367 
2368 static const VMStateDescription vtd_vmstate = {
2369     .name = "iommu-intel",
2370     .version_id = 1,
2371     .minimum_version_id = 1,
2372     .priority = MIG_PRI_IOMMU,
2373     .post_load = vtd_post_load,
2374     .fields = (VMStateField[]) {
2375         VMSTATE_UINT64(root, IntelIOMMUState),
2376         VMSTATE_UINT64(intr_root, IntelIOMMUState),
2377         VMSTATE_UINT64(iq, IntelIOMMUState),
2378         VMSTATE_UINT32(intr_size, IntelIOMMUState),
2379         VMSTATE_UINT16(iq_head, IntelIOMMUState),
2380         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
2381         VMSTATE_UINT16(iq_size, IntelIOMMUState),
2382         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
2383         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
2384         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
2385         VMSTATE_BOOL(root_extended, IntelIOMMUState),
2386         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
2387         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
2388         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
2389         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
2390         VMSTATE_END_OF_LIST()
2391     }
2392 };
2393 
2394 static const MemoryRegionOps vtd_mem_ops = {
2395     .read = vtd_mem_read,
2396     .write = vtd_mem_write,
2397     .endianness = DEVICE_LITTLE_ENDIAN,
2398     .impl = {
2399         .min_access_size = 4,
2400         .max_access_size = 8,
2401     },
2402     .valid = {
2403         .min_access_size = 4,
2404         .max_access_size = 8,
2405     },
2406 };
2407 
2408 static Property vtd_properties[] = {
2409     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
2410     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
2411                             ON_OFF_AUTO_AUTO),
2412     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
2413     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
2414     DEFINE_PROP_END_OF_LIST(),
2415 };
2416 
2417 /* Read IRTE entry with specific index */
2418 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
2419                         VTD_IR_TableEntry *entry, uint16_t sid)
2420 {
2421     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
2422         {0xffff, 0xfffb, 0xfff9, 0xfff8};
2423     dma_addr_t addr = 0x00;
2424     uint16_t mask, source_id;
2425     uint8_t bus, bus_max, bus_min;
2426 
2427     addr = iommu->intr_root + index * sizeof(*entry);
2428     if (dma_memory_read(&address_space_memory, addr, entry,
2429                         sizeof(*entry))) {
2430         trace_vtd_err("Memory read failed for IRTE.");
2431         return -VTD_FR_IR_ROOT_INVAL;
2432     }
2433 
2434     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
2435                           le64_to_cpu(entry->data[0]));
2436 
2437     if (!entry->irte.present) {
2438         trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2439                            le64_to_cpu(entry->data[0]));
2440         return -VTD_FR_IR_ENTRY_P;
2441     }
2442 
2443     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
2444         entry->irte.__reserved_2) {
2445         trace_vtd_err_irte(index, le64_to_cpu(entry->data[1]),
2446                            le64_to_cpu(entry->data[0]));
2447         return -VTD_FR_IR_IRTE_RSVD;
2448     }
2449 
2450     if (sid != X86_IOMMU_SID_INVALID) {
2451         /* Validate IRTE SID */
2452         source_id = le32_to_cpu(entry->irte.source_id);
2453         switch (entry->irte.sid_vtype) {
2454         case VTD_SVT_NONE:
2455             break;
2456 
2457         case VTD_SVT_ALL:
2458             mask = vtd_svt_mask[entry->irte.sid_q];
2459             if ((source_id & mask) != (sid & mask)) {
2460                 trace_vtd_err_irte_sid(index, sid, source_id);
2461                 return -VTD_FR_IR_SID_ERR;
2462             }
2463             break;
2464 
2465         case VTD_SVT_BUS:
2466             bus_max = source_id >> 8;
2467             bus_min = source_id & 0xff;
2468             bus = sid >> 8;
2469             if (bus > bus_max || bus < bus_min) {
2470                 trace_vtd_err_irte_sid_bus(index, bus, bus_min, bus_max);
2471                 return -VTD_FR_IR_SID_ERR;
2472             }
2473             break;
2474 
2475         default:
2476             trace_vtd_err_irte_svt(index, entry->irte.sid_vtype);
2477             /* Take this as verification failure. */
2478             return -VTD_FR_IR_SID_ERR;
2479             break;
2480         }
2481     }
2482 
2483     return 0;
2484 }
2485 
2486 /* Fetch IRQ information of specific IR index */
2487 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
2488                              VTDIrq *irq, uint16_t sid)
2489 {
2490     VTD_IR_TableEntry irte = {};
2491     int ret = 0;
2492 
2493     ret = vtd_irte_get(iommu, index, &irte, sid);
2494     if (ret) {
2495         return ret;
2496     }
2497 
2498     irq->trigger_mode = irte.irte.trigger_mode;
2499     irq->vector = irte.irte.vector;
2500     irq->delivery_mode = irte.irte.delivery_mode;
2501     irq->dest = le32_to_cpu(irte.irte.dest_id);
2502     if (!iommu->intr_eime) {
2503 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
2504 #define  VTD_IR_APIC_DEST_SHIFT        (8)
2505         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
2506             VTD_IR_APIC_DEST_SHIFT;
2507     }
2508     irq->dest_mode = irte.irte.dest_mode;
2509     irq->redir_hint = irte.irte.redir_hint;
2510 
2511     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
2512                        irq->delivery_mode, irq->dest, irq->dest_mode);
2513 
2514     return 0;
2515 }
2516 
2517 /* Generate one MSI message from VTDIrq info */
2518 static void vtd_generate_msi_message(VTDIrq *irq, MSIMessage *msg_out)
2519 {
2520     VTD_MSIMessage msg = {};
2521 
2522     /* Generate address bits */
2523     msg.dest_mode = irq->dest_mode;
2524     msg.redir_hint = irq->redir_hint;
2525     msg.dest = irq->dest;
2526     msg.__addr_hi = irq->dest & 0xffffff00;
2527     msg.__addr_head = cpu_to_le32(0xfee);
2528     /* Keep this from original MSI address bits */
2529     msg.__not_used = irq->msi_addr_last_bits;
2530 
2531     /* Generate data bits */
2532     msg.vector = irq->vector;
2533     msg.delivery_mode = irq->delivery_mode;
2534     msg.level = 1;
2535     msg.trigger_mode = irq->trigger_mode;
2536 
2537     msg_out->address = msg.msi_addr;
2538     msg_out->data = msg.msi_data;
2539 }
2540 
2541 /* Interrupt remapping for MSI/MSI-X entry */
2542 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
2543                                    MSIMessage *origin,
2544                                    MSIMessage *translated,
2545                                    uint16_t sid)
2546 {
2547     int ret = 0;
2548     VTD_IR_MSIAddress addr;
2549     uint16_t index;
2550     VTDIrq irq = {};
2551 
2552     assert(origin && translated);
2553 
2554     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
2555 
2556     if (!iommu || !iommu->intr_enabled) {
2557         memcpy(translated, origin, sizeof(*origin));
2558         goto out;
2559     }
2560 
2561     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
2562         trace_vtd_err("MSI address high 32 bits non-zero when "
2563                       "Interrupt Remapping enabled.");
2564         return -VTD_FR_IR_REQ_RSVD;
2565     }
2566 
2567     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
2568     if (addr.addr.__head != 0xfee) {
2569         trace_vtd_err("MSI addr low 32 bit invalid.");
2570         return -VTD_FR_IR_REQ_RSVD;
2571     }
2572 
2573     /* This is compatible mode. */
2574     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
2575         memcpy(translated, origin, sizeof(*origin));
2576         goto out;
2577     }
2578 
2579     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
2580 
2581 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
2582 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
2583 
2584     if (addr.addr.sub_valid) {
2585         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
2586         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
2587     }
2588 
2589     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
2590     if (ret) {
2591         return ret;
2592     }
2593 
2594     if (addr.addr.sub_valid) {
2595         trace_vtd_ir_remap_type("MSI");
2596         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
2597             trace_vtd_err_ir_msi_invalid(sid, origin->address, origin->data);
2598             return -VTD_FR_IR_REQ_RSVD;
2599         }
2600     } else {
2601         uint8_t vector = origin->data & 0xff;
2602         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
2603 
2604         trace_vtd_ir_remap_type("IOAPIC");
2605         /* IOAPIC entry vector should be aligned with IRTE vector
2606          * (see vt-d spec 5.1.5.1). */
2607         if (vector != irq.vector) {
2608             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
2609         }
2610 
2611         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
2612          * (see vt-d spec 5.1.5.1). */
2613         if (trigger_mode != irq.trigger_mode) {
2614             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
2615                                       irq.trigger_mode);
2616         }
2617     }
2618 
2619     /*
2620      * We'd better keep the last two bits, assuming that guest OS
2621      * might modify it. Keep it does not hurt after all.
2622      */
2623     irq.msi_addr_last_bits = addr.addr.__not_care;
2624 
2625     /* Translate VTDIrq to MSI message */
2626     vtd_generate_msi_message(&irq, translated);
2627 
2628 out:
2629     trace_vtd_ir_remap_msi(origin->address, origin->data,
2630                            translated->address, translated->data);
2631     return 0;
2632 }
2633 
2634 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
2635                          MSIMessage *dst, uint16_t sid)
2636 {
2637     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
2638                                    src, dst, sid);
2639 }
2640 
2641 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
2642                                    uint64_t *data, unsigned size,
2643                                    MemTxAttrs attrs)
2644 {
2645     return MEMTX_OK;
2646 }
2647 
2648 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
2649                                     uint64_t value, unsigned size,
2650                                     MemTxAttrs attrs)
2651 {
2652     int ret = 0;
2653     MSIMessage from = {}, to = {};
2654     uint16_t sid = X86_IOMMU_SID_INVALID;
2655 
2656     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
2657     from.data = (uint32_t) value;
2658 
2659     if (!attrs.unspecified) {
2660         /* We have explicit Source ID */
2661         sid = attrs.requester_id;
2662     }
2663 
2664     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
2665     if (ret) {
2666         /* TODO: report error */
2667         /* Drop this interrupt */
2668         return MEMTX_ERROR;
2669     }
2670 
2671     apic_get_class()->send_msi(&to);
2672 
2673     return MEMTX_OK;
2674 }
2675 
2676 static const MemoryRegionOps vtd_mem_ir_ops = {
2677     .read_with_attrs = vtd_mem_ir_read,
2678     .write_with_attrs = vtd_mem_ir_write,
2679     .endianness = DEVICE_LITTLE_ENDIAN,
2680     .impl = {
2681         .min_access_size = 4,
2682         .max_access_size = 4,
2683     },
2684     .valid = {
2685         .min_access_size = 4,
2686         .max_access_size = 4,
2687     },
2688 };
2689 
2690 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
2691 {
2692     uintptr_t key = (uintptr_t)bus;
2693     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
2694     VTDAddressSpace *vtd_dev_as;
2695     char name[128];
2696 
2697     if (!vtd_bus) {
2698         uintptr_t *new_key = g_malloc(sizeof(*new_key));
2699         *new_key = (uintptr_t)bus;
2700         /* No corresponding free() */
2701         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
2702                             PCI_DEVFN_MAX);
2703         vtd_bus->bus = bus;
2704         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
2705     }
2706 
2707     vtd_dev_as = vtd_bus->dev_as[devfn];
2708 
2709     if (!vtd_dev_as) {
2710         snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn);
2711         vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace));
2712 
2713         vtd_dev_as->bus = bus;
2714         vtd_dev_as->devfn = (uint8_t)devfn;
2715         vtd_dev_as->iommu_state = s;
2716         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
2717 
2718         /*
2719          * Memory region relationships looks like (Address range shows
2720          * only lower 32 bits to make it short in length...):
2721          *
2722          * |-----------------+-------------------+----------|
2723          * | Name            | Address range     | Priority |
2724          * |-----------------+-------------------+----------+
2725          * | vtd_root        | 00000000-ffffffff |        0 |
2726          * |  intel_iommu    | 00000000-ffffffff |        1 |
2727          * |  vtd_sys_alias  | 00000000-ffffffff |        1 |
2728          * |  intel_iommu_ir | fee00000-feefffff |       64 |
2729          * |-----------------+-------------------+----------|
2730          *
2731          * We enable/disable DMAR by switching enablement for
2732          * vtd_sys_alias and intel_iommu regions. IR region is always
2733          * enabled.
2734          */
2735         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
2736                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
2737                                  "intel_iommu_dmar",
2738                                  UINT64_MAX);
2739         memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s),
2740                                  "vtd_sys_alias", get_system_memory(),
2741                                  0, memory_region_size(get_system_memory()));
2742         memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s),
2743                               &vtd_mem_ir_ops, s, "intel_iommu_ir",
2744                               VTD_INTERRUPT_ADDR_SIZE);
2745         memory_region_init(&vtd_dev_as->root, OBJECT(s),
2746                            "vtd_root", UINT64_MAX);
2747         memory_region_add_subregion_overlap(&vtd_dev_as->root,
2748                                             VTD_INTERRUPT_ADDR_FIRST,
2749                                             &vtd_dev_as->iommu_ir, 64);
2750         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name);
2751         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2752                                             &vtd_dev_as->sys_alias, 1);
2753         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
2754                                             MEMORY_REGION(&vtd_dev_as->iommu),
2755                                             1);
2756         vtd_switch_address_space(vtd_dev_as);
2757     }
2758     return vtd_dev_as;
2759 }
2760 
2761 /* Unmap the whole range in the notifier's scope. */
2762 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
2763 {
2764     IOMMUTLBEntry entry;
2765     hwaddr size;
2766     hwaddr start = n->start;
2767     hwaddr end = n->end;
2768 
2769     /*
2770      * Note: all the codes in this function has a assumption that IOVA
2771      * bits are no more than VTD_MGAW bits (which is restricted by
2772      * VT-d spec), otherwise we need to consider overflow of 64 bits.
2773      */
2774 
2775     if (end > VTD_ADDRESS_SIZE) {
2776         /*
2777          * Don't need to unmap regions that is bigger than the whole
2778          * VT-d supported address space size
2779          */
2780         end = VTD_ADDRESS_SIZE;
2781     }
2782 
2783     assert(start <= end);
2784     size = end - start;
2785 
2786     if (ctpop64(size) != 1) {
2787         /*
2788          * This size cannot format a correct mask. Let's enlarge it to
2789          * suite the minimum available mask.
2790          */
2791         int n = 64 - clz64(size);
2792         if (n > VTD_MGAW) {
2793             /* should not happen, but in case it happens, limit it */
2794             n = VTD_MGAW;
2795         }
2796         size = 1ULL << n;
2797     }
2798 
2799     entry.target_as = &address_space_memory;
2800     /* Adjust iova for the size */
2801     entry.iova = n->start & ~(size - 1);
2802     /* This field is meaningless for unmap */
2803     entry.translated_addr = 0;
2804     entry.perm = IOMMU_NONE;
2805     entry.addr_mask = size - 1;
2806 
2807     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
2808                              VTD_PCI_SLOT(as->devfn),
2809                              VTD_PCI_FUNC(as->devfn),
2810                              entry.iova, size);
2811 
2812     memory_region_notify_one(n, &entry);
2813 }
2814 
2815 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
2816 {
2817     IntelIOMMUNotifierNode *node;
2818     VTDAddressSpace *vtd_as;
2819     IOMMUNotifier *n;
2820 
2821     QLIST_FOREACH(node, &s->notifiers_list, next) {
2822         vtd_as = node->vtd_as;
2823         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
2824             vtd_address_space_unmap(vtd_as, n);
2825         }
2826     }
2827 }
2828 
2829 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private)
2830 {
2831     memory_region_notify_one((IOMMUNotifier *)private, entry);
2832     return 0;
2833 }
2834 
2835 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
2836 {
2837     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
2838     IntelIOMMUState *s = vtd_as->iommu_state;
2839     uint8_t bus_n = pci_bus_num(vtd_as->bus);
2840     VTDContextEntry ce;
2841 
2842     /*
2843      * The replay can be triggered by either a invalidation or a newly
2844      * created entry. No matter what, we release existing mappings
2845      * (it means flushing caches for UNMAP-only registers).
2846      */
2847     vtd_address_space_unmap(vtd_as, n);
2848 
2849     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
2850         trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn),
2851                                   PCI_FUNC(vtd_as->devfn),
2852                                   VTD_CONTEXT_ENTRY_DID(ce.hi),
2853                                   ce.hi, ce.lo);
2854         vtd_page_walk(&ce, 0, ~0ULL, vtd_replay_hook, (void *)n, false);
2855     } else {
2856         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
2857                                     PCI_FUNC(vtd_as->devfn));
2858     }
2859 
2860     return;
2861 }
2862 
2863 /* Do the initialization. It will also be called when reset, so pay
2864  * attention when adding new initialization stuff.
2865  */
2866 static void vtd_init(IntelIOMMUState *s)
2867 {
2868     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2869 
2870     memset(s->csr, 0, DMAR_REG_SIZE);
2871     memset(s->wmask, 0, DMAR_REG_SIZE);
2872     memset(s->w1cmask, 0, DMAR_REG_SIZE);
2873     memset(s->womask, 0, DMAR_REG_SIZE);
2874 
2875     s->root = 0;
2876     s->root_extended = false;
2877     s->dmar_enabled = false;
2878     s->iq_head = 0;
2879     s->iq_tail = 0;
2880     s->iq = 0;
2881     s->iq_size = 0;
2882     s->qi_enabled = false;
2883     s->iq_last_desc_type = VTD_INV_DESC_NONE;
2884     s->next_frcd_reg = 0;
2885     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
2886              VTD_CAP_SAGAW | VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS;
2887     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
2888 
2889     if (x86_iommu->intr_supported) {
2890         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
2891         if (s->intr_eim == ON_OFF_AUTO_ON) {
2892             s->ecap |= VTD_ECAP_EIM;
2893         }
2894         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
2895     }
2896 
2897     if (x86_iommu->dt_supported) {
2898         s->ecap |= VTD_ECAP_DT;
2899     }
2900 
2901     if (x86_iommu->pt_supported) {
2902         s->ecap |= VTD_ECAP_PT;
2903     }
2904 
2905     if (s->caching_mode) {
2906         s->cap |= VTD_CAP_CM;
2907     }
2908 
2909     vtd_reset_context_cache(s);
2910     vtd_reset_iotlb(s);
2911 
2912     /* Define registers with default values and bit semantics */
2913     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
2914     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
2915     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
2916     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
2917     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
2918     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
2919     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
2920     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
2921     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
2922 
2923     /* Advanced Fault Logging not supported */
2924     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
2925     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2926     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
2927     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
2928 
2929     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
2930      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
2931      */
2932     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
2933 
2934     /* Treated as RO for implementations that PLMR and PHMR fields reported
2935      * as Clear in the CAP_REG.
2936      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
2937      */
2938     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
2939 
2940     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
2941     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
2942     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0);
2943     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
2944     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
2945     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
2946     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
2947     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
2948     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
2949 
2950     /* IOTLB registers */
2951     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
2952     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
2953     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
2954 
2955     /* Fault Recording Registers, 128-bit */
2956     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
2957     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
2958 
2959     /*
2960      * Interrupt remapping registers.
2961      */
2962     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
2963 }
2964 
2965 /* Should not reset address_spaces when reset because devices will still use
2966  * the address space they got at first (won't ask the bus again).
2967  */
2968 static void vtd_reset(DeviceState *dev)
2969 {
2970     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
2971 
2972     vtd_init(s);
2973 
2974     /*
2975      * When device reset, throw away all mappings and external caches
2976      */
2977     vtd_address_space_unmap_all(s);
2978 }
2979 
2980 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
2981 {
2982     IntelIOMMUState *s = opaque;
2983     VTDAddressSpace *vtd_as;
2984 
2985     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
2986 
2987     vtd_as = vtd_find_add_as(s, bus, devfn);
2988     return &vtd_as->as;
2989 }
2990 
2991 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
2992 {
2993     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2994 
2995     /* Currently Intel IOMMU IR only support "kernel-irqchip={off|split}" */
2996     if (x86_iommu->intr_supported && kvm_irqchip_in_kernel() &&
2997         !kvm_irqchip_is_split()) {
2998         error_setg(errp, "Intel Interrupt Remapping cannot work with "
2999                          "kernel-irqchip=on, please use 'split|off'.");
3000         return false;
3001     }
3002     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu->intr_supported) {
3003         error_setg(errp, "eim=on cannot be selected without intremap=on");
3004         return false;
3005     }
3006 
3007     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3008         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3009                       && x86_iommu->intr_supported ?
3010                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3011     }
3012     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3013         if (!kvm_irqchip_in_kernel()) {
3014             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3015             return false;
3016         }
3017         if (!kvm_enable_x2apic()) {
3018             error_setg(errp, "eim=on requires support on the KVM side"
3019                              "(X2APIC_API, first shipped in v4.7)");
3020             return false;
3021         }
3022     }
3023 
3024     return true;
3025 }
3026 
3027 static void vtd_realize(DeviceState *dev, Error **errp)
3028 {
3029     MachineState *ms = MACHINE(qdev_get_machine());
3030     MachineClass *mc = MACHINE_GET_CLASS(ms);
3031     PCMachineState *pcms =
3032         PC_MACHINE(object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE));
3033     PCIBus *bus;
3034     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3035     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
3036 
3037     if (!pcms) {
3038         error_setg(errp, "Machine-type '%s' not supported by intel-iommu",
3039                    mc->name);
3040         return;
3041     }
3042 
3043     bus = pcms->bus;
3044     x86_iommu->type = TYPE_INTEL;
3045 
3046     if (!vtd_decide_config(s, errp)) {
3047         return;
3048     }
3049 
3050     QLIST_INIT(&s->notifiers_list);
3051     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3052     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3053                           "intel_iommu", DMAR_REG_SIZE);
3054     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3055     /* No corresponding destroy */
3056     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3057                                      g_free, g_free);
3058     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3059                                               g_free, g_free);
3060     vtd_init(s);
3061     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3062     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3063     /* Pseudo address space under root PCI bus. */
3064     pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3065 }
3066 
3067 static void vtd_class_init(ObjectClass *klass, void *data)
3068 {
3069     DeviceClass *dc = DEVICE_CLASS(klass);
3070     X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass);
3071 
3072     dc->reset = vtd_reset;
3073     dc->vmsd = &vtd_vmstate;
3074     dc->props = vtd_properties;
3075     dc->hotpluggable = false;
3076     x86_class->realize = vtd_realize;
3077     x86_class->int_remap = vtd_int_remap;
3078     /* Supported by the pc-q35-* machine types */
3079     dc->user_creatable = true;
3080 }
3081 
3082 static const TypeInfo vtd_info = {
3083     .name          = TYPE_INTEL_IOMMU_DEVICE,
3084     .parent        = TYPE_X86_IOMMU_DEVICE,
3085     .instance_size = sizeof(IntelIOMMUState),
3086     .class_init    = vtd_class_init,
3087 };
3088 
3089 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3090                                                      void *data)
3091 {
3092     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3093 
3094     imrc->translate = vtd_iommu_translate;
3095     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3096     imrc->replay = vtd_iommu_replay;
3097 }
3098 
3099 static const TypeInfo vtd_iommu_memory_region_info = {
3100     .parent = TYPE_IOMMU_MEMORY_REGION,
3101     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3102     .class_init = vtd_iommu_memory_region_class_init,
3103 };
3104 
3105 static void vtd_register_types(void)
3106 {
3107     type_register_static(&vtd_info);
3108     type_register_static(&vtd_iommu_memory_region_info);
3109 }
3110 
3111 type_init(vtd_register_types)
3112