xref: /openbmc/qemu/hw/i386/intel_iommu.c (revision 4d84bb6c)
1 /*
2  * QEMU emulation of an Intel IOMMU (VT-d)
3  *   (DMA Remapping device)
4  *
5  * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
6  * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12 
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17 
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qapi/error.h"
26 #include "hw/sysbus.h"
27 #include "intel_iommu_internal.h"
28 #include "hw/pci/pci.h"
29 #include "hw/pci/pci_bus.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic-msidef.h"
33 #include "hw/i386/x86-iommu.h"
34 #include "hw/pci-host/q35.h"
35 #include "sysemu/kvm.h"
36 #include "sysemu/dma.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/i386/apic_internal.h"
39 #include "kvm/kvm_i386.h"
40 #include "migration/vmstate.h"
41 #include "trace.h"
42 
43 /* context entry operations */
44 #define VTD_CE_GET_RID2PASID(ce) \
45     ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK)
46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \
47     ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK)
48 
49 /* pe operations */
50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT)
51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW))
52 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\
53     if (ret_fr) {                                                             \
54         ret_fr = -ret_fr;                                                     \
55         if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {                   \
56             trace_vtd_fault_disabled();                                       \
57         } else {                                                              \
58             vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);      \
59         }                                                                     \
60         goto error;                                                           \
61     }                                                                         \
62 }
63 
64 static void vtd_address_space_refresh_all(IntelIOMMUState *s);
65 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n);
66 
67 static void vtd_panic_require_caching_mode(void)
68 {
69     error_report("We need to set caching-mode=on for intel-iommu to enable "
70                  "device assignment with IOMMU protection.");
71     exit(1);
72 }
73 
74 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
75                             uint64_t wmask, uint64_t w1cmask)
76 {
77     stq_le_p(&s->csr[addr], val);
78     stq_le_p(&s->wmask[addr], wmask);
79     stq_le_p(&s->w1cmask[addr], w1cmask);
80 }
81 
82 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
83 {
84     stq_le_p(&s->womask[addr], mask);
85 }
86 
87 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
88                             uint32_t wmask, uint32_t w1cmask)
89 {
90     stl_le_p(&s->csr[addr], val);
91     stl_le_p(&s->wmask[addr], wmask);
92     stl_le_p(&s->w1cmask[addr], w1cmask);
93 }
94 
95 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
96 {
97     stl_le_p(&s->womask[addr], mask);
98 }
99 
100 /* "External" get/set operations */
101 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
102 {
103     uint64_t oldval = ldq_le_p(&s->csr[addr]);
104     uint64_t wmask = ldq_le_p(&s->wmask[addr]);
105     uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
106     stq_le_p(&s->csr[addr],
107              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
108 }
109 
110 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
111 {
112     uint32_t oldval = ldl_le_p(&s->csr[addr]);
113     uint32_t wmask = ldl_le_p(&s->wmask[addr]);
114     uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
115     stl_le_p(&s->csr[addr],
116              ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
117 }
118 
119 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
120 {
121     uint64_t val = ldq_le_p(&s->csr[addr]);
122     uint64_t womask = ldq_le_p(&s->womask[addr]);
123     return val & ~womask;
124 }
125 
126 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
127 {
128     uint32_t val = ldl_le_p(&s->csr[addr]);
129     uint32_t womask = ldl_le_p(&s->womask[addr]);
130     return val & ~womask;
131 }
132 
133 /* "Internal" get/set operations */
134 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
135 {
136     return ldq_le_p(&s->csr[addr]);
137 }
138 
139 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
140 {
141     return ldl_le_p(&s->csr[addr]);
142 }
143 
144 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
145 {
146     stq_le_p(&s->csr[addr], val);
147 }
148 
149 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
150                                         uint32_t clear, uint32_t mask)
151 {
152     uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
153     stl_le_p(&s->csr[addr], new_val);
154     return new_val;
155 }
156 
157 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
158                                         uint64_t clear, uint64_t mask)
159 {
160     uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
161     stq_le_p(&s->csr[addr], new_val);
162     return new_val;
163 }
164 
165 static inline void vtd_iommu_lock(IntelIOMMUState *s)
166 {
167     qemu_mutex_lock(&s->iommu_lock);
168 }
169 
170 static inline void vtd_iommu_unlock(IntelIOMMUState *s)
171 {
172     qemu_mutex_unlock(&s->iommu_lock);
173 }
174 
175 static void vtd_update_scalable_state(IntelIOMMUState *s)
176 {
177     uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
178 
179     if (s->scalable_mode) {
180         s->root_scalable = val & VTD_RTADDR_SMT;
181     }
182 }
183 
184 static void vtd_update_iq_dw(IntelIOMMUState *s)
185 {
186     uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG);
187 
188     if (s->ecap & VTD_ECAP_SMTS &&
189         val & VTD_IQA_DW_MASK) {
190         s->iq_dw = true;
191     } else {
192         s->iq_dw = false;
193     }
194 }
195 
196 /* Whether the address space needs to notify new mappings */
197 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as)
198 {
199     return as->notifier_flags & IOMMU_NOTIFIER_MAP;
200 }
201 
202 /* GHashTable functions */
203 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2)
204 {
205     return *((const uint64_t *)v1) == *((const uint64_t *)v2);
206 }
207 
208 static guint vtd_uint64_hash(gconstpointer v)
209 {
210     return (guint)*(const uint64_t *)v;
211 }
212 
213 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value,
214                                           gpointer user_data)
215 {
216     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
217     uint16_t domain_id = *(uint16_t *)user_data;
218     return entry->domain_id == domain_id;
219 }
220 
221 /* The shift of an addr for a certain level of paging structure */
222 static inline uint32_t vtd_slpt_level_shift(uint32_t level)
223 {
224     assert(level != 0);
225     return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
226 }
227 
228 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level)
229 {
230     return ~((1ULL << vtd_slpt_level_shift(level)) - 1);
231 }
232 
233 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value,
234                                         gpointer user_data)
235 {
236     VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value;
237     VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data;
238     uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask;
239     uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K;
240     return (entry->domain_id == info->domain_id) &&
241             (((entry->gfn & info->mask) == gfn) ||
242              (entry->gfn == gfn_tlb));
243 }
244 
245 /* Reset all the gen of VTDAddressSpace to zero and set the gen of
246  * IntelIOMMUState to 1.  Must be called with IOMMU lock held.
247  */
248 static void vtd_reset_context_cache_locked(IntelIOMMUState *s)
249 {
250     VTDAddressSpace *vtd_as;
251     VTDBus *vtd_bus;
252     GHashTableIter bus_it;
253     uint32_t devfn_it;
254 
255     trace_vtd_context_cache_reset();
256 
257     g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr);
258 
259     while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) {
260         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
261             vtd_as = vtd_bus->dev_as[devfn_it];
262             if (!vtd_as) {
263                 continue;
264             }
265             vtd_as->context_cache_entry.context_cache_gen = 0;
266         }
267     }
268     s->context_cache_gen = 1;
269 }
270 
271 /* Must be called with IOMMU lock held. */
272 static void vtd_reset_iotlb_locked(IntelIOMMUState *s)
273 {
274     assert(s->iotlb);
275     g_hash_table_remove_all(s->iotlb);
276 }
277 
278 static void vtd_reset_iotlb(IntelIOMMUState *s)
279 {
280     vtd_iommu_lock(s);
281     vtd_reset_iotlb_locked(s);
282     vtd_iommu_unlock(s);
283 }
284 
285 static void vtd_reset_caches(IntelIOMMUState *s)
286 {
287     vtd_iommu_lock(s);
288     vtd_reset_iotlb_locked(s);
289     vtd_reset_context_cache_locked(s);
290     vtd_iommu_unlock(s);
291 }
292 
293 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id,
294                                   uint32_t level)
295 {
296     return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) |
297            ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT);
298 }
299 
300 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level)
301 {
302     return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K;
303 }
304 
305 /* Must be called with IOMMU lock held */
306 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id,
307                                        hwaddr addr)
308 {
309     VTDIOTLBEntry *entry;
310     uint64_t key;
311     int level;
312 
313     for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) {
314         key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level),
315                                 source_id, level);
316         entry = g_hash_table_lookup(s->iotlb, &key);
317         if (entry) {
318             goto out;
319         }
320     }
321 
322 out:
323     return entry;
324 }
325 
326 /* Must be with IOMMU lock held */
327 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id,
328                              uint16_t domain_id, hwaddr addr, uint64_t slpte,
329                              uint8_t access_flags, uint32_t level)
330 {
331     VTDIOTLBEntry *entry = g_malloc(sizeof(*entry));
332     uint64_t *key = g_malloc(sizeof(*key));
333     uint64_t gfn = vtd_get_iotlb_gfn(addr, level);
334 
335     trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id);
336     if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) {
337         trace_vtd_iotlb_reset("iotlb exceeds size limit");
338         vtd_reset_iotlb_locked(s);
339     }
340 
341     entry->gfn = gfn;
342     entry->domain_id = domain_id;
343     entry->slpte = slpte;
344     entry->access_flags = access_flags;
345     entry->mask = vtd_slpt_level_page_mask(level);
346     *key = vtd_get_iotlb_key(gfn, source_id, level);
347     g_hash_table_replace(s->iotlb, key, entry);
348 }
349 
350 /* Given the reg addr of both the message data and address, generate an
351  * interrupt via MSI.
352  */
353 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
354                                    hwaddr mesg_data_reg)
355 {
356     MSIMessage msi;
357 
358     assert(mesg_data_reg < DMAR_REG_SIZE);
359     assert(mesg_addr_reg < DMAR_REG_SIZE);
360 
361     msi.address = vtd_get_long_raw(s, mesg_addr_reg);
362     msi.data = vtd_get_long_raw(s, mesg_data_reg);
363 
364     trace_vtd_irq_generate(msi.address, msi.data);
365 
366     apic_get_class()->send_msi(&msi);
367 }
368 
369 /* Generate a fault event to software via MSI if conditions are met.
370  * Notice that the value of FSTS_REG being passed to it should be the one
371  * before any update.
372  */
373 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
374 {
375     if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
376         pre_fsts & VTD_FSTS_IQE) {
377         error_report_once("There are previous interrupt conditions "
378                           "to be serviced by software, fault event "
379                           "is not generated");
380         return;
381     }
382     vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
383     if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
384         error_report_once("Interrupt Mask set, irq is not generated");
385     } else {
386         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
387         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
388     }
389 }
390 
391 /* Check if the Fault (F) field of the Fault Recording Register referenced by
392  * @index is Set.
393  */
394 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
395 {
396     /* Each reg is 128-bit */
397     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
398     addr += 8; /* Access the high 64-bit half */
399 
400     assert(index < DMAR_FRCD_REG_NR);
401 
402     return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
403 }
404 
405 /* Update the PPF field of Fault Status Register.
406  * Should be called whenever change the F field of any fault recording
407  * registers.
408  */
409 static void vtd_update_fsts_ppf(IntelIOMMUState *s)
410 {
411     uint32_t i;
412     uint32_t ppf_mask = 0;
413 
414     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
415         if (vtd_is_frcd_set(s, i)) {
416             ppf_mask = VTD_FSTS_PPF;
417             break;
418         }
419     }
420     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
421     trace_vtd_fsts_ppf(!!ppf_mask);
422 }
423 
424 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
425 {
426     /* Each reg is 128-bit */
427     hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
428     addr += 8; /* Access the high 64-bit half */
429 
430     assert(index < DMAR_FRCD_REG_NR);
431 
432     vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
433     vtd_update_fsts_ppf(s);
434 }
435 
436 /* Must not update F field now, should be done later */
437 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
438                             uint16_t source_id, hwaddr addr,
439                             VTDFaultReason fault, bool is_write)
440 {
441     uint64_t hi = 0, lo;
442     hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
443 
444     assert(index < DMAR_FRCD_REG_NR);
445 
446     lo = VTD_FRCD_FI(addr);
447     hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
448     if (!is_write) {
449         hi |= VTD_FRCD_T;
450     }
451     vtd_set_quad_raw(s, frcd_reg_addr, lo);
452     vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
453 
454     trace_vtd_frr_new(index, hi, lo);
455 }
456 
457 /* Try to collapse multiple pending faults from the same requester */
458 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
459 {
460     uint32_t i;
461     uint64_t frcd_reg;
462     hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
463 
464     for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
465         frcd_reg = vtd_get_quad_raw(s, addr);
466         if ((frcd_reg & VTD_FRCD_F) &&
467             ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
468             return true;
469         }
470         addr += 16; /* 128-bit for each */
471     }
472     return false;
473 }
474 
475 /* Log and report an DMAR (address translation) fault to software */
476 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
477                                   hwaddr addr, VTDFaultReason fault,
478                                   bool is_write)
479 {
480     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
481 
482     assert(fault < VTD_FR_MAX);
483 
484     trace_vtd_dmar_fault(source_id, fault, addr, is_write);
485 
486     if (fsts_reg & VTD_FSTS_PFO) {
487         error_report_once("New fault is not recorded due to "
488                           "Primary Fault Overflow");
489         return;
490     }
491 
492     if (vtd_try_collapse_fault(s, source_id)) {
493         error_report_once("New fault is not recorded due to "
494                           "compression of faults");
495         return;
496     }
497 
498     if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
499         error_report_once("Next Fault Recording Reg is used, "
500                           "new fault is not recorded, set PFO field");
501         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
502         return;
503     }
504 
505     vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
506 
507     if (fsts_reg & VTD_FSTS_PPF) {
508         error_report_once("There are pending faults already, "
509                           "fault event is not generated");
510         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
511         s->next_frcd_reg++;
512         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
513             s->next_frcd_reg = 0;
514         }
515     } else {
516         vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
517                                 VTD_FSTS_FRI(s->next_frcd_reg));
518         vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
519         s->next_frcd_reg++;
520         if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
521             s->next_frcd_reg = 0;
522         }
523         /* This case actually cause the PPF to be Set.
524          * So generate fault event (interrupt).
525          */
526          vtd_generate_fault_event(s, fsts_reg);
527     }
528 }
529 
530 /* Handle Invalidation Queue Errors of queued invalidation interface error
531  * conditions.
532  */
533 static void vtd_handle_inv_queue_error(IntelIOMMUState *s)
534 {
535     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
536 
537     vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE);
538     vtd_generate_fault_event(s, fsts_reg);
539 }
540 
541 /* Set the IWC field and try to generate an invalidation completion interrupt */
542 static void vtd_generate_completion_event(IntelIOMMUState *s)
543 {
544     if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) {
545         trace_vtd_inv_desc_wait_irq("One pending, skip current");
546         return;
547     }
548     vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC);
549     vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP);
550     if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) {
551         trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, "
552                                     "new event not generated");
553         return;
554     } else {
555         /* Generate the interrupt event */
556         trace_vtd_inv_desc_wait_irq("Generating complete event");
557         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
558         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
559     }
560 }
561 
562 static inline bool vtd_root_entry_present(IntelIOMMUState *s,
563                                           VTDRootEntry *re,
564                                           uint8_t devfn)
565 {
566     if (s->root_scalable && devfn > UINT8_MAX / 2) {
567         return re->hi & VTD_ROOT_ENTRY_P;
568     }
569 
570     return re->lo & VTD_ROOT_ENTRY_P;
571 }
572 
573 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
574                               VTDRootEntry *re)
575 {
576     dma_addr_t addr;
577 
578     addr = s->root + index * sizeof(*re);
579     if (dma_memory_read(&address_space_memory, addr,
580                         re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) {
581         re->lo = 0;
582         return -VTD_FR_ROOT_TABLE_INV;
583     }
584     re->lo = le64_to_cpu(re->lo);
585     re->hi = le64_to_cpu(re->hi);
586     return 0;
587 }
588 
589 static inline bool vtd_ce_present(VTDContextEntry *context)
590 {
591     return context->lo & VTD_CONTEXT_ENTRY_P;
592 }
593 
594 static int vtd_get_context_entry_from_root(IntelIOMMUState *s,
595                                            VTDRootEntry *re,
596                                            uint8_t index,
597                                            VTDContextEntry *ce)
598 {
599     dma_addr_t addr, ce_size;
600 
601     /* we have checked that root entry is present */
602     ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE :
603               VTD_CTX_ENTRY_LEGACY_SIZE;
604 
605     if (s->root_scalable && index > UINT8_MAX / 2) {
606         index = index & (~VTD_DEVFN_CHECK_MASK);
607         addr = re->hi & VTD_ROOT_ENTRY_CTP;
608     } else {
609         addr = re->lo & VTD_ROOT_ENTRY_CTP;
610     }
611 
612     addr = addr + index * ce_size;
613     if (dma_memory_read(&address_space_memory, addr,
614                         ce, ce_size, MEMTXATTRS_UNSPECIFIED)) {
615         return -VTD_FR_CONTEXT_TABLE_INV;
616     }
617 
618     ce->lo = le64_to_cpu(ce->lo);
619     ce->hi = le64_to_cpu(ce->hi);
620     if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) {
621         ce->val[2] = le64_to_cpu(ce->val[2]);
622         ce->val[3] = le64_to_cpu(ce->val[3]);
623     }
624     return 0;
625 }
626 
627 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce)
628 {
629     return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
630 }
631 
632 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw)
633 {
634     return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw);
635 }
636 
637 /* Whether the pte indicates the address of the page frame */
638 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
639 {
640     return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
641 }
642 
643 /* Get the content of a spte located in @base_addr[@index] */
644 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
645 {
646     uint64_t slpte;
647 
648     assert(index < VTD_SL_PT_ENTRY_NR);
649 
650     if (dma_memory_read(&address_space_memory,
651                         base_addr + index * sizeof(slpte),
652                         &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) {
653         slpte = (uint64_t)-1;
654         return slpte;
655     }
656     slpte = le64_to_cpu(slpte);
657     return slpte;
658 }
659 
660 /* Given an iova and the level of paging structure, return the offset
661  * of current level.
662  */
663 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level)
664 {
665     return (iova >> vtd_slpt_level_shift(level)) &
666             ((1ULL << VTD_SL_LEVEL_BITS) - 1);
667 }
668 
669 /* Check Capability Register to see if the @level of page-table is supported */
670 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
671 {
672     return VTD_CAP_SAGAW_MASK & s->cap &
673            (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
674 }
675 
676 /* Return true if check passed, otherwise false */
677 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu,
678                                      VTDPASIDEntry *pe)
679 {
680     switch (VTD_PE_GET_TYPE(pe)) {
681     case VTD_SM_PASID_ENTRY_FLT:
682     case VTD_SM_PASID_ENTRY_SLT:
683     case VTD_SM_PASID_ENTRY_NESTED:
684         break;
685     case VTD_SM_PASID_ENTRY_PT:
686         if (!x86_iommu->pt_supported) {
687             return false;
688         }
689         break;
690     default:
691         /* Unknown type */
692         return false;
693     }
694     return true;
695 }
696 
697 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire)
698 {
699     return pdire->val & 1;
700 }
701 
702 /**
703  * Caller of this function should check present bit if wants
704  * to use pdir entry for further usage except for fpd bit check.
705  */
706 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base,
707                                          uint32_t pasid,
708                                          VTDPASIDDirEntry *pdire)
709 {
710     uint32_t index;
711     dma_addr_t addr, entry_size;
712 
713     index = VTD_PASID_DIR_INDEX(pasid);
714     entry_size = VTD_PASID_DIR_ENTRY_SIZE;
715     addr = pasid_dir_base + index * entry_size;
716     if (dma_memory_read(&address_space_memory, addr,
717                         pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) {
718         return -VTD_FR_PASID_TABLE_INV;
719     }
720 
721     return 0;
722 }
723 
724 static inline bool vtd_pe_present(VTDPASIDEntry *pe)
725 {
726     return pe->val[0] & VTD_PASID_ENTRY_P;
727 }
728 
729 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s,
730                                           uint32_t pasid,
731                                           dma_addr_t addr,
732                                           VTDPASIDEntry *pe)
733 {
734     uint32_t index;
735     dma_addr_t entry_size;
736     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
737 
738     index = VTD_PASID_TABLE_INDEX(pasid);
739     entry_size = VTD_PASID_ENTRY_SIZE;
740     addr = addr + index * entry_size;
741     if (dma_memory_read(&address_space_memory, addr,
742                         pe, entry_size, MEMTXATTRS_UNSPECIFIED)) {
743         return -VTD_FR_PASID_TABLE_INV;
744     }
745 
746     /* Do translation type check */
747     if (!vtd_pe_type_check(x86_iommu, pe)) {
748         return -VTD_FR_PASID_TABLE_INV;
749     }
750 
751     if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) {
752         return -VTD_FR_PASID_TABLE_INV;
753     }
754 
755     return 0;
756 }
757 
758 /**
759  * Caller of this function should check present bit if wants
760  * to use pasid entry for further usage except for fpd bit check.
761  */
762 static int vtd_get_pe_from_pdire(IntelIOMMUState *s,
763                                  uint32_t pasid,
764                                  VTDPASIDDirEntry *pdire,
765                                  VTDPASIDEntry *pe)
766 {
767     dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK;
768 
769     return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe);
770 }
771 
772 /**
773  * This function gets a pasid entry from a specified pasid
774  * table (includes dir and leaf table) with a specified pasid.
775  * Sanity check should be done to ensure return a present
776  * pasid entry to caller.
777  */
778 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s,
779                                        dma_addr_t pasid_dir_base,
780                                        uint32_t pasid,
781                                        VTDPASIDEntry *pe)
782 {
783     int ret;
784     VTDPASIDDirEntry pdire;
785 
786     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base,
787                                         pasid, &pdire);
788     if (ret) {
789         return ret;
790     }
791 
792     if (!vtd_pdire_present(&pdire)) {
793         return -VTD_FR_PASID_TABLE_INV;
794     }
795 
796     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe);
797     if (ret) {
798         return ret;
799     }
800 
801     if (!vtd_pe_present(pe)) {
802         return -VTD_FR_PASID_TABLE_INV;
803     }
804 
805     return 0;
806 }
807 
808 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s,
809                                       VTDContextEntry *ce,
810                                       VTDPASIDEntry *pe)
811 {
812     uint32_t pasid;
813     dma_addr_t pasid_dir_base;
814     int ret = 0;
815 
816     pasid = VTD_CE_GET_RID2PASID(ce);
817     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
818     ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe);
819 
820     return ret;
821 }
822 
823 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s,
824                                 VTDContextEntry *ce,
825                                 bool *pe_fpd_set)
826 {
827     int ret;
828     uint32_t pasid;
829     dma_addr_t pasid_dir_base;
830     VTDPASIDDirEntry pdire;
831     VTDPASIDEntry pe;
832 
833     pasid = VTD_CE_GET_RID2PASID(ce);
834     pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce);
835 
836     /*
837      * No present bit check since fpd is meaningful even
838      * if the present bit is clear.
839      */
840     ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire);
841     if (ret) {
842         return ret;
843     }
844 
845     if (pdire.val & VTD_PASID_DIR_FPD) {
846         *pe_fpd_set = true;
847         return 0;
848     }
849 
850     if (!vtd_pdire_present(&pdire)) {
851         return -VTD_FR_PASID_TABLE_INV;
852     }
853 
854     /*
855      * No present bit check since fpd is meaningful even
856      * if the present bit is clear.
857      */
858     ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe);
859     if (ret) {
860         return ret;
861     }
862 
863     if (pe.val[0] & VTD_PASID_ENTRY_FPD) {
864         *pe_fpd_set = true;
865     }
866 
867     return 0;
868 }
869 
870 /* Get the page-table level that hardware should use for the second-level
871  * page-table walk from the Address Width field of context-entry.
872  */
873 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce)
874 {
875     return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
876 }
877 
878 static uint32_t vtd_get_iova_level(IntelIOMMUState *s,
879                                    VTDContextEntry *ce)
880 {
881     VTDPASIDEntry pe;
882 
883     if (s->root_scalable) {
884         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
885         return VTD_PE_GET_LEVEL(&pe);
886     }
887 
888     return vtd_ce_get_level(ce);
889 }
890 
891 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce)
892 {
893     return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
894 }
895 
896 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s,
897                                   VTDContextEntry *ce)
898 {
899     VTDPASIDEntry pe;
900 
901     if (s->root_scalable) {
902         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
903         return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9;
904     }
905 
906     return vtd_ce_get_agaw(ce);
907 }
908 
909 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce)
910 {
911     return ce->lo & VTD_CONTEXT_ENTRY_TT;
912 }
913 
914 /* Only for Legacy Mode. Return true if check passed, otherwise false */
915 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu,
916                                      VTDContextEntry *ce)
917 {
918     switch (vtd_ce_get_type(ce)) {
919     case VTD_CONTEXT_TT_MULTI_LEVEL:
920         /* Always supported */
921         break;
922     case VTD_CONTEXT_TT_DEV_IOTLB:
923         if (!x86_iommu->dt_supported) {
924             error_report_once("%s: DT specified but not supported", __func__);
925             return false;
926         }
927         break;
928     case VTD_CONTEXT_TT_PASS_THROUGH:
929         if (!x86_iommu->pt_supported) {
930             error_report_once("%s: PT specified but not supported", __func__);
931             return false;
932         }
933         break;
934     default:
935         /* Unknown type */
936         error_report_once("%s: unknown ce type: %"PRIu32, __func__,
937                           vtd_ce_get_type(ce));
938         return false;
939     }
940     return true;
941 }
942 
943 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s,
944                                       VTDContextEntry *ce, uint8_t aw)
945 {
946     uint32_t ce_agaw = vtd_get_iova_agaw(s, ce);
947     return 1ULL << MIN(ce_agaw, aw);
948 }
949 
950 /* Return true if IOVA passes range check, otherwise false. */
951 static inline bool vtd_iova_range_check(IntelIOMMUState *s,
952                                         uint64_t iova, VTDContextEntry *ce,
953                                         uint8_t aw)
954 {
955     /*
956      * Check if @iova is above 2^X-1, where X is the minimum of MGAW
957      * in CAP_REG and AW in context-entry.
958      */
959     return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1));
960 }
961 
962 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s,
963                                           VTDContextEntry *ce)
964 {
965     VTDPASIDEntry pe;
966 
967     if (s->root_scalable) {
968         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
969         return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR;
970     }
971 
972     return vtd_ce_get_slpt_base(ce);
973 }
974 
975 /*
976  * Rsvd field masks for spte:
977  *     vtd_spte_rsvd 4k pages
978  *     vtd_spte_rsvd_large large pages
979  */
980 static uint64_t vtd_spte_rsvd[5];
981 static uint64_t vtd_spte_rsvd_large[5];
982 
983 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
984 {
985     uint64_t rsvd_mask = vtd_spte_rsvd[level];
986 
987     if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) &&
988         (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) {
989         /* large page */
990         rsvd_mask = vtd_spte_rsvd_large[level];
991     }
992 
993     return slpte & rsvd_mask;
994 }
995 
996 /* Find the VTD address space associated with a given bus number */
997 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num)
998 {
999     VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num];
1000     GHashTableIter iter;
1001 
1002     if (vtd_bus) {
1003         return vtd_bus;
1004     }
1005 
1006     /*
1007      * Iterate over the registered buses to find the one which
1008      * currently holds this bus number and update the bus_num
1009      * lookup table.
1010      */
1011     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1012     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1013         if (pci_bus_num(vtd_bus->bus) == bus_num) {
1014             s->vtd_as_by_bus_num[bus_num] = vtd_bus;
1015             return vtd_bus;
1016         }
1017     }
1018 
1019     return NULL;
1020 }
1021 
1022 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level
1023  * of the translation, can be used for deciding the size of large page.
1024  */
1025 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce,
1026                              uint64_t iova, bool is_write,
1027                              uint64_t *slptep, uint32_t *slpte_level,
1028                              bool *reads, bool *writes, uint8_t aw_bits)
1029 {
1030     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1031     uint32_t level = vtd_get_iova_level(s, ce);
1032     uint32_t offset;
1033     uint64_t slpte;
1034     uint64_t access_right_check;
1035     uint64_t xlat, size;
1036 
1037     if (!vtd_iova_range_check(s, iova, ce, aw_bits)) {
1038         error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")",
1039                           __func__, iova);
1040         return -VTD_FR_ADDR_BEYOND_MGAW;
1041     }
1042 
1043     /* FIXME: what is the Atomics request here? */
1044     access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
1045 
1046     while (true) {
1047         offset = vtd_iova_level_offset(iova, level);
1048         slpte = vtd_get_slpte(addr, offset);
1049 
1050         if (slpte == (uint64_t)-1) {
1051             error_report_once("%s: detected read error on DMAR slpte "
1052                               "(iova=0x%" PRIx64 ")", __func__, iova);
1053             if (level == vtd_get_iova_level(s, ce)) {
1054                 /* Invalid programming of context-entry */
1055                 return -VTD_FR_CONTEXT_ENTRY_INV;
1056             } else {
1057                 return -VTD_FR_PAGING_ENTRY_INV;
1058             }
1059         }
1060         *reads = (*reads) && (slpte & VTD_SL_R);
1061         *writes = (*writes) && (slpte & VTD_SL_W);
1062         if (!(slpte & access_right_check)) {
1063             error_report_once("%s: detected slpte permission error "
1064                               "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1065                               "slpte=0x%" PRIx64 ", write=%d)", __func__,
1066                               iova, level, slpte, is_write);
1067             return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
1068         }
1069         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1070             error_report_once("%s: detected splte reserve non-zero "
1071                               "iova=0x%" PRIx64 ", level=0x%" PRIx32
1072                               "slpte=0x%" PRIx64 ")", __func__, iova,
1073                               level, slpte);
1074             return -VTD_FR_PAGING_ENTRY_RSVD;
1075         }
1076 
1077         if (vtd_is_last_slpte(slpte, level)) {
1078             *slptep = slpte;
1079             *slpte_level = level;
1080             break;
1081         }
1082         addr = vtd_get_slpte_addr(slpte, aw_bits);
1083         level--;
1084     }
1085 
1086     xlat = vtd_get_slpte_addr(*slptep, aw_bits);
1087     size = ~vtd_slpt_level_page_mask(level) + 1;
1088 
1089     /*
1090      * From VT-d spec 3.14: Untranslated requests and translation
1091      * requests that result in an address in the interrupt range will be
1092      * blocked with condition code LGN.4 or SGN.8.
1093      */
1094     if ((xlat > VTD_INTERRUPT_ADDR_LAST ||
1095          xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) {
1096         return 0;
1097     } else {
1098         error_report_once("%s: xlat address is in interrupt range "
1099                           "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", "
1100                           "slpte=0x%" PRIx64 ", write=%d, "
1101                           "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ")",
1102                           __func__, iova, level, slpte, is_write,
1103                           xlat, size);
1104         return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR :
1105                                   -VTD_FR_INTERRUPT_ADDR;
1106     }
1107 }
1108 
1109 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private);
1110 
1111 /**
1112  * Constant information used during page walking
1113  *
1114  * @hook_fn: hook func to be called when detected page
1115  * @private: private data to be passed into hook func
1116  * @notify_unmap: whether we should notify invalid entries
1117  * @as: VT-d address space of the device
1118  * @aw: maximum address width
1119  * @domain: domain ID of the page walk
1120  */
1121 typedef struct {
1122     VTDAddressSpace *as;
1123     vtd_page_walk_hook hook_fn;
1124     void *private;
1125     bool notify_unmap;
1126     uint8_t aw;
1127     uint16_t domain_id;
1128 } vtd_page_walk_info;
1129 
1130 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info)
1131 {
1132     VTDAddressSpace *as = info->as;
1133     vtd_page_walk_hook hook_fn = info->hook_fn;
1134     void *private = info->private;
1135     IOMMUTLBEntry *entry = &event->entry;
1136     DMAMap target = {
1137         .iova = entry->iova,
1138         .size = entry->addr_mask,
1139         .translated_addr = entry->translated_addr,
1140         .perm = entry->perm,
1141     };
1142     const DMAMap *mapped = iova_tree_find(as->iova_tree, &target);
1143 
1144     if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) {
1145         trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1146         return 0;
1147     }
1148 
1149     assert(hook_fn);
1150 
1151     /* Update local IOVA mapped ranges */
1152     if (event->type == IOMMU_NOTIFIER_MAP) {
1153         if (mapped) {
1154             /* If it's exactly the same translation, skip */
1155             if (!memcmp(mapped, &target, sizeof(target))) {
1156                 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask,
1157                                                  entry->translated_addr);
1158                 return 0;
1159             } else {
1160                 /*
1161                  * Translation changed.  Normally this should not
1162                  * happen, but it can happen when with buggy guest
1163                  * OSes.  Note that there will be a small window that
1164                  * we don't have map at all.  But that's the best
1165                  * effort we can do.  The ideal way to emulate this is
1166                  * atomically modify the PTE to follow what has
1167                  * changed, but we can't.  One example is that vfio
1168                  * driver only has VFIO_IOMMU_[UN]MAP_DMA but no
1169                  * interface to modify a mapping (meanwhile it seems
1170                  * meaningless to even provide one).  Anyway, let's
1171                  * mark this as a TODO in case one day we'll have
1172                  * a better solution.
1173                  */
1174                 IOMMUAccessFlags cache_perm = entry->perm;
1175                 int ret;
1176 
1177                 /* Emulate an UNMAP */
1178                 event->type = IOMMU_NOTIFIER_UNMAP;
1179                 entry->perm = IOMMU_NONE;
1180                 trace_vtd_page_walk_one(info->domain_id,
1181                                         entry->iova,
1182                                         entry->translated_addr,
1183                                         entry->addr_mask,
1184                                         entry->perm);
1185                 ret = hook_fn(event, private);
1186                 if (ret) {
1187                     return ret;
1188                 }
1189                 /* Drop any existing mapping */
1190                 iova_tree_remove(as->iova_tree, &target);
1191                 /* Recover the correct type */
1192                 event->type = IOMMU_NOTIFIER_MAP;
1193                 entry->perm = cache_perm;
1194             }
1195         }
1196         iova_tree_insert(as->iova_tree, &target);
1197     } else {
1198         if (!mapped) {
1199             /* Skip since we didn't map this range at all */
1200             trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask);
1201             return 0;
1202         }
1203         iova_tree_remove(as->iova_tree, &target);
1204     }
1205 
1206     trace_vtd_page_walk_one(info->domain_id, entry->iova,
1207                             entry->translated_addr, entry->addr_mask,
1208                             entry->perm);
1209     return hook_fn(event, private);
1210 }
1211 
1212 /**
1213  * vtd_page_walk_level - walk over specific level for IOVA range
1214  *
1215  * @addr: base GPA addr to start the walk
1216  * @start: IOVA range start address
1217  * @end: IOVA range end address (start <= addr < end)
1218  * @read: whether parent level has read permission
1219  * @write: whether parent level has write permission
1220  * @info: constant information for the page walk
1221  */
1222 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start,
1223                                uint64_t end, uint32_t level, bool read,
1224                                bool write, vtd_page_walk_info *info)
1225 {
1226     bool read_cur, write_cur, entry_valid;
1227     uint32_t offset;
1228     uint64_t slpte;
1229     uint64_t subpage_size, subpage_mask;
1230     IOMMUTLBEvent event;
1231     uint64_t iova = start;
1232     uint64_t iova_next;
1233     int ret = 0;
1234 
1235     trace_vtd_page_walk_level(addr, level, start, end);
1236 
1237     subpage_size = 1ULL << vtd_slpt_level_shift(level);
1238     subpage_mask = vtd_slpt_level_page_mask(level);
1239 
1240     while (iova < end) {
1241         iova_next = (iova & subpage_mask) + subpage_size;
1242 
1243         offset = vtd_iova_level_offset(iova, level);
1244         slpte = vtd_get_slpte(addr, offset);
1245 
1246         if (slpte == (uint64_t)-1) {
1247             trace_vtd_page_walk_skip_read(iova, iova_next);
1248             goto next;
1249         }
1250 
1251         if (vtd_slpte_nonzero_rsvd(slpte, level)) {
1252             trace_vtd_page_walk_skip_reserve(iova, iova_next);
1253             goto next;
1254         }
1255 
1256         /* Permissions are stacked with parents' */
1257         read_cur = read && (slpte & VTD_SL_R);
1258         write_cur = write && (slpte & VTD_SL_W);
1259 
1260         /*
1261          * As long as we have either read/write permission, this is a
1262          * valid entry. The rule works for both page entries and page
1263          * table entries.
1264          */
1265         entry_valid = read_cur | write_cur;
1266 
1267         if (!vtd_is_last_slpte(slpte, level) && entry_valid) {
1268             /*
1269              * This is a valid PDE (or even bigger than PDE).  We need
1270              * to walk one further level.
1271              */
1272             ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw),
1273                                       iova, MIN(iova_next, end), level - 1,
1274                                       read_cur, write_cur, info);
1275         } else {
1276             /*
1277              * This means we are either:
1278              *
1279              * (1) the real page entry (either 4K page, or huge page)
1280              * (2) the whole range is invalid
1281              *
1282              * In either case, we send an IOTLB notification down.
1283              */
1284             event.entry.target_as = &address_space_memory;
1285             event.entry.iova = iova & subpage_mask;
1286             event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur);
1287             event.entry.addr_mask = ~subpage_mask;
1288             /* NOTE: this is only meaningful if entry_valid == true */
1289             event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw);
1290             event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP :
1291                                             IOMMU_NOTIFIER_UNMAP;
1292             ret = vtd_page_walk_one(&event, info);
1293         }
1294 
1295         if (ret < 0) {
1296             return ret;
1297         }
1298 
1299 next:
1300         iova = iova_next;
1301     }
1302 
1303     return 0;
1304 }
1305 
1306 /**
1307  * vtd_page_walk - walk specific IOVA range, and call the hook
1308  *
1309  * @s: intel iommu state
1310  * @ce: context entry to walk upon
1311  * @start: IOVA address to start the walk
1312  * @end: IOVA range end address (start <= addr < end)
1313  * @info: page walking information struct
1314  */
1315 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce,
1316                          uint64_t start, uint64_t end,
1317                          vtd_page_walk_info *info)
1318 {
1319     dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce);
1320     uint32_t level = vtd_get_iova_level(s, ce);
1321 
1322     if (!vtd_iova_range_check(s, start, ce, info->aw)) {
1323         return -VTD_FR_ADDR_BEYOND_MGAW;
1324     }
1325 
1326     if (!vtd_iova_range_check(s, end, ce, info->aw)) {
1327         /* Fix end so that it reaches the maximum */
1328         end = vtd_iova_limit(s, ce, info->aw);
1329     }
1330 
1331     return vtd_page_walk_level(addr, start, end, level, true, true, info);
1332 }
1333 
1334 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s,
1335                                           VTDRootEntry *re)
1336 {
1337     /* Legacy Mode reserved bits check */
1338     if (!s->root_scalable &&
1339         (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1340         goto rsvd_err;
1341 
1342     /* Scalable Mode reserved bits check */
1343     if (s->root_scalable &&
1344         ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) ||
1345          (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits))))
1346         goto rsvd_err;
1347 
1348     return 0;
1349 
1350 rsvd_err:
1351     error_report_once("%s: invalid root entry: hi=0x%"PRIx64
1352                       ", lo=0x%"PRIx64,
1353                       __func__, re->hi, re->lo);
1354     return -VTD_FR_ROOT_ENTRY_RSVD;
1355 }
1356 
1357 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s,
1358                                                     VTDContextEntry *ce)
1359 {
1360     if (!s->root_scalable &&
1361         (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI ||
1362          ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) {
1363         error_report_once("%s: invalid context entry: hi=%"PRIx64
1364                           ", lo=%"PRIx64" (reserved nonzero)",
1365                           __func__, ce->hi, ce->lo);
1366         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1367     }
1368 
1369     if (s->root_scalable &&
1370         (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) ||
1371          ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 ||
1372          ce->val[2] ||
1373          ce->val[3])) {
1374         error_report_once("%s: invalid context entry: val[3]=%"PRIx64
1375                           ", val[2]=%"PRIx64
1376                           ", val[1]=%"PRIx64
1377                           ", val[0]=%"PRIx64" (reserved nonzero)",
1378                           __func__, ce->val[3], ce->val[2],
1379                           ce->val[1], ce->val[0]);
1380         return -VTD_FR_CONTEXT_ENTRY_RSVD;
1381     }
1382 
1383     return 0;
1384 }
1385 
1386 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s,
1387                                   VTDContextEntry *ce)
1388 {
1389     VTDPASIDEntry pe;
1390 
1391     /*
1392      * Make sure in Scalable Mode, a present context entry
1393      * has valid rid2pasid setting, which includes valid
1394      * rid2pasid field and corresponding pasid entry setting
1395      */
1396     return vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1397 }
1398 
1399 /* Map a device to its corresponding domain (context-entry) */
1400 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
1401                                     uint8_t devfn, VTDContextEntry *ce)
1402 {
1403     VTDRootEntry re;
1404     int ret_fr;
1405     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
1406 
1407     ret_fr = vtd_get_root_entry(s, bus_num, &re);
1408     if (ret_fr) {
1409         return ret_fr;
1410     }
1411 
1412     if (!vtd_root_entry_present(s, &re, devfn)) {
1413         /* Not error - it's okay we don't have root entry. */
1414         trace_vtd_re_not_present(bus_num);
1415         return -VTD_FR_ROOT_ENTRY_P;
1416     }
1417 
1418     ret_fr = vtd_root_entry_rsvd_bits_check(s, &re);
1419     if (ret_fr) {
1420         return ret_fr;
1421     }
1422 
1423     ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce);
1424     if (ret_fr) {
1425         return ret_fr;
1426     }
1427 
1428     if (!vtd_ce_present(ce)) {
1429         /* Not error - it's okay we don't have context entry. */
1430         trace_vtd_ce_not_present(bus_num, devfn);
1431         return -VTD_FR_CONTEXT_ENTRY_P;
1432     }
1433 
1434     ret_fr = vtd_context_entry_rsvd_bits_check(s, ce);
1435     if (ret_fr) {
1436         return ret_fr;
1437     }
1438 
1439     /* Check if the programming of context-entry is valid */
1440     if (!s->root_scalable &&
1441         !vtd_is_level_supported(s, vtd_ce_get_level(ce))) {
1442         error_report_once("%s: invalid context entry: hi=%"PRIx64
1443                           ", lo=%"PRIx64" (level %d not supported)",
1444                           __func__, ce->hi, ce->lo,
1445                           vtd_ce_get_level(ce));
1446         return -VTD_FR_CONTEXT_ENTRY_INV;
1447     }
1448 
1449     if (!s->root_scalable) {
1450         /* Do translation type check */
1451         if (!vtd_ce_type_check(x86_iommu, ce)) {
1452             /* Errors dumped in vtd_ce_type_check() */
1453             return -VTD_FR_CONTEXT_ENTRY_INV;
1454         }
1455     } else {
1456         /*
1457          * Check if the programming of context-entry.rid2pasid
1458          * and corresponding pasid setting is valid, and thus
1459          * avoids to check pasid entry fetching result in future
1460          * helper function calling.
1461          */
1462         ret_fr = vtd_ce_rid2pasid_check(s, ce);
1463         if (ret_fr) {
1464             return ret_fr;
1465         }
1466     }
1467 
1468     return 0;
1469 }
1470 
1471 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event,
1472                                      void *private)
1473 {
1474     memory_region_notify_iommu(private, 0, *event);
1475     return 0;
1476 }
1477 
1478 static uint16_t vtd_get_domain_id(IntelIOMMUState *s,
1479                                   VTDContextEntry *ce)
1480 {
1481     VTDPASIDEntry pe;
1482 
1483     if (s->root_scalable) {
1484         vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1485         return VTD_SM_PASID_ENTRY_DID(pe.val[1]);
1486     }
1487 
1488     return VTD_CONTEXT_ENTRY_DID(ce->hi);
1489 }
1490 
1491 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as,
1492                                             VTDContextEntry *ce,
1493                                             hwaddr addr, hwaddr size)
1494 {
1495     IntelIOMMUState *s = vtd_as->iommu_state;
1496     vtd_page_walk_info info = {
1497         .hook_fn = vtd_sync_shadow_page_hook,
1498         .private = (void *)&vtd_as->iommu,
1499         .notify_unmap = true,
1500         .aw = s->aw_bits,
1501         .as = vtd_as,
1502         .domain_id = vtd_get_domain_id(s, ce),
1503     };
1504 
1505     return vtd_page_walk(s, ce, addr, addr + size, &info);
1506 }
1507 
1508 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as)
1509 {
1510     int ret;
1511     VTDContextEntry ce;
1512     IOMMUNotifier *n;
1513 
1514     if (!(vtd_as->iommu.iommu_notify_flags & IOMMU_NOTIFIER_IOTLB_EVENTS)) {
1515         return 0;
1516     }
1517 
1518     ret = vtd_dev_to_context_entry(vtd_as->iommu_state,
1519                                    pci_bus_num(vtd_as->bus),
1520                                    vtd_as->devfn, &ce);
1521     if (ret) {
1522         if (ret == -VTD_FR_CONTEXT_ENTRY_P) {
1523             /*
1524              * It's a valid scenario to have a context entry that is
1525              * not present.  For example, when a device is removed
1526              * from an existing domain then the context entry will be
1527              * zeroed by the guest before it was put into another
1528              * domain.  When this happens, instead of synchronizing
1529              * the shadow pages we should invalidate all existing
1530              * mappings and notify the backends.
1531              */
1532             IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
1533                 vtd_address_space_unmap(vtd_as, n);
1534             }
1535             ret = 0;
1536         }
1537         return ret;
1538     }
1539 
1540     return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX);
1541 }
1542 
1543 /*
1544  * Check if specific device is configured to bypass address
1545  * translation for DMA requests. In Scalable Mode, bypass
1546  * 1st-level translation or 2nd-level translation, it depends
1547  * on PGTT setting.
1548  */
1549 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce)
1550 {
1551     VTDPASIDEntry pe;
1552     int ret;
1553 
1554     if (s->root_scalable) {
1555         ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe);
1556         if (ret) {
1557             error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32,
1558                               __func__, ret);
1559             return false;
1560         }
1561         return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT);
1562     }
1563 
1564     return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH);
1565 
1566 }
1567 
1568 static bool vtd_as_pt_enabled(VTDAddressSpace *as)
1569 {
1570     IntelIOMMUState *s;
1571     VTDContextEntry ce;
1572     int ret;
1573 
1574     assert(as);
1575 
1576     s = as->iommu_state;
1577     ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus),
1578                                    as->devfn, &ce);
1579     if (ret) {
1580         /*
1581          * Possibly failed to parse the context entry for some reason
1582          * (e.g., during init, or any guest configuration errors on
1583          * context entries). We should assume PT not enabled for
1584          * safety.
1585          */
1586         return false;
1587     }
1588 
1589     return vtd_dev_pt_enabled(s, &ce);
1590 }
1591 
1592 /* Return whether the device is using IOMMU translation. */
1593 static bool vtd_switch_address_space(VTDAddressSpace *as)
1594 {
1595     bool use_iommu;
1596     /* Whether we need to take the BQL on our own */
1597     bool take_bql = !qemu_mutex_iothread_locked();
1598 
1599     assert(as);
1600 
1601     use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as);
1602 
1603     trace_vtd_switch_address_space(pci_bus_num(as->bus),
1604                                    VTD_PCI_SLOT(as->devfn),
1605                                    VTD_PCI_FUNC(as->devfn),
1606                                    use_iommu);
1607 
1608     /*
1609      * It's possible that we reach here without BQL, e.g., when called
1610      * from vtd_pt_enable_fast_path(). However the memory APIs need
1611      * it. We'd better make sure we have had it already, or, take it.
1612      */
1613     if (take_bql) {
1614         qemu_mutex_lock_iothread();
1615     }
1616 
1617     /* Turn off first then on the other */
1618     if (use_iommu) {
1619         memory_region_set_enabled(&as->nodmar, false);
1620         memory_region_set_enabled(MEMORY_REGION(&as->iommu), true);
1621     } else {
1622         memory_region_set_enabled(MEMORY_REGION(&as->iommu), false);
1623         memory_region_set_enabled(&as->nodmar, true);
1624     }
1625 
1626     if (take_bql) {
1627         qemu_mutex_unlock_iothread();
1628     }
1629 
1630     return use_iommu;
1631 }
1632 
1633 static void vtd_switch_address_space_all(IntelIOMMUState *s)
1634 {
1635     GHashTableIter iter;
1636     VTDBus *vtd_bus;
1637     int i;
1638 
1639     g_hash_table_iter_init(&iter, s->vtd_as_by_busptr);
1640     while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) {
1641         for (i = 0; i < PCI_DEVFN_MAX; i++) {
1642             if (!vtd_bus->dev_as[i]) {
1643                 continue;
1644             }
1645             vtd_switch_address_space(vtd_bus->dev_as[i]);
1646         }
1647     }
1648 }
1649 
1650 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
1651 {
1652     return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
1653 }
1654 
1655 static const bool vtd_qualified_faults[] = {
1656     [VTD_FR_RESERVED] = false,
1657     [VTD_FR_ROOT_ENTRY_P] = false,
1658     [VTD_FR_CONTEXT_ENTRY_P] = true,
1659     [VTD_FR_CONTEXT_ENTRY_INV] = true,
1660     [VTD_FR_ADDR_BEYOND_MGAW] = true,
1661     [VTD_FR_WRITE] = true,
1662     [VTD_FR_READ] = true,
1663     [VTD_FR_PAGING_ENTRY_INV] = true,
1664     [VTD_FR_ROOT_TABLE_INV] = false,
1665     [VTD_FR_CONTEXT_TABLE_INV] = false,
1666     [VTD_FR_INTERRUPT_ADDR] = true,
1667     [VTD_FR_ROOT_ENTRY_RSVD] = false,
1668     [VTD_FR_PAGING_ENTRY_RSVD] = true,
1669     [VTD_FR_CONTEXT_ENTRY_TT] = true,
1670     [VTD_FR_PASID_TABLE_INV] = false,
1671     [VTD_FR_SM_INTERRUPT_ADDR] = true,
1672     [VTD_FR_MAX] = false,
1673 };
1674 
1675 /* To see if a fault condition is "qualified", which is reported to software
1676  * only if the FPD field in the context-entry used to process the faulting
1677  * request is 0.
1678  */
1679 static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
1680 {
1681     return vtd_qualified_faults[fault];
1682 }
1683 
1684 static inline bool vtd_is_interrupt_addr(hwaddr addr)
1685 {
1686     return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
1687 }
1688 
1689 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id)
1690 {
1691     VTDBus *vtd_bus;
1692     VTDAddressSpace *vtd_as;
1693     bool success = false;
1694 
1695     vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id));
1696     if (!vtd_bus) {
1697         goto out;
1698     }
1699 
1700     vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)];
1701     if (!vtd_as) {
1702         goto out;
1703     }
1704 
1705     if (vtd_switch_address_space(vtd_as) == false) {
1706         /* We switched off IOMMU region successfully. */
1707         success = true;
1708     }
1709 
1710 out:
1711     trace_vtd_pt_enable_fast_path(source_id, success);
1712 }
1713 
1714 /* Map dev to context-entry then do a paging-structures walk to do a iommu
1715  * translation.
1716  *
1717  * Called from RCU critical section.
1718  *
1719  * @bus_num: The bus number
1720  * @devfn: The devfn, which is the  combined of device and function number
1721  * @is_write: The access is a write operation
1722  * @entry: IOMMUTLBEntry that contain the addr to be translated and result
1723  *
1724  * Returns true if translation is successful, otherwise false.
1725  */
1726 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus,
1727                                    uint8_t devfn, hwaddr addr, bool is_write,
1728                                    IOMMUTLBEntry *entry)
1729 {
1730     IntelIOMMUState *s = vtd_as->iommu_state;
1731     VTDContextEntry ce;
1732     uint8_t bus_num = pci_bus_num(bus);
1733     VTDContextCacheEntry *cc_entry;
1734     uint64_t slpte, page_mask;
1735     uint32_t level;
1736     uint16_t source_id = vtd_make_source_id(bus_num, devfn);
1737     int ret_fr;
1738     bool is_fpd_set = false;
1739     bool reads = true;
1740     bool writes = true;
1741     uint8_t access_flags;
1742     VTDIOTLBEntry *iotlb_entry;
1743 
1744     /*
1745      * We have standalone memory region for interrupt addresses, we
1746      * should never receive translation requests in this region.
1747      */
1748     assert(!vtd_is_interrupt_addr(addr));
1749 
1750     vtd_iommu_lock(s);
1751 
1752     cc_entry = &vtd_as->context_cache_entry;
1753 
1754     /* Try to fetch slpte form IOTLB */
1755     iotlb_entry = vtd_lookup_iotlb(s, source_id, addr);
1756     if (iotlb_entry) {
1757         trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte,
1758                                  iotlb_entry->domain_id);
1759         slpte = iotlb_entry->slpte;
1760         access_flags = iotlb_entry->access_flags;
1761         page_mask = iotlb_entry->mask;
1762         goto out;
1763     }
1764 
1765     /* Try to fetch context-entry from cache first */
1766     if (cc_entry->context_cache_gen == s->context_cache_gen) {
1767         trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi,
1768                                cc_entry->context_entry.lo,
1769                                cc_entry->context_cache_gen);
1770         ce = cc_entry->context_entry;
1771         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1772         if (!is_fpd_set && s->root_scalable) {
1773             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1774             VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1775         }
1776     } else {
1777         ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
1778         is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
1779         if (!ret_fr && !is_fpd_set && s->root_scalable) {
1780             ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set);
1781         }
1782         VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1783         /* Update context-cache */
1784         trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo,
1785                                   cc_entry->context_cache_gen,
1786                                   s->context_cache_gen);
1787         cc_entry->context_entry = ce;
1788         cc_entry->context_cache_gen = s->context_cache_gen;
1789     }
1790 
1791     /*
1792      * We don't need to translate for pass-through context entries.
1793      * Also, let's ignore IOTLB caching as well for PT devices.
1794      */
1795     if (vtd_dev_pt_enabled(s, &ce)) {
1796         entry->iova = addr & VTD_PAGE_MASK_4K;
1797         entry->translated_addr = entry->iova;
1798         entry->addr_mask = ~VTD_PAGE_MASK_4K;
1799         entry->perm = IOMMU_RW;
1800         trace_vtd_translate_pt(source_id, entry->iova);
1801 
1802         /*
1803          * When this happens, it means firstly caching-mode is not
1804          * enabled, and this is the first passthrough translation for
1805          * the device. Let's enable the fast path for passthrough.
1806          *
1807          * When passthrough is disabled again for the device, we can
1808          * capture it via the context entry invalidation, then the
1809          * IOMMU region can be swapped back.
1810          */
1811         vtd_pt_enable_fast_path(s, source_id);
1812         vtd_iommu_unlock(s);
1813         return true;
1814     }
1815 
1816     ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level,
1817                                &reads, &writes, s->aw_bits);
1818     VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write);
1819 
1820     page_mask = vtd_slpt_level_page_mask(level);
1821     access_flags = IOMMU_ACCESS_FLAG(reads, writes);
1822     vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte,
1823                      access_flags, level);
1824 out:
1825     vtd_iommu_unlock(s);
1826     entry->iova = addr & page_mask;
1827     entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask;
1828     entry->addr_mask = ~page_mask;
1829     entry->perm = access_flags;
1830     return true;
1831 
1832 error:
1833     vtd_iommu_unlock(s);
1834     entry->iova = 0;
1835     entry->translated_addr = 0;
1836     entry->addr_mask = 0;
1837     entry->perm = IOMMU_NONE;
1838     return false;
1839 }
1840 
1841 static void vtd_root_table_setup(IntelIOMMUState *s)
1842 {
1843     s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
1844     s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits);
1845 
1846     vtd_update_scalable_state(s);
1847 
1848     trace_vtd_reg_dmar_root(s->root, s->root_scalable);
1849 }
1850 
1851 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global,
1852                                uint32_t index, uint32_t mask)
1853 {
1854     x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask);
1855 }
1856 
1857 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s)
1858 {
1859     uint64_t value = 0;
1860     value = vtd_get_quad_raw(s, DMAR_IRTA_REG);
1861     s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1);
1862     s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits);
1863     s->intr_eime = value & VTD_IRTA_EIME;
1864 
1865     /* Notify global invalidation */
1866     vtd_iec_notify_all(s, true, 0, 0);
1867 
1868     trace_vtd_reg_ir_root(s->intr_root, s->intr_size);
1869 }
1870 
1871 static void vtd_iommu_replay_all(IntelIOMMUState *s)
1872 {
1873     VTDAddressSpace *vtd_as;
1874 
1875     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
1876         vtd_sync_shadow_page_table(vtd_as);
1877     }
1878 }
1879 
1880 static void vtd_context_global_invalidate(IntelIOMMUState *s)
1881 {
1882     trace_vtd_inv_desc_cc_global();
1883     /* Protects context cache */
1884     vtd_iommu_lock(s);
1885     s->context_cache_gen++;
1886     if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) {
1887         vtd_reset_context_cache_locked(s);
1888     }
1889     vtd_iommu_unlock(s);
1890     vtd_address_space_refresh_all(s);
1891     /*
1892      * From VT-d spec 6.5.2.1, a global context entry invalidation
1893      * should be followed by a IOTLB global invalidation, so we should
1894      * be safe even without this. Hoewever, let's replay the region as
1895      * well to be safer, and go back here when we need finer tunes for
1896      * VT-d emulation codes.
1897      */
1898     vtd_iommu_replay_all(s);
1899 }
1900 
1901 /* Do a context-cache device-selective invalidation.
1902  * @func_mask: FM field after shifting
1903  */
1904 static void vtd_context_device_invalidate(IntelIOMMUState *s,
1905                                           uint16_t source_id,
1906                                           uint16_t func_mask)
1907 {
1908     uint16_t mask;
1909     VTDBus *vtd_bus;
1910     VTDAddressSpace *vtd_as;
1911     uint8_t bus_n, devfn;
1912     uint16_t devfn_it;
1913 
1914     trace_vtd_inv_desc_cc_devices(source_id, func_mask);
1915 
1916     switch (func_mask & 3) {
1917     case 0:
1918         mask = 0;   /* No bits in the SID field masked */
1919         break;
1920     case 1:
1921         mask = 4;   /* Mask bit 2 in the SID field */
1922         break;
1923     case 2:
1924         mask = 6;   /* Mask bit 2:1 in the SID field */
1925         break;
1926     case 3:
1927         mask = 7;   /* Mask bit 2:0 in the SID field */
1928         break;
1929     default:
1930         g_assert_not_reached();
1931     }
1932     mask = ~mask;
1933 
1934     bus_n = VTD_SID_TO_BUS(source_id);
1935     vtd_bus = vtd_find_as_from_bus_num(s, bus_n);
1936     if (vtd_bus) {
1937         devfn = VTD_SID_TO_DEVFN(source_id);
1938         for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) {
1939             vtd_as = vtd_bus->dev_as[devfn_it];
1940             if (vtd_as && ((devfn_it & mask) == (devfn & mask))) {
1941                 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it),
1942                                              VTD_PCI_FUNC(devfn_it));
1943                 vtd_iommu_lock(s);
1944                 vtd_as->context_cache_entry.context_cache_gen = 0;
1945                 vtd_iommu_unlock(s);
1946                 /*
1947                  * Do switch address space when needed, in case if the
1948                  * device passthrough bit is switched.
1949                  */
1950                 vtd_switch_address_space(vtd_as);
1951                 /*
1952                  * So a device is moving out of (or moving into) a
1953                  * domain, resync the shadow page table.
1954                  * This won't bring bad even if we have no such
1955                  * notifier registered - the IOMMU notification
1956                  * framework will skip MAP notifications if that
1957                  * happened.
1958                  */
1959                 vtd_sync_shadow_page_table(vtd_as);
1960             }
1961         }
1962     }
1963 }
1964 
1965 /* Context-cache invalidation
1966  * Returns the Context Actual Invalidation Granularity.
1967  * @val: the content of the CCMD_REG
1968  */
1969 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
1970 {
1971     uint64_t caig;
1972     uint64_t type = val & VTD_CCMD_CIRG_MASK;
1973 
1974     switch (type) {
1975     case VTD_CCMD_DOMAIN_INVL:
1976         /* Fall through */
1977     case VTD_CCMD_GLOBAL_INVL:
1978         caig = VTD_CCMD_GLOBAL_INVL_A;
1979         vtd_context_global_invalidate(s);
1980         break;
1981 
1982     case VTD_CCMD_DEVICE_INVL:
1983         caig = VTD_CCMD_DEVICE_INVL_A;
1984         vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val));
1985         break;
1986 
1987     default:
1988         error_report_once("%s: invalid context: 0x%" PRIx64,
1989                           __func__, val);
1990         caig = 0;
1991     }
1992     return caig;
1993 }
1994 
1995 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s)
1996 {
1997     trace_vtd_inv_desc_iotlb_global();
1998     vtd_reset_iotlb(s);
1999     vtd_iommu_replay_all(s);
2000 }
2001 
2002 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id)
2003 {
2004     VTDContextEntry ce;
2005     VTDAddressSpace *vtd_as;
2006 
2007     trace_vtd_inv_desc_iotlb_domain(domain_id);
2008 
2009     vtd_iommu_lock(s);
2010     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain,
2011                                 &domain_id);
2012     vtd_iommu_unlock(s);
2013 
2014     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
2015         if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2016                                       vtd_as->devfn, &ce) &&
2017             domain_id == vtd_get_domain_id(s, &ce)) {
2018             vtd_sync_shadow_page_table(vtd_as);
2019         }
2020     }
2021 }
2022 
2023 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s,
2024                                            uint16_t domain_id, hwaddr addr,
2025                                            uint8_t am)
2026 {
2027     VTDAddressSpace *vtd_as;
2028     VTDContextEntry ce;
2029     int ret;
2030     hwaddr size = (1 << am) * VTD_PAGE_SIZE;
2031 
2032     QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) {
2033         ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus),
2034                                        vtd_as->devfn, &ce);
2035         if (!ret && domain_id == vtd_get_domain_id(s, &ce)) {
2036             if (vtd_as_has_map_notifier(vtd_as)) {
2037                 /*
2038                  * As long as we have MAP notifications registered in
2039                  * any of our IOMMU notifiers, we need to sync the
2040                  * shadow page table.
2041                  */
2042                 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size);
2043             } else {
2044                 /*
2045                  * For UNMAP-only notifiers, we don't need to walk the
2046                  * page tables.  We just deliver the PSI down to
2047                  * invalidate caches.
2048                  */
2049                 IOMMUTLBEvent event = {
2050                     .type = IOMMU_NOTIFIER_UNMAP,
2051                     .entry = {
2052                         .target_as = &address_space_memory,
2053                         .iova = addr,
2054                         .translated_addr = 0,
2055                         .addr_mask = size - 1,
2056                         .perm = IOMMU_NONE,
2057                     },
2058                 };
2059                 memory_region_notify_iommu(&vtd_as->iommu, 0, event);
2060             }
2061         }
2062     }
2063 }
2064 
2065 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id,
2066                                       hwaddr addr, uint8_t am)
2067 {
2068     VTDIOTLBPageInvInfo info;
2069 
2070     trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am);
2071 
2072     assert(am <= VTD_MAMV);
2073     info.domain_id = domain_id;
2074     info.addr = addr;
2075     info.mask = ~((1 << am) - 1);
2076     vtd_iommu_lock(s);
2077     g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info);
2078     vtd_iommu_unlock(s);
2079     vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am);
2080 }
2081 
2082 /* Flush IOTLB
2083  * Returns the IOTLB Actual Invalidation Granularity.
2084  * @val: the content of the IOTLB_REG
2085  */
2086 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
2087 {
2088     uint64_t iaig;
2089     uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
2090     uint16_t domain_id;
2091     hwaddr addr;
2092     uint8_t am;
2093 
2094     switch (type) {
2095     case VTD_TLB_GLOBAL_FLUSH:
2096         iaig = VTD_TLB_GLOBAL_FLUSH_A;
2097         vtd_iotlb_global_invalidate(s);
2098         break;
2099 
2100     case VTD_TLB_DSI_FLUSH:
2101         domain_id = VTD_TLB_DID(val);
2102         iaig = VTD_TLB_DSI_FLUSH_A;
2103         vtd_iotlb_domain_invalidate(s, domain_id);
2104         break;
2105 
2106     case VTD_TLB_PSI_FLUSH:
2107         domain_id = VTD_TLB_DID(val);
2108         addr = vtd_get_quad_raw(s, DMAR_IVA_REG);
2109         am = VTD_IVA_AM(addr);
2110         addr = VTD_IVA_ADDR(addr);
2111         if (am > VTD_MAMV) {
2112             error_report_once("%s: address mask overflow: 0x%" PRIx64,
2113                               __func__, vtd_get_quad_raw(s, DMAR_IVA_REG));
2114             iaig = 0;
2115             break;
2116         }
2117         iaig = VTD_TLB_PSI_FLUSH_A;
2118         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2119         break;
2120 
2121     default:
2122         error_report_once("%s: invalid granularity: 0x%" PRIx64,
2123                           __func__, val);
2124         iaig = 0;
2125     }
2126     return iaig;
2127 }
2128 
2129 static void vtd_fetch_inv_desc(IntelIOMMUState *s);
2130 
2131 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s)
2132 {
2133     return s->qi_enabled && (s->iq_tail == s->iq_head) &&
2134            (s->iq_last_desc_type == VTD_INV_DESC_WAIT);
2135 }
2136 
2137 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en)
2138 {
2139     uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG);
2140 
2141     trace_vtd_inv_qi_enable(en);
2142 
2143     if (en) {
2144         s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits);
2145         /* 2^(x+8) entries */
2146         s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0));
2147         s->qi_enabled = true;
2148         trace_vtd_inv_qi_setup(s->iq, s->iq_size);
2149         /* Ok - report back to driver */
2150         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES);
2151 
2152         if (s->iq_tail != 0) {
2153             /*
2154              * This is a spec violation but Windows guests are known to set up
2155              * Queued Invalidation this way so we allow the write and process
2156              * Invalidation Descriptors right away.
2157              */
2158             trace_vtd_warn_invalid_qi_tail(s->iq_tail);
2159             if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2160                 vtd_fetch_inv_desc(s);
2161             }
2162         }
2163     } else {
2164         if (vtd_queued_inv_disable_check(s)) {
2165             /* disable Queued Invalidation */
2166             vtd_set_quad_raw(s, DMAR_IQH_REG, 0);
2167             s->iq_head = 0;
2168             s->qi_enabled = false;
2169             /* Ok - report back to driver */
2170             vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0);
2171         } else {
2172             error_report_once("%s: detected improper state when disable QI "
2173                               "(head=0x%x, tail=0x%x, last_type=%d)",
2174                               __func__,
2175                               s->iq_head, s->iq_tail, s->iq_last_desc_type);
2176         }
2177     }
2178 }
2179 
2180 /* Set Root Table Pointer */
2181 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
2182 {
2183     vtd_root_table_setup(s);
2184     /* Ok - report back to driver */
2185     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
2186     vtd_reset_caches(s);
2187     vtd_address_space_refresh_all(s);
2188 }
2189 
2190 /* Set Interrupt Remap Table Pointer */
2191 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s)
2192 {
2193     vtd_interrupt_remap_table_setup(s);
2194     /* Ok - report back to driver */
2195     vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS);
2196 }
2197 
2198 /* Handle Translation Enable/Disable */
2199 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
2200 {
2201     if (s->dmar_enabled == en) {
2202         return;
2203     }
2204 
2205     trace_vtd_dmar_enable(en);
2206 
2207     if (en) {
2208         s->dmar_enabled = true;
2209         /* Ok - report back to driver */
2210         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
2211     } else {
2212         s->dmar_enabled = false;
2213 
2214         /* Clear the index of Fault Recording Register */
2215         s->next_frcd_reg = 0;
2216         /* Ok - report back to driver */
2217         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
2218     }
2219 
2220     vtd_reset_caches(s);
2221     vtd_address_space_refresh_all(s);
2222 }
2223 
2224 /* Handle Interrupt Remap Enable/Disable */
2225 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en)
2226 {
2227     trace_vtd_ir_enable(en);
2228 
2229     if (en) {
2230         s->intr_enabled = true;
2231         /* Ok - report back to driver */
2232         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES);
2233     } else {
2234         s->intr_enabled = false;
2235         /* Ok - report back to driver */
2236         vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0);
2237     }
2238 }
2239 
2240 /* Handle write to Global Command Register */
2241 static void vtd_handle_gcmd_write(IntelIOMMUState *s)
2242 {
2243     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
2244     uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
2245     uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
2246     uint32_t changed = status ^ val;
2247 
2248     trace_vtd_reg_write_gcmd(status, val);
2249     if ((changed & VTD_GCMD_TE) && s->dma_translation) {
2250         /* Translation enable/disable */
2251         vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
2252     }
2253     if (val & VTD_GCMD_SRTP) {
2254         /* Set/update the root-table pointer */
2255         vtd_handle_gcmd_srtp(s);
2256     }
2257     if (changed & VTD_GCMD_QIE) {
2258         /* Queued Invalidation Enable */
2259         vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE);
2260     }
2261     if (val & VTD_GCMD_SIRTP) {
2262         /* Set/update the interrupt remapping root-table pointer */
2263         vtd_handle_gcmd_sirtp(s);
2264     }
2265     if ((changed & VTD_GCMD_IRE) &&
2266         x86_iommu_ir_supported(x86_iommu)) {
2267         /* Interrupt remap enable/disable */
2268         vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE);
2269     }
2270 }
2271 
2272 /* Handle write to Context Command Register */
2273 static void vtd_handle_ccmd_write(IntelIOMMUState *s)
2274 {
2275     uint64_t ret;
2276     uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
2277 
2278     /* Context-cache invalidation request */
2279     if (val & VTD_CCMD_ICC) {
2280         if (s->qi_enabled) {
2281             error_report_once("Queued Invalidation enabled, "
2282                               "should not use register-based invalidation");
2283             return;
2284         }
2285         ret = vtd_context_cache_invalidate(s, val);
2286         /* Invalidation completed. Change something to show */
2287         vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
2288         ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
2289                                       ret);
2290     }
2291 }
2292 
2293 /* Handle write to IOTLB Invalidation Register */
2294 static void vtd_handle_iotlb_write(IntelIOMMUState *s)
2295 {
2296     uint64_t ret;
2297     uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
2298 
2299     /* IOTLB invalidation request */
2300     if (val & VTD_TLB_IVT) {
2301         if (s->qi_enabled) {
2302             error_report_once("Queued Invalidation enabled, "
2303                               "should not use register-based invalidation");
2304             return;
2305         }
2306         ret = vtd_iotlb_flush(s, val);
2307         /* Invalidation completed. Change something to show */
2308         vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
2309         ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
2310                                       VTD_TLB_FLUSH_GRANU_MASK_A, ret);
2311     }
2312 }
2313 
2314 /* Fetch an Invalidation Descriptor from the Invalidation Queue */
2315 static bool vtd_get_inv_desc(IntelIOMMUState *s,
2316                              VTDInvDesc *inv_desc)
2317 {
2318     dma_addr_t base_addr = s->iq;
2319     uint32_t offset = s->iq_head;
2320     uint32_t dw = s->iq_dw ? 32 : 16;
2321     dma_addr_t addr = base_addr + offset * dw;
2322 
2323     if (dma_memory_read(&address_space_memory, addr,
2324                         inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) {
2325         error_report_once("Read INV DESC failed.");
2326         return false;
2327     }
2328     inv_desc->lo = le64_to_cpu(inv_desc->lo);
2329     inv_desc->hi = le64_to_cpu(inv_desc->hi);
2330     if (dw == 32) {
2331         inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]);
2332         inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]);
2333     }
2334     return true;
2335 }
2336 
2337 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2338 {
2339     if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) ||
2340         (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) {
2341         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2342                           " (reserved nonzero)", __func__, inv_desc->hi,
2343                           inv_desc->lo);
2344         return false;
2345     }
2346     if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) {
2347         /* Status Write */
2348         uint32_t status_data = (uint32_t)(inv_desc->lo >>
2349                                VTD_INV_DESC_WAIT_DATA_SHIFT);
2350 
2351         assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF));
2352 
2353         /* FIXME: need to be masked with HAW? */
2354         dma_addr_t status_addr = inv_desc->hi;
2355         trace_vtd_inv_desc_wait_sw(status_addr, status_data);
2356         status_data = cpu_to_le32(status_data);
2357         if (dma_memory_write(&address_space_memory, status_addr,
2358                              &status_data, sizeof(status_data),
2359                              MEMTXATTRS_UNSPECIFIED)) {
2360             trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo);
2361             return false;
2362         }
2363     } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) {
2364         /* Interrupt flag */
2365         vtd_generate_completion_event(s);
2366     } else {
2367         error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64
2368                           " (unknown type)", __func__, inv_desc->hi,
2369                           inv_desc->lo);
2370         return false;
2371     }
2372     return true;
2373 }
2374 
2375 static bool vtd_process_context_cache_desc(IntelIOMMUState *s,
2376                                            VTDInvDesc *inv_desc)
2377 {
2378     uint16_t sid, fmask;
2379 
2380     if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) {
2381         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2382                           " (reserved nonzero)", __func__, inv_desc->hi,
2383                           inv_desc->lo);
2384         return false;
2385     }
2386     switch (inv_desc->lo & VTD_INV_DESC_CC_G) {
2387     case VTD_INV_DESC_CC_DOMAIN:
2388         trace_vtd_inv_desc_cc_domain(
2389             (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo));
2390         /* Fall through */
2391     case VTD_INV_DESC_CC_GLOBAL:
2392         vtd_context_global_invalidate(s);
2393         break;
2394 
2395     case VTD_INV_DESC_CC_DEVICE:
2396         sid = VTD_INV_DESC_CC_SID(inv_desc->lo);
2397         fmask = VTD_INV_DESC_CC_FM(inv_desc->lo);
2398         vtd_context_device_invalidate(s, sid, fmask);
2399         break;
2400 
2401     default:
2402         error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64
2403                           " (invalid type)", __func__, inv_desc->hi,
2404                           inv_desc->lo);
2405         return false;
2406     }
2407     return true;
2408 }
2409 
2410 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc)
2411 {
2412     uint16_t domain_id;
2413     uint8_t am;
2414     hwaddr addr;
2415 
2416     if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) ||
2417         (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) {
2418         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2419                           ", lo=0x%"PRIx64" (reserved bits unzero)",
2420                           __func__, inv_desc->hi, inv_desc->lo);
2421         return false;
2422     }
2423 
2424     switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) {
2425     case VTD_INV_DESC_IOTLB_GLOBAL:
2426         vtd_iotlb_global_invalidate(s);
2427         break;
2428 
2429     case VTD_INV_DESC_IOTLB_DOMAIN:
2430         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2431         vtd_iotlb_domain_invalidate(s, domain_id);
2432         break;
2433 
2434     case VTD_INV_DESC_IOTLB_PAGE:
2435         domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo);
2436         addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi);
2437         am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi);
2438         if (am > VTD_MAMV) {
2439             error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2440                               ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)",
2441                               __func__, inv_desc->hi, inv_desc->lo,
2442                               am, (unsigned)VTD_MAMV);
2443             return false;
2444         }
2445         vtd_iotlb_page_invalidate(s, domain_id, addr, am);
2446         break;
2447 
2448     default:
2449         error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64
2450                           ", lo=0x%"PRIx64" (type mismatch: 0x%llx)",
2451                           __func__, inv_desc->hi, inv_desc->lo,
2452                           inv_desc->lo & VTD_INV_DESC_IOTLB_G);
2453         return false;
2454     }
2455     return true;
2456 }
2457 
2458 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s,
2459                                      VTDInvDesc *inv_desc)
2460 {
2461     trace_vtd_inv_desc_iec(inv_desc->iec.granularity,
2462                            inv_desc->iec.index,
2463                            inv_desc->iec.index_mask);
2464 
2465     vtd_iec_notify_all(s, !inv_desc->iec.granularity,
2466                        inv_desc->iec.index,
2467                        inv_desc->iec.index_mask);
2468     return true;
2469 }
2470 
2471 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s,
2472                                           VTDInvDesc *inv_desc)
2473 {
2474     VTDAddressSpace *vtd_dev_as;
2475     IOMMUTLBEvent event;
2476     struct VTDBus *vtd_bus;
2477     hwaddr addr;
2478     uint64_t sz;
2479     uint16_t sid;
2480     uint8_t devfn;
2481     bool size;
2482     uint8_t bus_num;
2483 
2484     addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi);
2485     sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo);
2486     devfn = sid & 0xff;
2487     bus_num = sid >> 8;
2488     size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi);
2489 
2490     if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) ||
2491         (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) {
2492         error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64
2493                           ", lo=%"PRIx64" (reserved nonzero)", __func__,
2494                           inv_desc->hi, inv_desc->lo);
2495         return false;
2496     }
2497 
2498     vtd_bus = vtd_find_as_from_bus_num(s, bus_num);
2499     if (!vtd_bus) {
2500         goto done;
2501     }
2502 
2503     vtd_dev_as = vtd_bus->dev_as[devfn];
2504     if (!vtd_dev_as) {
2505         goto done;
2506     }
2507 
2508     /* According to ATS spec table 2.4:
2509      * S = 0, bits 15:12 = xxxx     range size: 4K
2510      * S = 1, bits 15:12 = xxx0     range size: 8K
2511      * S = 1, bits 15:12 = xx01     range size: 16K
2512      * S = 1, bits 15:12 = x011     range size: 32K
2513      * S = 1, bits 15:12 = 0111     range size: 64K
2514      * ...
2515      */
2516     if (size) {
2517         sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT);
2518         addr &= ~(sz - 1);
2519     } else {
2520         sz = VTD_PAGE_SIZE;
2521     }
2522 
2523     event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP;
2524     event.entry.target_as = &vtd_dev_as->as;
2525     event.entry.addr_mask = sz - 1;
2526     event.entry.iova = addr;
2527     event.entry.perm = IOMMU_NONE;
2528     event.entry.translated_addr = 0;
2529     memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event);
2530 
2531 done:
2532     return true;
2533 }
2534 
2535 static bool vtd_process_inv_desc(IntelIOMMUState *s)
2536 {
2537     VTDInvDesc inv_desc;
2538     uint8_t desc_type;
2539 
2540     trace_vtd_inv_qi_head(s->iq_head);
2541     if (!vtd_get_inv_desc(s, &inv_desc)) {
2542         s->iq_last_desc_type = VTD_INV_DESC_NONE;
2543         return false;
2544     }
2545 
2546     desc_type = inv_desc.lo & VTD_INV_DESC_TYPE;
2547     /* FIXME: should update at first or at last? */
2548     s->iq_last_desc_type = desc_type;
2549 
2550     switch (desc_type) {
2551     case VTD_INV_DESC_CC:
2552         trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo);
2553         if (!vtd_process_context_cache_desc(s, &inv_desc)) {
2554             return false;
2555         }
2556         break;
2557 
2558     case VTD_INV_DESC_IOTLB:
2559         trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo);
2560         if (!vtd_process_iotlb_desc(s, &inv_desc)) {
2561             return false;
2562         }
2563         break;
2564 
2565     /*
2566      * TODO: the entity of below two cases will be implemented in future series.
2567      * To make guest (which integrates scalable mode support patch set in
2568      * iommu driver) work, just return true is enough so far.
2569      */
2570     case VTD_INV_DESC_PC:
2571         break;
2572 
2573     case VTD_INV_DESC_PIOTLB:
2574         break;
2575 
2576     case VTD_INV_DESC_WAIT:
2577         trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo);
2578         if (!vtd_process_wait_desc(s, &inv_desc)) {
2579             return false;
2580         }
2581         break;
2582 
2583     case VTD_INV_DESC_IEC:
2584         trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo);
2585         if (!vtd_process_inv_iec_desc(s, &inv_desc)) {
2586             return false;
2587         }
2588         break;
2589 
2590     case VTD_INV_DESC_DEVICE:
2591         trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo);
2592         if (!vtd_process_device_iotlb_desc(s, &inv_desc)) {
2593             return false;
2594         }
2595         break;
2596 
2597     default:
2598         error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64
2599                           " (unknown type)", __func__, inv_desc.hi,
2600                           inv_desc.lo);
2601         return false;
2602     }
2603     s->iq_head++;
2604     if (s->iq_head == s->iq_size) {
2605         s->iq_head = 0;
2606     }
2607     return true;
2608 }
2609 
2610 /* Try to fetch and process more Invalidation Descriptors */
2611 static void vtd_fetch_inv_desc(IntelIOMMUState *s)
2612 {
2613     int qi_shift;
2614 
2615     /* Refer to 10.4.23 of VT-d spec 3.0 */
2616     qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4;
2617 
2618     trace_vtd_inv_qi_fetch();
2619 
2620     if (s->iq_tail >= s->iq_size) {
2621         /* Detects an invalid Tail pointer */
2622         error_report_once("%s: detected invalid QI tail "
2623                           "(tail=0x%x, size=0x%x)",
2624                           __func__, s->iq_tail, s->iq_size);
2625         vtd_handle_inv_queue_error(s);
2626         return;
2627     }
2628     while (s->iq_head != s->iq_tail) {
2629         if (!vtd_process_inv_desc(s)) {
2630             /* Invalidation Queue Errors */
2631             vtd_handle_inv_queue_error(s);
2632             break;
2633         }
2634         /* Must update the IQH_REG in time */
2635         vtd_set_quad_raw(s, DMAR_IQH_REG,
2636                          (((uint64_t)(s->iq_head)) << qi_shift) &
2637                          VTD_IQH_QH_MASK);
2638     }
2639 }
2640 
2641 /* Handle write to Invalidation Queue Tail Register */
2642 static void vtd_handle_iqt_write(IntelIOMMUState *s)
2643 {
2644     uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG);
2645 
2646     if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) {
2647         error_report_once("%s: RSV bit is set: val=0x%"PRIx64,
2648                           __func__, val);
2649         return;
2650     }
2651     s->iq_tail = VTD_IQT_QT(s->iq_dw, val);
2652     trace_vtd_inv_qi_tail(s->iq_tail);
2653 
2654     if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) {
2655         /* Process Invalidation Queue here */
2656         vtd_fetch_inv_desc(s);
2657     }
2658 }
2659 
2660 static void vtd_handle_fsts_write(IntelIOMMUState *s)
2661 {
2662     uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
2663     uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2664     uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
2665 
2666     if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
2667         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2668         trace_vtd_fsts_clear_ip();
2669     }
2670     /* FIXME: when IQE is Clear, should we try to fetch some Invalidation
2671      * Descriptors if there are any when Queued Invalidation is enabled?
2672      */
2673 }
2674 
2675 static void vtd_handle_fectl_write(IntelIOMMUState *s)
2676 {
2677     uint32_t fectl_reg;
2678     /* FIXME: when software clears the IM field, check the IP field. But do we
2679      * need to compare the old value and the new value to conclude that
2680      * software clears the IM field? Or just check if the IM field is zero?
2681      */
2682     fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
2683 
2684     trace_vtd_reg_write_fectl(fectl_reg);
2685 
2686     if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
2687         vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
2688         vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
2689     }
2690 }
2691 
2692 static void vtd_handle_ics_write(IntelIOMMUState *s)
2693 {
2694     uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG);
2695     uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2696 
2697     if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) {
2698         trace_vtd_reg_ics_clear_ip();
2699         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2700     }
2701 }
2702 
2703 static void vtd_handle_iectl_write(IntelIOMMUState *s)
2704 {
2705     uint32_t iectl_reg;
2706     /* FIXME: when software clears the IM field, check the IP field. But do we
2707      * need to compare the old value and the new value to conclude that
2708      * software clears the IM field? Or just check if the IM field is zero?
2709      */
2710     iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG);
2711 
2712     trace_vtd_reg_write_iectl(iectl_reg);
2713 
2714     if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) {
2715         vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG);
2716         vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0);
2717     }
2718 }
2719 
2720 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
2721 {
2722     IntelIOMMUState *s = opaque;
2723     uint64_t val;
2724 
2725     trace_vtd_reg_read(addr, size);
2726 
2727     if (addr + size > DMAR_REG_SIZE) {
2728         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2729                           " size=0x%x", __func__, addr, size);
2730         return (uint64_t)-1;
2731     }
2732 
2733     switch (addr) {
2734     /* Root Table Address Register, 64-bit */
2735     case DMAR_RTADDR_REG:
2736         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
2737         if (size == 4) {
2738             val = val & ((1ULL << 32) - 1);
2739         }
2740         break;
2741 
2742     case DMAR_RTADDR_REG_HI:
2743         assert(size == 4);
2744         val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32;
2745         break;
2746 
2747     /* Invalidation Queue Address Register, 64-bit */
2748     case DMAR_IQA_REG:
2749         val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS);
2750         if (size == 4) {
2751             val = val & ((1ULL << 32) - 1);
2752         }
2753         break;
2754 
2755     case DMAR_IQA_REG_HI:
2756         assert(size == 4);
2757         val = s->iq >> 32;
2758         break;
2759 
2760     default:
2761         if (size == 4) {
2762             val = vtd_get_long(s, addr);
2763         } else {
2764             val = vtd_get_quad(s, addr);
2765         }
2766     }
2767 
2768     return val;
2769 }
2770 
2771 static void vtd_mem_write(void *opaque, hwaddr addr,
2772                           uint64_t val, unsigned size)
2773 {
2774     IntelIOMMUState *s = opaque;
2775 
2776     trace_vtd_reg_write(addr, size, val);
2777 
2778     if (addr + size > DMAR_REG_SIZE) {
2779         error_report_once("%s: MMIO over range: addr=0x%" PRIx64
2780                           " size=0x%x", __func__, addr, size);
2781         return;
2782     }
2783 
2784     switch (addr) {
2785     /* Global Command Register, 32-bit */
2786     case DMAR_GCMD_REG:
2787         vtd_set_long(s, addr, val);
2788         vtd_handle_gcmd_write(s);
2789         break;
2790 
2791     /* Context Command Register, 64-bit */
2792     case DMAR_CCMD_REG:
2793         if (size == 4) {
2794             vtd_set_long(s, addr, val);
2795         } else {
2796             vtd_set_quad(s, addr, val);
2797             vtd_handle_ccmd_write(s);
2798         }
2799         break;
2800 
2801     case DMAR_CCMD_REG_HI:
2802         assert(size == 4);
2803         vtd_set_long(s, addr, val);
2804         vtd_handle_ccmd_write(s);
2805         break;
2806 
2807     /* IOTLB Invalidation Register, 64-bit */
2808     case DMAR_IOTLB_REG:
2809         if (size == 4) {
2810             vtd_set_long(s, addr, val);
2811         } else {
2812             vtd_set_quad(s, addr, val);
2813             vtd_handle_iotlb_write(s);
2814         }
2815         break;
2816 
2817     case DMAR_IOTLB_REG_HI:
2818         assert(size == 4);
2819         vtd_set_long(s, addr, val);
2820         vtd_handle_iotlb_write(s);
2821         break;
2822 
2823     /* Invalidate Address Register, 64-bit */
2824     case DMAR_IVA_REG:
2825         if (size == 4) {
2826             vtd_set_long(s, addr, val);
2827         } else {
2828             vtd_set_quad(s, addr, val);
2829         }
2830         break;
2831 
2832     case DMAR_IVA_REG_HI:
2833         assert(size == 4);
2834         vtd_set_long(s, addr, val);
2835         break;
2836 
2837     /* Fault Status Register, 32-bit */
2838     case DMAR_FSTS_REG:
2839         assert(size == 4);
2840         vtd_set_long(s, addr, val);
2841         vtd_handle_fsts_write(s);
2842         break;
2843 
2844     /* Fault Event Control Register, 32-bit */
2845     case DMAR_FECTL_REG:
2846         assert(size == 4);
2847         vtd_set_long(s, addr, val);
2848         vtd_handle_fectl_write(s);
2849         break;
2850 
2851     /* Fault Event Data Register, 32-bit */
2852     case DMAR_FEDATA_REG:
2853         assert(size == 4);
2854         vtd_set_long(s, addr, val);
2855         break;
2856 
2857     /* Fault Event Address Register, 32-bit */
2858     case DMAR_FEADDR_REG:
2859         if (size == 4) {
2860             vtd_set_long(s, addr, val);
2861         } else {
2862             /*
2863              * While the register is 32-bit only, some guests (Xen...) write to
2864              * it with 64-bit.
2865              */
2866             vtd_set_quad(s, addr, val);
2867         }
2868         break;
2869 
2870     /* Fault Event Upper Address Register, 32-bit */
2871     case DMAR_FEUADDR_REG:
2872         assert(size == 4);
2873         vtd_set_long(s, addr, val);
2874         break;
2875 
2876     /* Protected Memory Enable Register, 32-bit */
2877     case DMAR_PMEN_REG:
2878         assert(size == 4);
2879         vtd_set_long(s, addr, val);
2880         break;
2881 
2882     /* Root Table Address Register, 64-bit */
2883     case DMAR_RTADDR_REG:
2884         if (size == 4) {
2885             vtd_set_long(s, addr, val);
2886         } else {
2887             vtd_set_quad(s, addr, val);
2888         }
2889         break;
2890 
2891     case DMAR_RTADDR_REG_HI:
2892         assert(size == 4);
2893         vtd_set_long(s, addr, val);
2894         break;
2895 
2896     /* Invalidation Queue Tail Register, 64-bit */
2897     case DMAR_IQT_REG:
2898         if (size == 4) {
2899             vtd_set_long(s, addr, val);
2900         } else {
2901             vtd_set_quad(s, addr, val);
2902         }
2903         vtd_handle_iqt_write(s);
2904         break;
2905 
2906     case DMAR_IQT_REG_HI:
2907         assert(size == 4);
2908         vtd_set_long(s, addr, val);
2909         /* 19:63 of IQT_REG is RsvdZ, do nothing here */
2910         break;
2911 
2912     /* Invalidation Queue Address Register, 64-bit */
2913     case DMAR_IQA_REG:
2914         if (size == 4) {
2915             vtd_set_long(s, addr, val);
2916         } else {
2917             vtd_set_quad(s, addr, val);
2918         }
2919         vtd_update_iq_dw(s);
2920         break;
2921 
2922     case DMAR_IQA_REG_HI:
2923         assert(size == 4);
2924         vtd_set_long(s, addr, val);
2925         break;
2926 
2927     /* Invalidation Completion Status Register, 32-bit */
2928     case DMAR_ICS_REG:
2929         assert(size == 4);
2930         vtd_set_long(s, addr, val);
2931         vtd_handle_ics_write(s);
2932         break;
2933 
2934     /* Invalidation Event Control Register, 32-bit */
2935     case DMAR_IECTL_REG:
2936         assert(size == 4);
2937         vtd_set_long(s, addr, val);
2938         vtd_handle_iectl_write(s);
2939         break;
2940 
2941     /* Invalidation Event Data Register, 32-bit */
2942     case DMAR_IEDATA_REG:
2943         assert(size == 4);
2944         vtd_set_long(s, addr, val);
2945         break;
2946 
2947     /* Invalidation Event Address Register, 32-bit */
2948     case DMAR_IEADDR_REG:
2949         assert(size == 4);
2950         vtd_set_long(s, addr, val);
2951         break;
2952 
2953     /* Invalidation Event Upper Address Register, 32-bit */
2954     case DMAR_IEUADDR_REG:
2955         assert(size == 4);
2956         vtd_set_long(s, addr, val);
2957         break;
2958 
2959     /* Fault Recording Registers, 128-bit */
2960     case DMAR_FRCD_REG_0_0:
2961         if (size == 4) {
2962             vtd_set_long(s, addr, val);
2963         } else {
2964             vtd_set_quad(s, addr, val);
2965         }
2966         break;
2967 
2968     case DMAR_FRCD_REG_0_1:
2969         assert(size == 4);
2970         vtd_set_long(s, addr, val);
2971         break;
2972 
2973     case DMAR_FRCD_REG_0_2:
2974         if (size == 4) {
2975             vtd_set_long(s, addr, val);
2976         } else {
2977             vtd_set_quad(s, addr, val);
2978             /* May clear bit 127 (Fault), update PPF */
2979             vtd_update_fsts_ppf(s);
2980         }
2981         break;
2982 
2983     case DMAR_FRCD_REG_0_3:
2984         assert(size == 4);
2985         vtd_set_long(s, addr, val);
2986         /* May clear bit 127 (Fault), update PPF */
2987         vtd_update_fsts_ppf(s);
2988         break;
2989 
2990     case DMAR_IRTA_REG:
2991         if (size == 4) {
2992             vtd_set_long(s, addr, val);
2993         } else {
2994             vtd_set_quad(s, addr, val);
2995         }
2996         break;
2997 
2998     case DMAR_IRTA_REG_HI:
2999         assert(size == 4);
3000         vtd_set_long(s, addr, val);
3001         break;
3002 
3003     default:
3004         if (size == 4) {
3005             vtd_set_long(s, addr, val);
3006         } else {
3007             vtd_set_quad(s, addr, val);
3008         }
3009     }
3010 }
3011 
3012 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr,
3013                                          IOMMUAccessFlags flag, int iommu_idx)
3014 {
3015     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3016     IntelIOMMUState *s = vtd_as->iommu_state;
3017     IOMMUTLBEntry iotlb = {
3018         /* We'll fill in the rest later. */
3019         .target_as = &address_space_memory,
3020     };
3021     bool success;
3022 
3023     if (likely(s->dmar_enabled)) {
3024         success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn,
3025                                          addr, flag & IOMMU_WO, &iotlb);
3026     } else {
3027         /* DMAR disabled, passthrough, use 4k-page*/
3028         iotlb.iova = addr & VTD_PAGE_MASK_4K;
3029         iotlb.translated_addr = addr & VTD_PAGE_MASK_4K;
3030         iotlb.addr_mask = ~VTD_PAGE_MASK_4K;
3031         iotlb.perm = IOMMU_RW;
3032         success = true;
3033     }
3034 
3035     if (likely(success)) {
3036         trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus),
3037                                  VTD_PCI_SLOT(vtd_as->devfn),
3038                                  VTD_PCI_FUNC(vtd_as->devfn),
3039                                  iotlb.iova, iotlb.translated_addr,
3040                                  iotlb.addr_mask);
3041     } else {
3042         error_report_once("%s: detected translation failure "
3043                           "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")",
3044                           __func__, pci_bus_num(vtd_as->bus),
3045                           VTD_PCI_SLOT(vtd_as->devfn),
3046                           VTD_PCI_FUNC(vtd_as->devfn),
3047                           addr);
3048     }
3049 
3050     return iotlb;
3051 }
3052 
3053 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu,
3054                                          IOMMUNotifierFlag old,
3055                                          IOMMUNotifierFlag new,
3056                                          Error **errp)
3057 {
3058     VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
3059     IntelIOMMUState *s = vtd_as->iommu_state;
3060 
3061     /* TODO: add support for VFIO and vhost users */
3062     if (s->snoop_control) {
3063         error_setg_errno(errp, ENOTSUP,
3064                          "Snoop Control with vhost or VFIO is not supported");
3065         return -ENOTSUP;
3066     }
3067 
3068     /* Update per-address-space notifier flags */
3069     vtd_as->notifier_flags = new;
3070 
3071     if (old == IOMMU_NOTIFIER_NONE) {
3072         QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next);
3073     } else if (new == IOMMU_NOTIFIER_NONE) {
3074         QLIST_REMOVE(vtd_as, next);
3075     }
3076     return 0;
3077 }
3078 
3079 static int vtd_post_load(void *opaque, int version_id)
3080 {
3081     IntelIOMMUState *iommu = opaque;
3082 
3083     /*
3084      * We don't need to migrate the root_scalable because we can
3085      * simply do the calculation after the loading is complete.  We
3086      * can actually do similar things with root, dmar_enabled, etc.
3087      * however since we've had them already so we'd better keep them
3088      * for compatibility of migration.
3089      */
3090     vtd_update_scalable_state(iommu);
3091 
3092     vtd_update_iq_dw(iommu);
3093 
3094     /*
3095      * Memory regions are dynamically turned on/off depending on
3096      * context entry configurations from the guest. After migration,
3097      * we need to make sure the memory regions are still correct.
3098      */
3099     vtd_switch_address_space_all(iommu);
3100 
3101     return 0;
3102 }
3103 
3104 static const VMStateDescription vtd_vmstate = {
3105     .name = "iommu-intel",
3106     .version_id = 1,
3107     .minimum_version_id = 1,
3108     .priority = MIG_PRI_IOMMU,
3109     .post_load = vtd_post_load,
3110     .fields = (VMStateField[]) {
3111         VMSTATE_UINT64(root, IntelIOMMUState),
3112         VMSTATE_UINT64(intr_root, IntelIOMMUState),
3113         VMSTATE_UINT64(iq, IntelIOMMUState),
3114         VMSTATE_UINT32(intr_size, IntelIOMMUState),
3115         VMSTATE_UINT16(iq_head, IntelIOMMUState),
3116         VMSTATE_UINT16(iq_tail, IntelIOMMUState),
3117         VMSTATE_UINT16(iq_size, IntelIOMMUState),
3118         VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState),
3119         VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE),
3120         VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState),
3121         VMSTATE_UNUSED(1),      /* bool root_extended is obsolete by VT-d */
3122         VMSTATE_BOOL(dmar_enabled, IntelIOMMUState),
3123         VMSTATE_BOOL(qi_enabled, IntelIOMMUState),
3124         VMSTATE_BOOL(intr_enabled, IntelIOMMUState),
3125         VMSTATE_BOOL(intr_eime, IntelIOMMUState),
3126         VMSTATE_END_OF_LIST()
3127     }
3128 };
3129 
3130 static const MemoryRegionOps vtd_mem_ops = {
3131     .read = vtd_mem_read,
3132     .write = vtd_mem_write,
3133     .endianness = DEVICE_LITTLE_ENDIAN,
3134     .impl = {
3135         .min_access_size = 4,
3136         .max_access_size = 8,
3137     },
3138     .valid = {
3139         .min_access_size = 4,
3140         .max_access_size = 8,
3141     },
3142 };
3143 
3144 static Property vtd_properties[] = {
3145     DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
3146     DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim,
3147                             ON_OFF_AUTO_AUTO),
3148     DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false),
3149     DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits,
3150                       VTD_HOST_ADDRESS_WIDTH),
3151     DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE),
3152     DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE),
3153     DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false),
3154     DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true),
3155     DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true),
3156     DEFINE_PROP_END_OF_LIST(),
3157 };
3158 
3159 /* Read IRTE entry with specific index */
3160 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index,
3161                         VTD_IR_TableEntry *entry, uint16_t sid)
3162 {
3163     static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \
3164         {0xffff, 0xfffb, 0xfff9, 0xfff8};
3165     dma_addr_t addr = 0x00;
3166     uint16_t mask, source_id;
3167     uint8_t bus, bus_max, bus_min;
3168 
3169     if (index >= iommu->intr_size) {
3170         error_report_once("%s: index too large: ind=0x%x",
3171                           __func__, index);
3172         return -VTD_FR_IR_INDEX_OVER;
3173     }
3174 
3175     addr = iommu->intr_root + index * sizeof(*entry);
3176     if (dma_memory_read(&address_space_memory, addr,
3177                         entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) {
3178         error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64,
3179                           __func__, index, addr);
3180         return -VTD_FR_IR_ROOT_INVAL;
3181     }
3182 
3183     trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]),
3184                           le64_to_cpu(entry->data[0]));
3185 
3186     if (!entry->irte.present) {
3187         error_report_once("%s: detected non-present IRTE "
3188                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3189                           __func__, index, le64_to_cpu(entry->data[1]),
3190                           le64_to_cpu(entry->data[0]));
3191         return -VTD_FR_IR_ENTRY_P;
3192     }
3193 
3194     if (entry->irte.__reserved_0 || entry->irte.__reserved_1 ||
3195         entry->irte.__reserved_2) {
3196         error_report_once("%s: detected non-zero reserved IRTE "
3197                           "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")",
3198                           __func__, index, le64_to_cpu(entry->data[1]),
3199                           le64_to_cpu(entry->data[0]));
3200         return -VTD_FR_IR_IRTE_RSVD;
3201     }
3202 
3203     if (sid != X86_IOMMU_SID_INVALID) {
3204         /* Validate IRTE SID */
3205         source_id = le32_to_cpu(entry->irte.source_id);
3206         switch (entry->irte.sid_vtype) {
3207         case VTD_SVT_NONE:
3208             break;
3209 
3210         case VTD_SVT_ALL:
3211             mask = vtd_svt_mask[entry->irte.sid_q];
3212             if ((source_id & mask) != (sid & mask)) {
3213                 error_report_once("%s: invalid IRTE SID "
3214                                   "(index=%u, sid=%u, source_id=%u)",
3215                                   __func__, index, sid, source_id);
3216                 return -VTD_FR_IR_SID_ERR;
3217             }
3218             break;
3219 
3220         case VTD_SVT_BUS:
3221             bus_max = source_id >> 8;
3222             bus_min = source_id & 0xff;
3223             bus = sid >> 8;
3224             if (bus > bus_max || bus < bus_min) {
3225                 error_report_once("%s: invalid SVT_BUS "
3226                                   "(index=%u, bus=%u, min=%u, max=%u)",
3227                                   __func__, index, bus, bus_min, bus_max);
3228                 return -VTD_FR_IR_SID_ERR;
3229             }
3230             break;
3231 
3232         default:
3233             error_report_once("%s: detected invalid IRTE SVT "
3234                               "(index=%u, type=%d)", __func__,
3235                               index, entry->irte.sid_vtype);
3236             /* Take this as verification failure. */
3237             return -VTD_FR_IR_SID_ERR;
3238         }
3239     }
3240 
3241     return 0;
3242 }
3243 
3244 /* Fetch IRQ information of specific IR index */
3245 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index,
3246                              X86IOMMUIrq *irq, uint16_t sid)
3247 {
3248     VTD_IR_TableEntry irte = {};
3249     int ret = 0;
3250 
3251     ret = vtd_irte_get(iommu, index, &irte, sid);
3252     if (ret) {
3253         return ret;
3254     }
3255 
3256     irq->trigger_mode = irte.irte.trigger_mode;
3257     irq->vector = irte.irte.vector;
3258     irq->delivery_mode = irte.irte.delivery_mode;
3259     irq->dest = le32_to_cpu(irte.irte.dest_id);
3260     if (!iommu->intr_eime) {
3261 #define  VTD_IR_APIC_DEST_MASK         (0xff00ULL)
3262 #define  VTD_IR_APIC_DEST_SHIFT        (8)
3263         irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >>
3264             VTD_IR_APIC_DEST_SHIFT;
3265     }
3266     irq->dest_mode = irte.irte.dest_mode;
3267     irq->redir_hint = irte.irte.redir_hint;
3268 
3269     trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector,
3270                        irq->delivery_mode, irq->dest, irq->dest_mode);
3271 
3272     return 0;
3273 }
3274 
3275 /* Interrupt remapping for MSI/MSI-X entry */
3276 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu,
3277                                    MSIMessage *origin,
3278                                    MSIMessage *translated,
3279                                    uint16_t sid)
3280 {
3281     int ret = 0;
3282     VTD_IR_MSIAddress addr;
3283     uint16_t index;
3284     X86IOMMUIrq irq = {};
3285 
3286     assert(origin && translated);
3287 
3288     trace_vtd_ir_remap_msi_req(origin->address, origin->data);
3289 
3290     if (!iommu || !iommu->intr_enabled) {
3291         memcpy(translated, origin, sizeof(*origin));
3292         goto out;
3293     }
3294 
3295     if (origin->address & VTD_MSI_ADDR_HI_MASK) {
3296         error_report_once("%s: MSI address high 32 bits non-zero detected: "
3297                           "address=0x%" PRIx64, __func__, origin->address);
3298         return -VTD_FR_IR_REQ_RSVD;
3299     }
3300 
3301     addr.data = origin->address & VTD_MSI_ADDR_LO_MASK;
3302     if (addr.addr.__head != 0xfee) {
3303         error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32,
3304                           __func__, addr.data);
3305         return -VTD_FR_IR_REQ_RSVD;
3306     }
3307 
3308     /* This is compatible mode. */
3309     if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) {
3310         memcpy(translated, origin, sizeof(*origin));
3311         goto out;
3312     }
3313 
3314     index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l);
3315 
3316 #define  VTD_IR_MSI_DATA_SUBHANDLE       (0x0000ffff)
3317 #define  VTD_IR_MSI_DATA_RESERVED        (0xffff0000)
3318 
3319     if (addr.addr.sub_valid) {
3320         /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */
3321         index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE;
3322     }
3323 
3324     ret = vtd_remap_irq_get(iommu, index, &irq, sid);
3325     if (ret) {
3326         return ret;
3327     }
3328 
3329     if (addr.addr.sub_valid) {
3330         trace_vtd_ir_remap_type("MSI");
3331         if (origin->data & VTD_IR_MSI_DATA_RESERVED) {
3332             error_report_once("%s: invalid IR MSI "
3333                               "(sid=%u, address=0x%" PRIx64
3334                               ", data=0x%" PRIx32 ")",
3335                               __func__, sid, origin->address, origin->data);
3336             return -VTD_FR_IR_REQ_RSVD;
3337         }
3338     } else {
3339         uint8_t vector = origin->data & 0xff;
3340         uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1;
3341 
3342         trace_vtd_ir_remap_type("IOAPIC");
3343         /* IOAPIC entry vector should be aligned with IRTE vector
3344          * (see vt-d spec 5.1.5.1). */
3345         if (vector != irq.vector) {
3346             trace_vtd_warn_ir_vector(sid, index, vector, irq.vector);
3347         }
3348 
3349         /* The Trigger Mode field must match the Trigger Mode in the IRTE.
3350          * (see vt-d spec 5.1.5.1). */
3351         if (trigger_mode != irq.trigger_mode) {
3352             trace_vtd_warn_ir_trigger(sid, index, trigger_mode,
3353                                       irq.trigger_mode);
3354         }
3355     }
3356 
3357     /*
3358      * We'd better keep the last two bits, assuming that guest OS
3359      * might modify it. Keep it does not hurt after all.
3360      */
3361     irq.msi_addr_last_bits = addr.addr.__not_care;
3362 
3363     /* Translate X86IOMMUIrq to MSI message */
3364     x86_iommu_irq_to_msi_message(&irq, translated);
3365 
3366 out:
3367     trace_vtd_ir_remap_msi(origin->address, origin->data,
3368                            translated->address, translated->data);
3369     return 0;
3370 }
3371 
3372 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src,
3373                          MSIMessage *dst, uint16_t sid)
3374 {
3375     return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu),
3376                                    src, dst, sid);
3377 }
3378 
3379 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr,
3380                                    uint64_t *data, unsigned size,
3381                                    MemTxAttrs attrs)
3382 {
3383     return MEMTX_OK;
3384 }
3385 
3386 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr,
3387                                     uint64_t value, unsigned size,
3388                                     MemTxAttrs attrs)
3389 {
3390     int ret = 0;
3391     MSIMessage from = {}, to = {};
3392     uint16_t sid = X86_IOMMU_SID_INVALID;
3393 
3394     from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST;
3395     from.data = (uint32_t) value;
3396 
3397     if (!attrs.unspecified) {
3398         /* We have explicit Source ID */
3399         sid = attrs.requester_id;
3400     }
3401 
3402     ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid);
3403     if (ret) {
3404         /* TODO: report error */
3405         /* Drop this interrupt */
3406         return MEMTX_ERROR;
3407     }
3408 
3409     apic_get_class()->send_msi(&to);
3410 
3411     return MEMTX_OK;
3412 }
3413 
3414 static const MemoryRegionOps vtd_mem_ir_ops = {
3415     .read_with_attrs = vtd_mem_ir_read,
3416     .write_with_attrs = vtd_mem_ir_write,
3417     .endianness = DEVICE_LITTLE_ENDIAN,
3418     .impl = {
3419         .min_access_size = 4,
3420         .max_access_size = 4,
3421     },
3422     .valid = {
3423         .min_access_size = 4,
3424         .max_access_size = 4,
3425     },
3426 };
3427 
3428 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn)
3429 {
3430     uintptr_t key = (uintptr_t)bus;
3431     VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key);
3432     VTDAddressSpace *vtd_dev_as;
3433     char name[128];
3434 
3435     if (!vtd_bus) {
3436         uintptr_t *new_key = g_malloc(sizeof(*new_key));
3437         *new_key = (uintptr_t)bus;
3438         /* No corresponding free() */
3439         vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \
3440                             PCI_DEVFN_MAX);
3441         vtd_bus->bus = bus;
3442         g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus);
3443     }
3444 
3445     vtd_dev_as = vtd_bus->dev_as[devfn];
3446 
3447     if (!vtd_dev_as) {
3448         snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn),
3449                  PCI_FUNC(devfn));
3450         vtd_bus->dev_as[devfn] = vtd_dev_as = g_new0(VTDAddressSpace, 1);
3451 
3452         vtd_dev_as->bus = bus;
3453         vtd_dev_as->devfn = (uint8_t)devfn;
3454         vtd_dev_as->iommu_state = s;
3455         vtd_dev_as->context_cache_entry.context_cache_gen = 0;
3456         vtd_dev_as->iova_tree = iova_tree_new();
3457 
3458         memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX);
3459         address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root");
3460 
3461         /*
3462          * Build the DMAR-disabled container with aliases to the
3463          * shared MRs.  Note that aliasing to a shared memory region
3464          * could help the memory API to detect same FlatViews so we
3465          * can have devices to share the same FlatView when DMAR is
3466          * disabled (either by not providing "intel_iommu=on" or with
3467          * "iommu=pt").  It will greatly reduce the total number of
3468          * FlatViews of the system hence VM runs faster.
3469          */
3470         memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s),
3471                                  "vtd-nodmar", &s->mr_nodmar, 0,
3472                                  memory_region_size(&s->mr_nodmar));
3473 
3474         /*
3475          * Build the per-device DMAR-enabled container.
3476          *
3477          * TODO: currently we have per-device IOMMU memory region only
3478          * because we have per-device IOMMU notifiers for devices.  If
3479          * one day we can abstract the IOMMU notifiers out of the
3480          * memory regions then we can also share the same memory
3481          * region here just like what we've done above with the nodmar
3482          * region.
3483          */
3484         strcat(name, "-dmar");
3485         memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu),
3486                                  TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s),
3487                                  name, UINT64_MAX);
3488         memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir",
3489                                  &s->mr_ir, 0, memory_region_size(&s->mr_ir));
3490         memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu),
3491                                             VTD_INTERRUPT_ADDR_FIRST,
3492                                             &vtd_dev_as->iommu_ir, 1);
3493 
3494         /*
3495          * Hook both the containers under the root container, we
3496          * switch between DMAR & noDMAR by enable/disable
3497          * corresponding sub-containers
3498          */
3499         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3500                                             MEMORY_REGION(&vtd_dev_as->iommu),
3501                                             0);
3502         memory_region_add_subregion_overlap(&vtd_dev_as->root, 0,
3503                                             &vtd_dev_as->nodmar, 0);
3504 
3505         vtd_switch_address_space(vtd_dev_as);
3506     }
3507     return vtd_dev_as;
3508 }
3509 
3510 /* Unmap the whole range in the notifier's scope. */
3511 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n)
3512 {
3513     hwaddr size, remain;
3514     hwaddr start = n->start;
3515     hwaddr end = n->end;
3516     IntelIOMMUState *s = as->iommu_state;
3517     DMAMap map;
3518 
3519     /*
3520      * Note: all the codes in this function has a assumption that IOVA
3521      * bits are no more than VTD_MGAW bits (which is restricted by
3522      * VT-d spec), otherwise we need to consider overflow of 64 bits.
3523      */
3524 
3525     if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) {
3526         /*
3527          * Don't need to unmap regions that is bigger than the whole
3528          * VT-d supported address space size
3529          */
3530         end = VTD_ADDRESS_SIZE(s->aw_bits) - 1;
3531     }
3532 
3533     assert(start <= end);
3534     size = remain = end - start + 1;
3535 
3536     while (remain >= VTD_PAGE_SIZE) {
3537         IOMMUTLBEvent event;
3538         uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits);
3539         uint64_t size = mask + 1;
3540 
3541         assert(size);
3542 
3543         event.type = IOMMU_NOTIFIER_UNMAP;
3544         event.entry.iova = start;
3545         event.entry.addr_mask = mask;
3546         event.entry.target_as = &address_space_memory;
3547         event.entry.perm = IOMMU_NONE;
3548         /* This field is meaningless for unmap */
3549         event.entry.translated_addr = 0;
3550 
3551         memory_region_notify_iommu_one(n, &event);
3552 
3553         start += size;
3554         remain -= size;
3555     }
3556 
3557     assert(!remain);
3558 
3559     trace_vtd_as_unmap_whole(pci_bus_num(as->bus),
3560                              VTD_PCI_SLOT(as->devfn),
3561                              VTD_PCI_FUNC(as->devfn),
3562                              n->start, size);
3563 
3564     map.iova = n->start;
3565     map.size = size;
3566     iova_tree_remove(as->iova_tree, &map);
3567 }
3568 
3569 static void vtd_address_space_unmap_all(IntelIOMMUState *s)
3570 {
3571     VTDAddressSpace *vtd_as;
3572     IOMMUNotifier *n;
3573 
3574     QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) {
3575         IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) {
3576             vtd_address_space_unmap(vtd_as, n);
3577         }
3578     }
3579 }
3580 
3581 static void vtd_address_space_refresh_all(IntelIOMMUState *s)
3582 {
3583     vtd_address_space_unmap_all(s);
3584     vtd_switch_address_space_all(s);
3585 }
3586 
3587 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private)
3588 {
3589     memory_region_notify_iommu_one(private, event);
3590     return 0;
3591 }
3592 
3593 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n)
3594 {
3595     VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu);
3596     IntelIOMMUState *s = vtd_as->iommu_state;
3597     uint8_t bus_n = pci_bus_num(vtd_as->bus);
3598     VTDContextEntry ce;
3599 
3600     /*
3601      * The replay can be triggered by either a invalidation or a newly
3602      * created entry. No matter what, we release existing mappings
3603      * (it means flushing caches for UNMAP-only registers).
3604      */
3605     vtd_address_space_unmap(vtd_as, n);
3606 
3607     if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) {
3608         trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" :
3609                                   "legacy mode",
3610                                   bus_n, PCI_SLOT(vtd_as->devfn),
3611                                   PCI_FUNC(vtd_as->devfn),
3612                                   vtd_get_domain_id(s, &ce),
3613                                   ce.hi, ce.lo);
3614         if (vtd_as_has_map_notifier(vtd_as)) {
3615             /* This is required only for MAP typed notifiers */
3616             vtd_page_walk_info info = {
3617                 .hook_fn = vtd_replay_hook,
3618                 .private = (void *)n,
3619                 .notify_unmap = false,
3620                 .aw = s->aw_bits,
3621                 .as = vtd_as,
3622                 .domain_id = vtd_get_domain_id(s, &ce),
3623             };
3624 
3625             vtd_page_walk(s, &ce, 0, ~0ULL, &info);
3626         }
3627     } else {
3628         trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn),
3629                                     PCI_FUNC(vtd_as->devfn));
3630     }
3631 
3632     return;
3633 }
3634 
3635 /* Do the initialization. It will also be called when reset, so pay
3636  * attention when adding new initialization stuff.
3637  */
3638 static void vtd_init(IntelIOMMUState *s)
3639 {
3640     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3641 
3642     memset(s->csr, 0, DMAR_REG_SIZE);
3643     memset(s->wmask, 0, DMAR_REG_SIZE);
3644     memset(s->w1cmask, 0, DMAR_REG_SIZE);
3645     memset(s->womask, 0, DMAR_REG_SIZE);
3646 
3647     s->root = 0;
3648     s->root_scalable = false;
3649     s->dmar_enabled = false;
3650     s->intr_enabled = false;
3651     s->iq_head = 0;
3652     s->iq_tail = 0;
3653     s->iq = 0;
3654     s->iq_size = 0;
3655     s->qi_enabled = false;
3656     s->iq_last_desc_type = VTD_INV_DESC_NONE;
3657     s->iq_dw = false;
3658     s->next_frcd_reg = 0;
3659     s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND |
3660              VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS |
3661              VTD_CAP_MGAW(s->aw_bits);
3662     if (s->dma_drain) {
3663         s->cap |= VTD_CAP_DRAIN;
3664     }
3665     if (s->dma_translation) {
3666             if (s->aw_bits >= VTD_HOST_AW_39BIT) {
3667                     s->cap |= VTD_CAP_SAGAW_39bit;
3668             }
3669             if (s->aw_bits >= VTD_HOST_AW_48BIT) {
3670                     s->cap |= VTD_CAP_SAGAW_48bit;
3671             }
3672     }
3673     s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO;
3674 
3675     /*
3676      * Rsvd field masks for spte
3677      */
3678     vtd_spte_rsvd[0] = ~0ULL;
3679     vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits,
3680                                                   x86_iommu->dt_supported);
3681     vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits);
3682     vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits);
3683     vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits);
3684 
3685     vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits,
3686                                                          x86_iommu->dt_supported);
3687     vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits,
3688                                                          x86_iommu->dt_supported);
3689 
3690     if (s->scalable_mode || s->snoop_control) {
3691         vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP;
3692         vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP;
3693         vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP;
3694     }
3695 
3696     if (x86_iommu_ir_supported(x86_iommu)) {
3697         s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV;
3698         if (s->intr_eim == ON_OFF_AUTO_ON) {
3699             s->ecap |= VTD_ECAP_EIM;
3700         }
3701         assert(s->intr_eim != ON_OFF_AUTO_AUTO);
3702     }
3703 
3704     if (x86_iommu->dt_supported) {
3705         s->ecap |= VTD_ECAP_DT;
3706     }
3707 
3708     if (x86_iommu->pt_supported) {
3709         s->ecap |= VTD_ECAP_PT;
3710     }
3711 
3712     if (s->caching_mode) {
3713         s->cap |= VTD_CAP_CM;
3714     }
3715 
3716     /* TODO: read cap/ecap from host to decide which cap to be exposed. */
3717     if (s->scalable_mode) {
3718         s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS;
3719     }
3720 
3721     if (s->snoop_control) {
3722         s->ecap |= VTD_ECAP_SC;
3723     }
3724 
3725     vtd_reset_caches(s);
3726 
3727     /* Define registers with default values and bit semantics */
3728     vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
3729     vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
3730     vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
3731     vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
3732     vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
3733     vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
3734     vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0);
3735     vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
3736     vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
3737 
3738     /* Advanced Fault Logging not supported */
3739     vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
3740     vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3741     vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
3742     vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
3743 
3744     /* Treated as RsvdZ when EIM in ECAP_REG is not supported
3745      * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
3746      */
3747     vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
3748 
3749     /* Treated as RO for implementations that PLMR and PHMR fields reported
3750      * as Clear in the CAP_REG.
3751      * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
3752      */
3753     vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
3754 
3755     vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0);
3756     vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0);
3757     vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0);
3758     vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL);
3759     vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0);
3760     vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0);
3761     vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0);
3762     /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */
3763     vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0);
3764 
3765     /* IOTLB registers */
3766     vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
3767     vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
3768     vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
3769 
3770     /* Fault Recording Registers, 128-bit */
3771     vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
3772     vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
3773 
3774     /*
3775      * Interrupt remapping registers.
3776      */
3777     vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0);
3778 }
3779 
3780 /* Should not reset address_spaces when reset because devices will still use
3781  * the address space they got at first (won't ask the bus again).
3782  */
3783 static void vtd_reset(DeviceState *dev)
3784 {
3785     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3786 
3787     vtd_init(s);
3788     vtd_address_space_refresh_all(s);
3789 }
3790 
3791 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn)
3792 {
3793     IntelIOMMUState *s = opaque;
3794     VTDAddressSpace *vtd_as;
3795 
3796     assert(0 <= devfn && devfn < PCI_DEVFN_MAX);
3797 
3798     vtd_as = vtd_find_add_as(s, bus, devfn);
3799     return &vtd_as->as;
3800 }
3801 
3802 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp)
3803 {
3804     X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s);
3805 
3806     if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) {
3807         error_setg(errp, "eim=on cannot be selected without intremap=on");
3808         return false;
3809     }
3810 
3811     if (s->intr_eim == ON_OFF_AUTO_AUTO) {
3812         s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim)
3813                       && x86_iommu_ir_supported(x86_iommu) ?
3814                                               ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
3815     }
3816     if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) {
3817         if (!kvm_irqchip_is_split()) {
3818             error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split");
3819             return false;
3820         }
3821     }
3822 
3823     /* Currently only address widths supported are 39 and 48 bits */
3824     if ((s->aw_bits != VTD_HOST_AW_39BIT) &&
3825         (s->aw_bits != VTD_HOST_AW_48BIT)) {
3826         error_setg(errp, "Supported values for aw-bits are: %d, %d",
3827                    VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT);
3828         return false;
3829     }
3830 
3831     if (s->scalable_mode && !s->dma_drain) {
3832         error_setg(errp, "Need to set dma_drain for scalable mode");
3833         return false;
3834     }
3835 
3836     return true;
3837 }
3838 
3839 static int vtd_machine_done_notify_one(Object *child, void *unused)
3840 {
3841     IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
3842 
3843     /*
3844      * We hard-coded here because vfio-pci is the only special case
3845      * here.  Let's be more elegant in the future when we can, but so
3846      * far there seems to be no better way.
3847      */
3848     if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) {
3849         vtd_panic_require_caching_mode();
3850     }
3851 
3852     return 0;
3853 }
3854 
3855 static void vtd_machine_done_hook(Notifier *notifier, void *unused)
3856 {
3857     object_child_foreach_recursive(object_get_root(),
3858                                    vtd_machine_done_notify_one, NULL);
3859 }
3860 
3861 static Notifier vtd_machine_done_notify = {
3862     .notify = vtd_machine_done_hook,
3863 };
3864 
3865 static void vtd_realize(DeviceState *dev, Error **errp)
3866 {
3867     MachineState *ms = MACHINE(qdev_get_machine());
3868     PCMachineState *pcms = PC_MACHINE(ms);
3869     X86MachineState *x86ms = X86_MACHINE(ms);
3870     PCIBus *bus = pcms->bus;
3871     IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
3872 
3873     if (!vtd_decide_config(s, errp)) {
3874         return;
3875     }
3876 
3877     QLIST_INIT(&s->vtd_as_with_notifiers);
3878     qemu_mutex_init(&s->iommu_lock);
3879     memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num));
3880     memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
3881                           "intel_iommu", DMAR_REG_SIZE);
3882 
3883     /* Create the shared memory regions by all devices */
3884     memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar",
3885                        UINT64_MAX);
3886     memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops,
3887                           s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE);
3888     memory_region_init_alias(&s->mr_sys_alias, OBJECT(s),
3889                              "vtd-sys-alias", get_system_memory(), 0,
3890                              memory_region_size(get_system_memory()));
3891     memory_region_add_subregion_overlap(&s->mr_nodmar, 0,
3892                                         &s->mr_sys_alias, 0);
3893     memory_region_add_subregion_overlap(&s->mr_nodmar,
3894                                         VTD_INTERRUPT_ADDR_FIRST,
3895                                         &s->mr_ir, 1);
3896 
3897     sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
3898     /* No corresponding destroy */
3899     s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3900                                      g_free, g_free);
3901     s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal,
3902                                               g_free, g_free);
3903     vtd_init(s);
3904     sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
3905     pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
3906     /* Pseudo address space under root PCI bus. */
3907     x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
3908     qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
3909 }
3910 
3911 static void vtd_class_init(ObjectClass *klass, void *data)
3912 {
3913     DeviceClass *dc = DEVICE_CLASS(klass);
3914     X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass);
3915 
3916     dc->reset = vtd_reset;
3917     dc->vmsd = &vtd_vmstate;
3918     device_class_set_props(dc, vtd_properties);
3919     dc->hotpluggable = false;
3920     x86_class->realize = vtd_realize;
3921     x86_class->int_remap = vtd_int_remap;
3922     /* Supported by the pc-q35-* machine types */
3923     dc->user_creatable = true;
3924     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
3925     dc->desc = "Intel IOMMU (VT-d) DMA Remapping device";
3926 }
3927 
3928 static const TypeInfo vtd_info = {
3929     .name          = TYPE_INTEL_IOMMU_DEVICE,
3930     .parent        = TYPE_X86_IOMMU_DEVICE,
3931     .instance_size = sizeof(IntelIOMMUState),
3932     .class_init    = vtd_class_init,
3933 };
3934 
3935 static void vtd_iommu_memory_region_class_init(ObjectClass *klass,
3936                                                      void *data)
3937 {
3938     IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass);
3939 
3940     imrc->translate = vtd_iommu_translate;
3941     imrc->notify_flag_changed = vtd_iommu_notify_flag_changed;
3942     imrc->replay = vtd_iommu_replay;
3943 }
3944 
3945 static const TypeInfo vtd_iommu_memory_region_info = {
3946     .parent = TYPE_IOMMU_MEMORY_REGION,
3947     .name = TYPE_INTEL_IOMMU_MEMORY_REGION,
3948     .class_init = vtd_iommu_memory_region_class_init,
3949 };
3950 
3951 static void vtd_register_types(void)
3952 {
3953     type_register_static(&vtd_info);
3954     type_register_static(&vtd_iommu_memory_region_info);
3955 }
3956 
3957 type_init(vtd_register_types)
3958