1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "hw/sysbus.h" 26 #include "exec/address-spaces.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/i386/pc.h" 31 #include "hw/i386/apic-msidef.h" 32 #include "hw/boards.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "hw/i386/apic_internal.h" 37 #include "kvm_i386.h" 38 #include "trace.h" 39 40 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 41 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 42 43 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 44 uint64_t wmask, uint64_t w1cmask) 45 { 46 stq_le_p(&s->csr[addr], val); 47 stq_le_p(&s->wmask[addr], wmask); 48 stq_le_p(&s->w1cmask[addr], w1cmask); 49 } 50 51 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 52 { 53 stq_le_p(&s->womask[addr], mask); 54 } 55 56 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 57 uint32_t wmask, uint32_t w1cmask) 58 { 59 stl_le_p(&s->csr[addr], val); 60 stl_le_p(&s->wmask[addr], wmask); 61 stl_le_p(&s->w1cmask[addr], w1cmask); 62 } 63 64 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 65 { 66 stl_le_p(&s->womask[addr], mask); 67 } 68 69 /* "External" get/set operations */ 70 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 71 { 72 uint64_t oldval = ldq_le_p(&s->csr[addr]); 73 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 74 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 75 stq_le_p(&s->csr[addr], 76 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 77 } 78 79 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 80 { 81 uint32_t oldval = ldl_le_p(&s->csr[addr]); 82 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 83 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 84 stl_le_p(&s->csr[addr], 85 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 86 } 87 88 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 89 { 90 uint64_t val = ldq_le_p(&s->csr[addr]); 91 uint64_t womask = ldq_le_p(&s->womask[addr]); 92 return val & ~womask; 93 } 94 95 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 96 { 97 uint32_t val = ldl_le_p(&s->csr[addr]); 98 uint32_t womask = ldl_le_p(&s->womask[addr]); 99 return val & ~womask; 100 } 101 102 /* "Internal" get/set operations */ 103 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 104 { 105 return ldq_le_p(&s->csr[addr]); 106 } 107 108 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 109 { 110 return ldl_le_p(&s->csr[addr]); 111 } 112 113 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 114 { 115 stq_le_p(&s->csr[addr], val); 116 } 117 118 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 119 uint32_t clear, uint32_t mask) 120 { 121 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 122 stl_le_p(&s->csr[addr], new_val); 123 return new_val; 124 } 125 126 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 127 uint64_t clear, uint64_t mask) 128 { 129 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 130 stq_le_p(&s->csr[addr], new_val); 131 return new_val; 132 } 133 134 static inline void vtd_iommu_lock(IntelIOMMUState *s) 135 { 136 qemu_mutex_lock(&s->iommu_lock); 137 } 138 139 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 140 { 141 qemu_mutex_unlock(&s->iommu_lock); 142 } 143 144 /* Whether the address space needs to notify new mappings */ 145 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 146 { 147 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 148 } 149 150 /* GHashTable functions */ 151 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2) 152 { 153 return *((const uint64_t *)v1) == *((const uint64_t *)v2); 154 } 155 156 static guint vtd_uint64_hash(gconstpointer v) 157 { 158 return (guint)*(const uint64_t *)v; 159 } 160 161 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 162 gpointer user_data) 163 { 164 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 165 uint16_t domain_id = *(uint16_t *)user_data; 166 return entry->domain_id == domain_id; 167 } 168 169 /* The shift of an addr for a certain level of paging structure */ 170 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 171 { 172 assert(level != 0); 173 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 174 } 175 176 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 177 { 178 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 179 } 180 181 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 182 gpointer user_data) 183 { 184 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 185 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 186 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 187 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 188 return (entry->domain_id == info->domain_id) && 189 (((entry->gfn & info->mask) == gfn) || 190 (entry->gfn == gfn_tlb)); 191 } 192 193 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 194 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 195 */ 196 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 197 { 198 VTDAddressSpace *vtd_as; 199 VTDBus *vtd_bus; 200 GHashTableIter bus_it; 201 uint32_t devfn_it; 202 203 trace_vtd_context_cache_reset(); 204 205 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr); 206 207 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) { 208 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) { 209 vtd_as = vtd_bus->dev_as[devfn_it]; 210 if (!vtd_as) { 211 continue; 212 } 213 vtd_as->context_cache_entry.context_cache_gen = 0; 214 } 215 } 216 s->context_cache_gen = 1; 217 } 218 219 /* Must be called with IOMMU lock held. */ 220 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 221 { 222 assert(s->iotlb); 223 g_hash_table_remove_all(s->iotlb); 224 } 225 226 static void vtd_reset_iotlb(IntelIOMMUState *s) 227 { 228 vtd_iommu_lock(s); 229 vtd_reset_iotlb_locked(s); 230 vtd_iommu_unlock(s); 231 } 232 233 static void vtd_reset_caches(IntelIOMMUState *s) 234 { 235 vtd_iommu_lock(s); 236 vtd_reset_iotlb_locked(s); 237 vtd_reset_context_cache_locked(s); 238 vtd_iommu_unlock(s); 239 } 240 241 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id, 242 uint32_t level) 243 { 244 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) | 245 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT); 246 } 247 248 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 249 { 250 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 251 } 252 253 /* Must be called with IOMMU lock held */ 254 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 255 hwaddr addr) 256 { 257 VTDIOTLBEntry *entry; 258 uint64_t key; 259 int level; 260 261 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 262 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level), 263 source_id, level); 264 entry = g_hash_table_lookup(s->iotlb, &key); 265 if (entry) { 266 goto out; 267 } 268 } 269 270 out: 271 return entry; 272 } 273 274 /* Must be with IOMMU lock held */ 275 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 276 uint16_t domain_id, hwaddr addr, uint64_t slpte, 277 uint8_t access_flags, uint32_t level) 278 { 279 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 280 uint64_t *key = g_malloc(sizeof(*key)); 281 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 282 283 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 284 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 285 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 286 vtd_reset_iotlb_locked(s); 287 } 288 289 entry->gfn = gfn; 290 entry->domain_id = domain_id; 291 entry->slpte = slpte; 292 entry->access_flags = access_flags; 293 entry->mask = vtd_slpt_level_page_mask(level); 294 *key = vtd_get_iotlb_key(gfn, source_id, level); 295 g_hash_table_replace(s->iotlb, key, entry); 296 } 297 298 /* Given the reg addr of both the message data and address, generate an 299 * interrupt via MSI. 300 */ 301 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 302 hwaddr mesg_data_reg) 303 { 304 MSIMessage msi; 305 306 assert(mesg_data_reg < DMAR_REG_SIZE); 307 assert(mesg_addr_reg < DMAR_REG_SIZE); 308 309 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 310 msi.data = vtd_get_long_raw(s, mesg_data_reg); 311 312 trace_vtd_irq_generate(msi.address, msi.data); 313 314 apic_get_class()->send_msi(&msi); 315 } 316 317 /* Generate a fault event to software via MSI if conditions are met. 318 * Notice that the value of FSTS_REG being passed to it should be the one 319 * before any update. 320 */ 321 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 322 { 323 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 324 pre_fsts & VTD_FSTS_IQE) { 325 error_report_once("There are previous interrupt conditions " 326 "to be serviced by software, fault event " 327 "is not generated"); 328 return; 329 } 330 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 331 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 332 error_report_once("Interrupt Mask set, irq is not generated"); 333 } else { 334 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 335 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 336 } 337 } 338 339 /* Check if the Fault (F) field of the Fault Recording Register referenced by 340 * @index is Set. 341 */ 342 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 343 { 344 /* Each reg is 128-bit */ 345 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 346 addr += 8; /* Access the high 64-bit half */ 347 348 assert(index < DMAR_FRCD_REG_NR); 349 350 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 351 } 352 353 /* Update the PPF field of Fault Status Register. 354 * Should be called whenever change the F field of any fault recording 355 * registers. 356 */ 357 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 358 { 359 uint32_t i; 360 uint32_t ppf_mask = 0; 361 362 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 363 if (vtd_is_frcd_set(s, i)) { 364 ppf_mask = VTD_FSTS_PPF; 365 break; 366 } 367 } 368 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 369 trace_vtd_fsts_ppf(!!ppf_mask); 370 } 371 372 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 373 { 374 /* Each reg is 128-bit */ 375 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 376 addr += 8; /* Access the high 64-bit half */ 377 378 assert(index < DMAR_FRCD_REG_NR); 379 380 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 381 vtd_update_fsts_ppf(s); 382 } 383 384 /* Must not update F field now, should be done later */ 385 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 386 uint16_t source_id, hwaddr addr, 387 VTDFaultReason fault, bool is_write) 388 { 389 uint64_t hi = 0, lo; 390 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 391 392 assert(index < DMAR_FRCD_REG_NR); 393 394 lo = VTD_FRCD_FI(addr); 395 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); 396 if (!is_write) { 397 hi |= VTD_FRCD_T; 398 } 399 vtd_set_quad_raw(s, frcd_reg_addr, lo); 400 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 401 402 trace_vtd_frr_new(index, hi, lo); 403 } 404 405 /* Try to collapse multiple pending faults from the same requester */ 406 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 407 { 408 uint32_t i; 409 uint64_t frcd_reg; 410 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 411 412 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 413 frcd_reg = vtd_get_quad_raw(s, addr); 414 if ((frcd_reg & VTD_FRCD_F) && 415 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 416 return true; 417 } 418 addr += 16; /* 128-bit for each */ 419 } 420 return false; 421 } 422 423 /* Log and report an DMAR (address translation) fault to software */ 424 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 425 hwaddr addr, VTDFaultReason fault, 426 bool is_write) 427 { 428 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 429 430 assert(fault < VTD_FR_MAX); 431 432 if (fault == VTD_FR_RESERVED_ERR) { 433 /* This is not a normal fault reason case. Drop it. */ 434 return; 435 } 436 437 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 438 439 if (fsts_reg & VTD_FSTS_PFO) { 440 error_report_once("New fault is not recorded due to " 441 "Primary Fault Overflow"); 442 return; 443 } 444 445 if (vtd_try_collapse_fault(s, source_id)) { 446 error_report_once("New fault is not recorded due to " 447 "compression of faults"); 448 return; 449 } 450 451 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 452 error_report_once("Next Fault Recording Reg is used, " 453 "new fault is not recorded, set PFO field"); 454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 455 return; 456 } 457 458 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write); 459 460 if (fsts_reg & VTD_FSTS_PPF) { 461 error_report_once("There are pending faults already, " 462 "fault event is not generated"); 463 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 464 s->next_frcd_reg++; 465 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 466 s->next_frcd_reg = 0; 467 } 468 } else { 469 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 470 VTD_FSTS_FRI(s->next_frcd_reg)); 471 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 472 s->next_frcd_reg++; 473 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 474 s->next_frcd_reg = 0; 475 } 476 /* This case actually cause the PPF to be Set. 477 * So generate fault event (interrupt). 478 */ 479 vtd_generate_fault_event(s, fsts_reg); 480 } 481 } 482 483 /* Handle Invalidation Queue Errors of queued invalidation interface error 484 * conditions. 485 */ 486 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 487 { 488 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 489 490 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 491 vtd_generate_fault_event(s, fsts_reg); 492 } 493 494 /* Set the IWC field and try to generate an invalidation completion interrupt */ 495 static void vtd_generate_completion_event(IntelIOMMUState *s) 496 { 497 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 498 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 499 return; 500 } 501 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 502 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 503 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 504 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 505 "new event not generated"); 506 return; 507 } else { 508 /* Generate the interrupt event */ 509 trace_vtd_inv_desc_wait_irq("Generating complete event"); 510 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 511 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 512 } 513 } 514 515 static inline bool vtd_root_entry_present(VTDRootEntry *root) 516 { 517 return root->val & VTD_ROOT_ENTRY_P; 518 } 519 520 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 521 VTDRootEntry *re) 522 { 523 dma_addr_t addr; 524 525 addr = s->root + index * sizeof(*re); 526 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) { 527 re->val = 0; 528 return -VTD_FR_ROOT_TABLE_INV; 529 } 530 re->val = le64_to_cpu(re->val); 531 return 0; 532 } 533 534 static inline bool vtd_ce_present(VTDContextEntry *context) 535 { 536 return context->lo & VTD_CONTEXT_ENTRY_P; 537 } 538 539 static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index, 540 VTDContextEntry *ce) 541 { 542 dma_addr_t addr; 543 544 /* we have checked that root entry is present */ 545 addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce); 546 if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) { 547 return -VTD_FR_CONTEXT_TABLE_INV; 548 } 549 ce->lo = le64_to_cpu(ce->lo); 550 ce->hi = le64_to_cpu(ce->hi); 551 return 0; 552 } 553 554 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 555 { 556 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 557 } 558 559 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) 560 { 561 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); 562 } 563 564 /* Whether the pte indicates the address of the page frame */ 565 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 566 { 567 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 568 } 569 570 /* Get the content of a spte located in @base_addr[@index] */ 571 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 572 { 573 uint64_t slpte; 574 575 assert(index < VTD_SL_PT_ENTRY_NR); 576 577 if (dma_memory_read(&address_space_memory, 578 base_addr + index * sizeof(slpte), &slpte, 579 sizeof(slpte))) { 580 slpte = (uint64_t)-1; 581 return slpte; 582 } 583 slpte = le64_to_cpu(slpte); 584 return slpte; 585 } 586 587 /* Given an iova and the level of paging structure, return the offset 588 * of current level. 589 */ 590 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 591 { 592 return (iova >> vtd_slpt_level_shift(level)) & 593 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 594 } 595 596 /* Check Capability Register to see if the @level of page-table is supported */ 597 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 598 { 599 return VTD_CAP_SAGAW_MASK & s->cap & 600 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 601 } 602 603 /* Get the page-table level that hardware should use for the second-level 604 * page-table walk from the Address Width field of context-entry. 605 */ 606 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 607 { 608 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 609 } 610 611 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 612 { 613 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 614 } 615 616 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 617 { 618 return ce->lo & VTD_CONTEXT_ENTRY_TT; 619 } 620 621 /* Return true if check passed, otherwise false */ 622 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 623 VTDContextEntry *ce) 624 { 625 switch (vtd_ce_get_type(ce)) { 626 case VTD_CONTEXT_TT_MULTI_LEVEL: 627 /* Always supported */ 628 break; 629 case VTD_CONTEXT_TT_DEV_IOTLB: 630 if (!x86_iommu->dt_supported) { 631 error_report_once("%s: DT specified but not supported", __func__); 632 return false; 633 } 634 break; 635 case VTD_CONTEXT_TT_PASS_THROUGH: 636 if (!x86_iommu->pt_supported) { 637 error_report_once("%s: PT specified but not supported", __func__); 638 return false; 639 } 640 break; 641 default: 642 /* Unknwon type */ 643 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 644 vtd_ce_get_type(ce)); 645 return false; 646 } 647 return true; 648 } 649 650 static inline uint64_t vtd_iova_limit(VTDContextEntry *ce, uint8_t aw) 651 { 652 uint32_t ce_agaw = vtd_ce_get_agaw(ce); 653 return 1ULL << MIN(ce_agaw, aw); 654 } 655 656 /* Return true if IOVA passes range check, otherwise false. */ 657 static inline bool vtd_iova_range_check(uint64_t iova, VTDContextEntry *ce, 658 uint8_t aw) 659 { 660 /* 661 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 662 * in CAP_REG and AW in context-entry. 663 */ 664 return !(iova & ~(vtd_iova_limit(ce, aw) - 1)); 665 } 666 667 /* 668 * Rsvd field masks for spte: 669 * Index [1] to [4] 4k pages 670 * Index [5] to [8] large pages 671 */ 672 static uint64_t vtd_paging_entry_rsvd_field[9]; 673 674 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 675 { 676 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) { 677 /* Maybe large page */ 678 return slpte & vtd_paging_entry_rsvd_field[level + 4]; 679 } else { 680 return slpte & vtd_paging_entry_rsvd_field[level]; 681 } 682 } 683 684 /* Find the VTD address space associated with a given bus number */ 685 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num) 686 { 687 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num]; 688 if (!vtd_bus) { 689 /* 690 * Iterate over the registered buses to find the one which 691 * currently hold this bus number, and update the bus_num 692 * lookup table: 693 */ 694 GHashTableIter iter; 695 696 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); 697 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { 698 if (pci_bus_num(vtd_bus->bus) == bus_num) { 699 s->vtd_as_by_bus_num[bus_num] = vtd_bus; 700 return vtd_bus; 701 } 702 } 703 } 704 return vtd_bus; 705 } 706 707 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 708 * of the translation, can be used for deciding the size of large page. 709 */ 710 static int vtd_iova_to_slpte(VTDContextEntry *ce, uint64_t iova, bool is_write, 711 uint64_t *slptep, uint32_t *slpte_level, 712 bool *reads, bool *writes, uint8_t aw_bits) 713 { 714 dma_addr_t addr = vtd_ce_get_slpt_base(ce); 715 uint32_t level = vtd_ce_get_level(ce); 716 uint32_t offset; 717 uint64_t slpte; 718 uint64_t access_right_check; 719 720 if (!vtd_iova_range_check(iova, ce, aw_bits)) { 721 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")", 722 __func__, iova); 723 return -VTD_FR_ADDR_BEYOND_MGAW; 724 } 725 726 /* FIXME: what is the Atomics request here? */ 727 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 728 729 while (true) { 730 offset = vtd_iova_level_offset(iova, level); 731 slpte = vtd_get_slpte(addr, offset); 732 733 if (slpte == (uint64_t)-1) { 734 error_report_once("%s: detected read error on DMAR slpte " 735 "(iova=0x%" PRIx64 ")", __func__, iova); 736 if (level == vtd_ce_get_level(ce)) { 737 /* Invalid programming of context-entry */ 738 return -VTD_FR_CONTEXT_ENTRY_INV; 739 } else { 740 return -VTD_FR_PAGING_ENTRY_INV; 741 } 742 } 743 *reads = (*reads) && (slpte & VTD_SL_R); 744 *writes = (*writes) && (slpte & VTD_SL_W); 745 if (!(slpte & access_right_check)) { 746 error_report_once("%s: detected slpte permission error " 747 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 748 "slpte=0x%" PRIx64 ", write=%d)", __func__, 749 iova, level, slpte, is_write); 750 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 751 } 752 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 753 error_report_once("%s: detected splte reserve non-zero " 754 "iova=0x%" PRIx64 ", level=0x%" PRIx32 755 "slpte=0x%" PRIx64 ")", __func__, iova, 756 level, slpte); 757 return -VTD_FR_PAGING_ENTRY_RSVD; 758 } 759 760 if (vtd_is_last_slpte(slpte, level)) { 761 *slptep = slpte; 762 *slpte_level = level; 763 return 0; 764 } 765 addr = vtd_get_slpte_addr(slpte, aw_bits); 766 level--; 767 } 768 } 769 770 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private); 771 772 /** 773 * Constant information used during page walking 774 * 775 * @hook_fn: hook func to be called when detected page 776 * @private: private data to be passed into hook func 777 * @notify_unmap: whether we should notify invalid entries 778 * @as: VT-d address space of the device 779 * @aw: maximum address width 780 * @domain: domain ID of the page walk 781 */ 782 typedef struct { 783 VTDAddressSpace *as; 784 vtd_page_walk_hook hook_fn; 785 void *private; 786 bool notify_unmap; 787 uint8_t aw; 788 uint16_t domain_id; 789 } vtd_page_walk_info; 790 791 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info) 792 { 793 VTDAddressSpace *as = info->as; 794 vtd_page_walk_hook hook_fn = info->hook_fn; 795 void *private = info->private; 796 DMAMap target = { 797 .iova = entry->iova, 798 .size = entry->addr_mask, 799 .translated_addr = entry->translated_addr, 800 .perm = entry->perm, 801 }; 802 DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 803 804 if (entry->perm == IOMMU_NONE && !info->notify_unmap) { 805 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 806 return 0; 807 } 808 809 assert(hook_fn); 810 811 /* Update local IOVA mapped ranges */ 812 if (entry->perm) { 813 if (mapped) { 814 /* If it's exactly the same translation, skip */ 815 if (!memcmp(mapped, &target, sizeof(target))) { 816 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 817 entry->translated_addr); 818 return 0; 819 } else { 820 /* 821 * Translation changed. Normally this should not 822 * happen, but it can happen when with buggy guest 823 * OSes. Note that there will be a small window that 824 * we don't have map at all. But that's the best 825 * effort we can do. The ideal way to emulate this is 826 * atomically modify the PTE to follow what has 827 * changed, but we can't. One example is that vfio 828 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 829 * interface to modify a mapping (meanwhile it seems 830 * meaningless to even provide one). Anyway, let's 831 * mark this as a TODO in case one day we'll have 832 * a better solution. 833 */ 834 IOMMUAccessFlags cache_perm = entry->perm; 835 int ret; 836 837 /* Emulate an UNMAP */ 838 entry->perm = IOMMU_NONE; 839 trace_vtd_page_walk_one(info->domain_id, 840 entry->iova, 841 entry->translated_addr, 842 entry->addr_mask, 843 entry->perm); 844 ret = hook_fn(entry, private); 845 if (ret) { 846 return ret; 847 } 848 /* Drop any existing mapping */ 849 iova_tree_remove(as->iova_tree, &target); 850 /* Recover the correct permission */ 851 entry->perm = cache_perm; 852 } 853 } 854 iova_tree_insert(as->iova_tree, &target); 855 } else { 856 if (!mapped) { 857 /* Skip since we didn't map this range at all */ 858 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 859 return 0; 860 } 861 iova_tree_remove(as->iova_tree, &target); 862 } 863 864 trace_vtd_page_walk_one(info->domain_id, entry->iova, 865 entry->translated_addr, entry->addr_mask, 866 entry->perm); 867 return hook_fn(entry, private); 868 } 869 870 /** 871 * vtd_page_walk_level - walk over specific level for IOVA range 872 * 873 * @addr: base GPA addr to start the walk 874 * @start: IOVA range start address 875 * @end: IOVA range end address (start <= addr < end) 876 * @read: whether parent level has read permission 877 * @write: whether parent level has write permission 878 * @info: constant information for the page walk 879 */ 880 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 881 uint64_t end, uint32_t level, bool read, 882 bool write, vtd_page_walk_info *info) 883 { 884 bool read_cur, write_cur, entry_valid; 885 uint32_t offset; 886 uint64_t slpte; 887 uint64_t subpage_size, subpage_mask; 888 IOMMUTLBEntry entry; 889 uint64_t iova = start; 890 uint64_t iova_next; 891 int ret = 0; 892 893 trace_vtd_page_walk_level(addr, level, start, end); 894 895 subpage_size = 1ULL << vtd_slpt_level_shift(level); 896 subpage_mask = vtd_slpt_level_page_mask(level); 897 898 while (iova < end) { 899 iova_next = (iova & subpage_mask) + subpage_size; 900 901 offset = vtd_iova_level_offset(iova, level); 902 slpte = vtd_get_slpte(addr, offset); 903 904 if (slpte == (uint64_t)-1) { 905 trace_vtd_page_walk_skip_read(iova, iova_next); 906 goto next; 907 } 908 909 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 910 trace_vtd_page_walk_skip_reserve(iova, iova_next); 911 goto next; 912 } 913 914 /* Permissions are stacked with parents' */ 915 read_cur = read && (slpte & VTD_SL_R); 916 write_cur = write && (slpte & VTD_SL_W); 917 918 /* 919 * As long as we have either read/write permission, this is a 920 * valid entry. The rule works for both page entries and page 921 * table entries. 922 */ 923 entry_valid = read_cur | write_cur; 924 925 if (!vtd_is_last_slpte(slpte, level) && entry_valid) { 926 /* 927 * This is a valid PDE (or even bigger than PDE). We need 928 * to walk one further level. 929 */ 930 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), 931 iova, MIN(iova_next, end), level - 1, 932 read_cur, write_cur, info); 933 } else { 934 /* 935 * This means we are either: 936 * 937 * (1) the real page entry (either 4K page, or huge page) 938 * (2) the whole range is invalid 939 * 940 * In either case, we send an IOTLB notification down. 941 */ 942 entry.target_as = &address_space_memory; 943 entry.iova = iova & subpage_mask; 944 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 945 entry.addr_mask = ~subpage_mask; 946 /* NOTE: this is only meaningful if entry_valid == true */ 947 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); 948 ret = vtd_page_walk_one(&entry, info); 949 } 950 951 if (ret < 0) { 952 return ret; 953 } 954 955 next: 956 iova = iova_next; 957 } 958 959 return 0; 960 } 961 962 /** 963 * vtd_page_walk - walk specific IOVA range, and call the hook 964 * 965 * @ce: context entry to walk upon 966 * @start: IOVA address to start the walk 967 * @end: IOVA range end address (start <= addr < end) 968 * @info: page walking information struct 969 */ 970 static int vtd_page_walk(VTDContextEntry *ce, uint64_t start, uint64_t end, 971 vtd_page_walk_info *info) 972 { 973 dma_addr_t addr = vtd_ce_get_slpt_base(ce); 974 uint32_t level = vtd_ce_get_level(ce); 975 976 if (!vtd_iova_range_check(start, ce, info->aw)) { 977 return -VTD_FR_ADDR_BEYOND_MGAW; 978 } 979 980 if (!vtd_iova_range_check(end, ce, info->aw)) { 981 /* Fix end so that it reaches the maximum */ 982 end = vtd_iova_limit(ce, info->aw); 983 } 984 985 return vtd_page_walk_level(addr, start, end, level, true, true, info); 986 } 987 988 /* Map a device to its corresponding domain (context-entry) */ 989 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 990 uint8_t devfn, VTDContextEntry *ce) 991 { 992 VTDRootEntry re; 993 int ret_fr; 994 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 995 996 ret_fr = vtd_get_root_entry(s, bus_num, &re); 997 if (ret_fr) { 998 return ret_fr; 999 } 1000 1001 if (!vtd_root_entry_present(&re)) { 1002 /* Not error - it's okay we don't have root entry. */ 1003 trace_vtd_re_not_present(bus_num); 1004 return -VTD_FR_ROOT_ENTRY_P; 1005 } 1006 1007 if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD(s->aw_bits))) { 1008 error_report_once("%s: invalid root entry: rsvd=0x%"PRIx64 1009 ", val=0x%"PRIx64" (reserved nonzero)", 1010 __func__, re.rsvd, re.val); 1011 return -VTD_FR_ROOT_ENTRY_RSVD; 1012 } 1013 1014 ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce); 1015 if (ret_fr) { 1016 return ret_fr; 1017 } 1018 1019 if (!vtd_ce_present(ce)) { 1020 /* Not error - it's okay we don't have context entry. */ 1021 trace_vtd_ce_not_present(bus_num, devfn); 1022 return -VTD_FR_CONTEXT_ENTRY_P; 1023 } 1024 1025 if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) || 1026 (ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1027 error_report_once("%s: invalid context entry: hi=%"PRIx64 1028 ", lo=%"PRIx64" (reserved nonzero)", 1029 __func__, ce->hi, ce->lo); 1030 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1031 } 1032 1033 /* Check if the programming of context-entry is valid */ 1034 if (!vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 1035 error_report_once("%s: invalid context entry: hi=%"PRIx64 1036 ", lo=%"PRIx64" (level %d not supported)", 1037 __func__, ce->hi, ce->lo, vtd_ce_get_level(ce)); 1038 return -VTD_FR_CONTEXT_ENTRY_INV; 1039 } 1040 1041 /* Do translation type check */ 1042 if (!vtd_ce_type_check(x86_iommu, ce)) { 1043 /* Errors dumped in vtd_ce_type_check() */ 1044 return -VTD_FR_CONTEXT_ENTRY_INV; 1045 } 1046 1047 return 0; 1048 } 1049 1050 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry, 1051 void *private) 1052 { 1053 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry); 1054 return 0; 1055 } 1056 1057 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1058 VTDContextEntry *ce, 1059 hwaddr addr, hwaddr size) 1060 { 1061 IntelIOMMUState *s = vtd_as->iommu_state; 1062 vtd_page_walk_info info = { 1063 .hook_fn = vtd_sync_shadow_page_hook, 1064 .private = (void *)&vtd_as->iommu, 1065 .notify_unmap = true, 1066 .aw = s->aw_bits, 1067 .as = vtd_as, 1068 .domain_id = VTD_CONTEXT_ENTRY_DID(ce->hi), 1069 }; 1070 1071 return vtd_page_walk(ce, addr, addr + size, &info); 1072 } 1073 1074 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as) 1075 { 1076 int ret; 1077 VTDContextEntry ce; 1078 IOMMUNotifier *n; 1079 1080 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1081 pci_bus_num(vtd_as->bus), 1082 vtd_as->devfn, &ce); 1083 if (ret) { 1084 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1085 /* 1086 * It's a valid scenario to have a context entry that is 1087 * not present. For example, when a device is removed 1088 * from an existing domain then the context entry will be 1089 * zeroed by the guest before it was put into another 1090 * domain. When this happens, instead of synchronizing 1091 * the shadow pages we should invalidate all existing 1092 * mappings and notify the backends. 1093 */ 1094 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1095 vtd_address_space_unmap(vtd_as, n); 1096 } 1097 ret = 0; 1098 } 1099 return ret; 1100 } 1101 1102 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1103 } 1104 1105 /* 1106 * Fetch translation type for specific device. Returns <0 if error 1107 * happens, otherwise return the shifted type to check against 1108 * VTD_CONTEXT_TT_*. 1109 */ 1110 static int vtd_dev_get_trans_type(VTDAddressSpace *as) 1111 { 1112 IntelIOMMUState *s; 1113 VTDContextEntry ce; 1114 int ret; 1115 1116 s = as->iommu_state; 1117 1118 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus), 1119 as->devfn, &ce); 1120 if (ret) { 1121 return ret; 1122 } 1123 1124 return vtd_ce_get_type(&ce); 1125 } 1126 1127 static bool vtd_dev_pt_enabled(VTDAddressSpace *as) 1128 { 1129 int ret; 1130 1131 assert(as); 1132 1133 ret = vtd_dev_get_trans_type(as); 1134 if (ret < 0) { 1135 /* 1136 * Possibly failed to parse the context entry for some reason 1137 * (e.g., during init, or any guest configuration errors on 1138 * context entries). We should assume PT not enabled for 1139 * safety. 1140 */ 1141 return false; 1142 } 1143 1144 return ret == VTD_CONTEXT_TT_PASS_THROUGH; 1145 } 1146 1147 /* Return whether the device is using IOMMU translation. */ 1148 static bool vtd_switch_address_space(VTDAddressSpace *as) 1149 { 1150 bool use_iommu; 1151 /* Whether we need to take the BQL on our own */ 1152 bool take_bql = !qemu_mutex_iothread_locked(); 1153 1154 assert(as); 1155 1156 use_iommu = as->iommu_state->dmar_enabled & !vtd_dev_pt_enabled(as); 1157 1158 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1159 VTD_PCI_SLOT(as->devfn), 1160 VTD_PCI_FUNC(as->devfn), 1161 use_iommu); 1162 1163 /* 1164 * It's possible that we reach here without BQL, e.g., when called 1165 * from vtd_pt_enable_fast_path(). However the memory APIs need 1166 * it. We'd better make sure we have had it already, or, take it. 1167 */ 1168 if (take_bql) { 1169 qemu_mutex_lock_iothread(); 1170 } 1171 1172 /* Turn off first then on the other */ 1173 if (use_iommu) { 1174 memory_region_set_enabled(&as->sys_alias, false); 1175 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1176 } else { 1177 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1178 memory_region_set_enabled(&as->sys_alias, true); 1179 } 1180 1181 if (take_bql) { 1182 qemu_mutex_unlock_iothread(); 1183 } 1184 1185 return use_iommu; 1186 } 1187 1188 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1189 { 1190 GHashTableIter iter; 1191 VTDBus *vtd_bus; 1192 int i; 1193 1194 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); 1195 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { 1196 for (i = 0; i < PCI_DEVFN_MAX; i++) { 1197 if (!vtd_bus->dev_as[i]) { 1198 continue; 1199 } 1200 vtd_switch_address_space(vtd_bus->dev_as[i]); 1201 } 1202 } 1203 } 1204 1205 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn) 1206 { 1207 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL); 1208 } 1209 1210 static const bool vtd_qualified_faults[] = { 1211 [VTD_FR_RESERVED] = false, 1212 [VTD_FR_ROOT_ENTRY_P] = false, 1213 [VTD_FR_CONTEXT_ENTRY_P] = true, 1214 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1215 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1216 [VTD_FR_WRITE] = true, 1217 [VTD_FR_READ] = true, 1218 [VTD_FR_PAGING_ENTRY_INV] = true, 1219 [VTD_FR_ROOT_TABLE_INV] = false, 1220 [VTD_FR_CONTEXT_TABLE_INV] = false, 1221 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1222 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1223 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1224 [VTD_FR_RESERVED_ERR] = false, 1225 [VTD_FR_MAX] = false, 1226 }; 1227 1228 /* To see if a fault condition is "qualified", which is reported to software 1229 * only if the FPD field in the context-entry used to process the faulting 1230 * request is 0. 1231 */ 1232 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1233 { 1234 return vtd_qualified_faults[fault]; 1235 } 1236 1237 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1238 { 1239 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1240 } 1241 1242 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1243 { 1244 VTDBus *vtd_bus; 1245 VTDAddressSpace *vtd_as; 1246 bool success = false; 1247 1248 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id)); 1249 if (!vtd_bus) { 1250 goto out; 1251 } 1252 1253 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)]; 1254 if (!vtd_as) { 1255 goto out; 1256 } 1257 1258 if (vtd_switch_address_space(vtd_as) == false) { 1259 /* We switched off IOMMU region successfully. */ 1260 success = true; 1261 } 1262 1263 out: 1264 trace_vtd_pt_enable_fast_path(source_id, success); 1265 } 1266 1267 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1268 * translation. 1269 * 1270 * Called from RCU critical section. 1271 * 1272 * @bus_num: The bus number 1273 * @devfn: The devfn, which is the combined of device and function number 1274 * @is_write: The access is a write operation 1275 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1276 * 1277 * Returns true if translation is successful, otherwise false. 1278 */ 1279 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1280 uint8_t devfn, hwaddr addr, bool is_write, 1281 IOMMUTLBEntry *entry) 1282 { 1283 IntelIOMMUState *s = vtd_as->iommu_state; 1284 VTDContextEntry ce; 1285 uint8_t bus_num = pci_bus_num(bus); 1286 VTDContextCacheEntry *cc_entry; 1287 uint64_t slpte, page_mask; 1288 uint32_t level; 1289 uint16_t source_id = vtd_make_source_id(bus_num, devfn); 1290 int ret_fr; 1291 bool is_fpd_set = false; 1292 bool reads = true; 1293 bool writes = true; 1294 uint8_t access_flags; 1295 VTDIOTLBEntry *iotlb_entry; 1296 1297 /* 1298 * We have standalone memory region for interrupt addresses, we 1299 * should never receive translation requests in this region. 1300 */ 1301 assert(!vtd_is_interrupt_addr(addr)); 1302 1303 vtd_iommu_lock(s); 1304 1305 cc_entry = &vtd_as->context_cache_entry; 1306 1307 /* Try to fetch slpte form IOTLB */ 1308 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr); 1309 if (iotlb_entry) { 1310 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1311 iotlb_entry->domain_id); 1312 slpte = iotlb_entry->slpte; 1313 access_flags = iotlb_entry->access_flags; 1314 page_mask = iotlb_entry->mask; 1315 goto out; 1316 } 1317 1318 /* Try to fetch context-entry from cache first */ 1319 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1320 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1321 cc_entry->context_entry.lo, 1322 cc_entry->context_cache_gen); 1323 ce = cc_entry->context_entry; 1324 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1325 } else { 1326 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1327 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1328 if (ret_fr) { 1329 ret_fr = -ret_fr; 1330 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { 1331 trace_vtd_fault_disabled(); 1332 } else { 1333 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); 1334 } 1335 goto error; 1336 } 1337 /* Update context-cache */ 1338 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1339 cc_entry->context_cache_gen, 1340 s->context_cache_gen); 1341 cc_entry->context_entry = ce; 1342 cc_entry->context_cache_gen = s->context_cache_gen; 1343 } 1344 1345 /* 1346 * We don't need to translate for pass-through context entries. 1347 * Also, let's ignore IOTLB caching as well for PT devices. 1348 */ 1349 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) { 1350 entry->iova = addr & VTD_PAGE_MASK_4K; 1351 entry->translated_addr = entry->iova; 1352 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1353 entry->perm = IOMMU_RW; 1354 trace_vtd_translate_pt(source_id, entry->iova); 1355 1356 /* 1357 * When this happens, it means firstly caching-mode is not 1358 * enabled, and this is the first passthrough translation for 1359 * the device. Let's enable the fast path for passthrough. 1360 * 1361 * When passthrough is disabled again for the device, we can 1362 * capture it via the context entry invalidation, then the 1363 * IOMMU region can be swapped back. 1364 */ 1365 vtd_pt_enable_fast_path(s, source_id); 1366 vtd_iommu_unlock(s); 1367 return true; 1368 } 1369 1370 ret_fr = vtd_iova_to_slpte(&ce, addr, is_write, &slpte, &level, 1371 &reads, &writes, s->aw_bits); 1372 if (ret_fr) { 1373 ret_fr = -ret_fr; 1374 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { 1375 trace_vtd_fault_disabled(); 1376 } else { 1377 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); 1378 } 1379 goto error; 1380 } 1381 1382 page_mask = vtd_slpt_level_page_mask(level); 1383 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 1384 vtd_update_iotlb(s, source_id, VTD_CONTEXT_ENTRY_DID(ce.hi), addr, slpte, 1385 access_flags, level); 1386 out: 1387 vtd_iommu_unlock(s); 1388 entry->iova = addr & page_mask; 1389 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; 1390 entry->addr_mask = ~page_mask; 1391 entry->perm = access_flags; 1392 return true; 1393 1394 error: 1395 vtd_iommu_unlock(s); 1396 entry->iova = 0; 1397 entry->translated_addr = 0; 1398 entry->addr_mask = 0; 1399 entry->perm = IOMMU_NONE; 1400 return false; 1401 } 1402 1403 static void vtd_root_table_setup(IntelIOMMUState *s) 1404 { 1405 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 1406 s->root_extended = s->root & VTD_RTADDR_RTT; 1407 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 1408 1409 trace_vtd_reg_dmar_root(s->root, s->root_extended); 1410 } 1411 1412 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 1413 uint32_t index, uint32_t mask) 1414 { 1415 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 1416 } 1417 1418 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 1419 { 1420 uint64_t value = 0; 1421 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 1422 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 1423 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 1424 s->intr_eime = value & VTD_IRTA_EIME; 1425 1426 /* Notify global invalidation */ 1427 vtd_iec_notify_all(s, true, 0, 0); 1428 1429 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 1430 } 1431 1432 static void vtd_iommu_replay_all(IntelIOMMUState *s) 1433 { 1434 VTDAddressSpace *vtd_as; 1435 1436 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 1437 vtd_sync_shadow_page_table(vtd_as); 1438 } 1439 } 1440 1441 static void vtd_context_global_invalidate(IntelIOMMUState *s) 1442 { 1443 trace_vtd_inv_desc_cc_global(); 1444 /* Protects context cache */ 1445 vtd_iommu_lock(s); 1446 s->context_cache_gen++; 1447 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 1448 vtd_reset_context_cache_locked(s); 1449 } 1450 vtd_iommu_unlock(s); 1451 vtd_address_space_refresh_all(s); 1452 /* 1453 * From VT-d spec 6.5.2.1, a global context entry invalidation 1454 * should be followed by a IOTLB global invalidation, so we should 1455 * be safe even without this. Hoewever, let's replay the region as 1456 * well to be safer, and go back here when we need finer tunes for 1457 * VT-d emulation codes. 1458 */ 1459 vtd_iommu_replay_all(s); 1460 } 1461 1462 /* Do a context-cache device-selective invalidation. 1463 * @func_mask: FM field after shifting 1464 */ 1465 static void vtd_context_device_invalidate(IntelIOMMUState *s, 1466 uint16_t source_id, 1467 uint16_t func_mask) 1468 { 1469 uint16_t mask; 1470 VTDBus *vtd_bus; 1471 VTDAddressSpace *vtd_as; 1472 uint8_t bus_n, devfn; 1473 uint16_t devfn_it; 1474 1475 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 1476 1477 switch (func_mask & 3) { 1478 case 0: 1479 mask = 0; /* No bits in the SID field masked */ 1480 break; 1481 case 1: 1482 mask = 4; /* Mask bit 2 in the SID field */ 1483 break; 1484 case 2: 1485 mask = 6; /* Mask bit 2:1 in the SID field */ 1486 break; 1487 case 3: 1488 mask = 7; /* Mask bit 2:0 in the SID field */ 1489 break; 1490 } 1491 mask = ~mask; 1492 1493 bus_n = VTD_SID_TO_BUS(source_id); 1494 vtd_bus = vtd_find_as_from_bus_num(s, bus_n); 1495 if (vtd_bus) { 1496 devfn = VTD_SID_TO_DEVFN(source_id); 1497 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) { 1498 vtd_as = vtd_bus->dev_as[devfn_it]; 1499 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) { 1500 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it), 1501 VTD_PCI_FUNC(devfn_it)); 1502 vtd_iommu_lock(s); 1503 vtd_as->context_cache_entry.context_cache_gen = 0; 1504 vtd_iommu_unlock(s); 1505 /* 1506 * Do switch address space when needed, in case if the 1507 * device passthrough bit is switched. 1508 */ 1509 vtd_switch_address_space(vtd_as); 1510 /* 1511 * So a device is moving out of (or moving into) a 1512 * domain, resync the shadow page table. 1513 * This won't bring bad even if we have no such 1514 * notifier registered - the IOMMU notification 1515 * framework will skip MAP notifications if that 1516 * happened. 1517 */ 1518 vtd_sync_shadow_page_table(vtd_as); 1519 } 1520 } 1521 } 1522 } 1523 1524 /* Context-cache invalidation 1525 * Returns the Context Actual Invalidation Granularity. 1526 * @val: the content of the CCMD_REG 1527 */ 1528 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 1529 { 1530 uint64_t caig; 1531 uint64_t type = val & VTD_CCMD_CIRG_MASK; 1532 1533 switch (type) { 1534 case VTD_CCMD_DOMAIN_INVL: 1535 /* Fall through */ 1536 case VTD_CCMD_GLOBAL_INVL: 1537 caig = VTD_CCMD_GLOBAL_INVL_A; 1538 vtd_context_global_invalidate(s); 1539 break; 1540 1541 case VTD_CCMD_DEVICE_INVL: 1542 caig = VTD_CCMD_DEVICE_INVL_A; 1543 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 1544 break; 1545 1546 default: 1547 error_report_once("%s: invalid context: 0x%" PRIx64, 1548 __func__, val); 1549 caig = 0; 1550 } 1551 return caig; 1552 } 1553 1554 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 1555 { 1556 trace_vtd_inv_desc_iotlb_global(); 1557 vtd_reset_iotlb(s); 1558 vtd_iommu_replay_all(s); 1559 } 1560 1561 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 1562 { 1563 VTDContextEntry ce; 1564 VTDAddressSpace *vtd_as; 1565 1566 trace_vtd_inv_desc_iotlb_domain(domain_id); 1567 1568 vtd_iommu_lock(s); 1569 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 1570 &domain_id); 1571 vtd_iommu_unlock(s); 1572 1573 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 1574 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 1575 vtd_as->devfn, &ce) && 1576 domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) { 1577 vtd_sync_shadow_page_table(vtd_as); 1578 } 1579 } 1580 } 1581 1582 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 1583 uint16_t domain_id, hwaddr addr, 1584 uint8_t am) 1585 { 1586 VTDAddressSpace *vtd_as; 1587 VTDContextEntry ce; 1588 int ret; 1589 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 1590 1591 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 1592 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 1593 vtd_as->devfn, &ce); 1594 if (!ret && domain_id == VTD_CONTEXT_ENTRY_DID(ce.hi)) { 1595 if (vtd_as_has_map_notifier(vtd_as)) { 1596 /* 1597 * As long as we have MAP notifications registered in 1598 * any of our IOMMU notifiers, we need to sync the 1599 * shadow page table. 1600 */ 1601 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 1602 } else { 1603 /* 1604 * For UNMAP-only notifiers, we don't need to walk the 1605 * page tables. We just deliver the PSI down to 1606 * invalidate caches. 1607 */ 1608 IOMMUTLBEntry entry = { 1609 .target_as = &address_space_memory, 1610 .iova = addr, 1611 .translated_addr = 0, 1612 .addr_mask = size - 1, 1613 .perm = IOMMU_NONE, 1614 }; 1615 memory_region_notify_iommu(&vtd_as->iommu, 0, entry); 1616 } 1617 } 1618 } 1619 } 1620 1621 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 1622 hwaddr addr, uint8_t am) 1623 { 1624 VTDIOTLBPageInvInfo info; 1625 1626 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 1627 1628 assert(am <= VTD_MAMV); 1629 info.domain_id = domain_id; 1630 info.addr = addr; 1631 info.mask = ~((1 << am) - 1); 1632 vtd_iommu_lock(s); 1633 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 1634 vtd_iommu_unlock(s); 1635 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am); 1636 } 1637 1638 /* Flush IOTLB 1639 * Returns the IOTLB Actual Invalidation Granularity. 1640 * @val: the content of the IOTLB_REG 1641 */ 1642 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 1643 { 1644 uint64_t iaig; 1645 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 1646 uint16_t domain_id; 1647 hwaddr addr; 1648 uint8_t am; 1649 1650 switch (type) { 1651 case VTD_TLB_GLOBAL_FLUSH: 1652 iaig = VTD_TLB_GLOBAL_FLUSH_A; 1653 vtd_iotlb_global_invalidate(s); 1654 break; 1655 1656 case VTD_TLB_DSI_FLUSH: 1657 domain_id = VTD_TLB_DID(val); 1658 iaig = VTD_TLB_DSI_FLUSH_A; 1659 vtd_iotlb_domain_invalidate(s, domain_id); 1660 break; 1661 1662 case VTD_TLB_PSI_FLUSH: 1663 domain_id = VTD_TLB_DID(val); 1664 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 1665 am = VTD_IVA_AM(addr); 1666 addr = VTD_IVA_ADDR(addr); 1667 if (am > VTD_MAMV) { 1668 error_report_once("%s: address mask overflow: 0x%" PRIx64, 1669 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 1670 iaig = 0; 1671 break; 1672 } 1673 iaig = VTD_TLB_PSI_FLUSH_A; 1674 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 1675 break; 1676 1677 default: 1678 error_report_once("%s: invalid granularity: 0x%" PRIx64, 1679 __func__, val); 1680 iaig = 0; 1681 } 1682 return iaig; 1683 } 1684 1685 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 1686 1687 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 1688 { 1689 return s->qi_enabled && (s->iq_tail == s->iq_head) && 1690 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 1691 } 1692 1693 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 1694 { 1695 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 1696 1697 trace_vtd_inv_qi_enable(en); 1698 1699 if (en) { 1700 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 1701 /* 2^(x+8) entries */ 1702 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8); 1703 s->qi_enabled = true; 1704 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 1705 /* Ok - report back to driver */ 1706 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 1707 1708 if (s->iq_tail != 0) { 1709 /* 1710 * This is a spec violation but Windows guests are known to set up 1711 * Queued Invalidation this way so we allow the write and process 1712 * Invalidation Descriptors right away. 1713 */ 1714 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 1715 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 1716 vtd_fetch_inv_desc(s); 1717 } 1718 } 1719 } else { 1720 if (vtd_queued_inv_disable_check(s)) { 1721 /* disable Queued Invalidation */ 1722 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 1723 s->iq_head = 0; 1724 s->qi_enabled = false; 1725 /* Ok - report back to driver */ 1726 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 1727 } else { 1728 error_report_once("%s: detected improper state when disable QI " 1729 "(head=0x%x, tail=0x%x, last_type=%d)", 1730 __func__, 1731 s->iq_head, s->iq_tail, s->iq_last_desc_type); 1732 } 1733 } 1734 } 1735 1736 /* Set Root Table Pointer */ 1737 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 1738 { 1739 vtd_root_table_setup(s); 1740 /* Ok - report back to driver */ 1741 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 1742 vtd_reset_caches(s); 1743 vtd_address_space_refresh_all(s); 1744 } 1745 1746 /* Set Interrupt Remap Table Pointer */ 1747 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 1748 { 1749 vtd_interrupt_remap_table_setup(s); 1750 /* Ok - report back to driver */ 1751 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 1752 } 1753 1754 /* Handle Translation Enable/Disable */ 1755 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 1756 { 1757 if (s->dmar_enabled == en) { 1758 return; 1759 } 1760 1761 trace_vtd_dmar_enable(en); 1762 1763 if (en) { 1764 s->dmar_enabled = true; 1765 /* Ok - report back to driver */ 1766 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 1767 } else { 1768 s->dmar_enabled = false; 1769 1770 /* Clear the index of Fault Recording Register */ 1771 s->next_frcd_reg = 0; 1772 /* Ok - report back to driver */ 1773 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 1774 } 1775 1776 vtd_reset_caches(s); 1777 vtd_address_space_refresh_all(s); 1778 } 1779 1780 /* Handle Interrupt Remap Enable/Disable */ 1781 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 1782 { 1783 trace_vtd_ir_enable(en); 1784 1785 if (en) { 1786 s->intr_enabled = true; 1787 /* Ok - report back to driver */ 1788 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 1789 } else { 1790 s->intr_enabled = false; 1791 /* Ok - report back to driver */ 1792 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 1793 } 1794 } 1795 1796 /* Handle write to Global Command Register */ 1797 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 1798 { 1799 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 1800 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 1801 uint32_t changed = status ^ val; 1802 1803 trace_vtd_reg_write_gcmd(status, val); 1804 if (changed & VTD_GCMD_TE) { 1805 /* Translation enable/disable */ 1806 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 1807 } 1808 if (val & VTD_GCMD_SRTP) { 1809 /* Set/update the root-table pointer */ 1810 vtd_handle_gcmd_srtp(s); 1811 } 1812 if (changed & VTD_GCMD_QIE) { 1813 /* Queued Invalidation Enable */ 1814 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 1815 } 1816 if (val & VTD_GCMD_SIRTP) { 1817 /* Set/update the interrupt remapping root-table pointer */ 1818 vtd_handle_gcmd_sirtp(s); 1819 } 1820 if (changed & VTD_GCMD_IRE) { 1821 /* Interrupt remap enable/disable */ 1822 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 1823 } 1824 } 1825 1826 /* Handle write to Context Command Register */ 1827 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 1828 { 1829 uint64_t ret; 1830 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 1831 1832 /* Context-cache invalidation request */ 1833 if (val & VTD_CCMD_ICC) { 1834 if (s->qi_enabled) { 1835 error_report_once("Queued Invalidation enabled, " 1836 "should not use register-based invalidation"); 1837 return; 1838 } 1839 ret = vtd_context_cache_invalidate(s, val); 1840 /* Invalidation completed. Change something to show */ 1841 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 1842 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 1843 ret); 1844 } 1845 } 1846 1847 /* Handle write to IOTLB Invalidation Register */ 1848 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 1849 { 1850 uint64_t ret; 1851 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 1852 1853 /* IOTLB invalidation request */ 1854 if (val & VTD_TLB_IVT) { 1855 if (s->qi_enabled) { 1856 error_report_once("Queued Invalidation enabled, " 1857 "should not use register-based invalidation"); 1858 return; 1859 } 1860 ret = vtd_iotlb_flush(s, val); 1861 /* Invalidation completed. Change something to show */ 1862 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 1863 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 1864 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 1865 } 1866 } 1867 1868 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 1869 static bool vtd_get_inv_desc(dma_addr_t base_addr, uint32_t offset, 1870 VTDInvDesc *inv_desc) 1871 { 1872 dma_addr_t addr = base_addr + offset * sizeof(*inv_desc); 1873 if (dma_memory_read(&address_space_memory, addr, inv_desc, 1874 sizeof(*inv_desc))) { 1875 error_report_once("Read INV DESC failed"); 1876 inv_desc->lo = 0; 1877 inv_desc->hi = 0; 1878 return false; 1879 } 1880 inv_desc->lo = le64_to_cpu(inv_desc->lo); 1881 inv_desc->hi = le64_to_cpu(inv_desc->hi); 1882 return true; 1883 } 1884 1885 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 1886 { 1887 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 1888 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 1889 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 1890 " (reserved nonzero)", __func__, inv_desc->hi, 1891 inv_desc->lo); 1892 return false; 1893 } 1894 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 1895 /* Status Write */ 1896 uint32_t status_data = (uint32_t)(inv_desc->lo >> 1897 VTD_INV_DESC_WAIT_DATA_SHIFT); 1898 1899 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 1900 1901 /* FIXME: need to be masked with HAW? */ 1902 dma_addr_t status_addr = inv_desc->hi; 1903 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 1904 status_data = cpu_to_le32(status_data); 1905 if (dma_memory_write(&address_space_memory, status_addr, &status_data, 1906 sizeof(status_data))) { 1907 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 1908 return false; 1909 } 1910 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 1911 /* Interrupt flag */ 1912 vtd_generate_completion_event(s); 1913 } else { 1914 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 1915 " (unknown type)", __func__, inv_desc->hi, 1916 inv_desc->lo); 1917 return false; 1918 } 1919 return true; 1920 } 1921 1922 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 1923 VTDInvDesc *inv_desc) 1924 { 1925 uint16_t sid, fmask; 1926 1927 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 1928 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 1929 " (reserved nonzero)", __func__, inv_desc->hi, 1930 inv_desc->lo); 1931 return false; 1932 } 1933 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 1934 case VTD_INV_DESC_CC_DOMAIN: 1935 trace_vtd_inv_desc_cc_domain( 1936 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 1937 /* Fall through */ 1938 case VTD_INV_DESC_CC_GLOBAL: 1939 vtd_context_global_invalidate(s); 1940 break; 1941 1942 case VTD_INV_DESC_CC_DEVICE: 1943 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 1944 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 1945 vtd_context_device_invalidate(s, sid, fmask); 1946 break; 1947 1948 default: 1949 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 1950 " (invalid type)", __func__, inv_desc->hi, 1951 inv_desc->lo); 1952 return false; 1953 } 1954 return true; 1955 } 1956 1957 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 1958 { 1959 uint16_t domain_id; 1960 uint8_t am; 1961 hwaddr addr; 1962 1963 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 1964 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 1965 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 1966 ", lo=0x%"PRIx64" (reserved bits unzero)\n", 1967 __func__, inv_desc->hi, inv_desc->lo); 1968 return false; 1969 } 1970 1971 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 1972 case VTD_INV_DESC_IOTLB_GLOBAL: 1973 vtd_iotlb_global_invalidate(s); 1974 break; 1975 1976 case VTD_INV_DESC_IOTLB_DOMAIN: 1977 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 1978 vtd_iotlb_domain_invalidate(s, domain_id); 1979 break; 1980 1981 case VTD_INV_DESC_IOTLB_PAGE: 1982 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 1983 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 1984 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 1985 if (am > VTD_MAMV) { 1986 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 1987 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n", 1988 __func__, inv_desc->hi, inv_desc->lo, 1989 am, (unsigned)VTD_MAMV); 1990 return false; 1991 } 1992 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 1993 break; 1994 1995 default: 1996 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 1997 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n", 1998 __func__, inv_desc->hi, inv_desc->lo, 1999 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2000 return false; 2001 } 2002 return true; 2003 } 2004 2005 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 2006 VTDInvDesc *inv_desc) 2007 { 2008 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 2009 inv_desc->iec.index, 2010 inv_desc->iec.index_mask); 2011 2012 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 2013 inv_desc->iec.index, 2014 inv_desc->iec.index_mask); 2015 return true; 2016 } 2017 2018 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 2019 VTDInvDesc *inv_desc) 2020 { 2021 VTDAddressSpace *vtd_dev_as; 2022 IOMMUTLBEntry entry; 2023 struct VTDBus *vtd_bus; 2024 hwaddr addr; 2025 uint64_t sz; 2026 uint16_t sid; 2027 uint8_t devfn; 2028 bool size; 2029 uint8_t bus_num; 2030 2031 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 2032 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 2033 devfn = sid & 0xff; 2034 bus_num = sid >> 8; 2035 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 2036 2037 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 2038 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 2039 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 2040 ", lo=%"PRIx64" (reserved nonzero)", __func__, 2041 inv_desc->hi, inv_desc->lo); 2042 return false; 2043 } 2044 2045 vtd_bus = vtd_find_as_from_bus_num(s, bus_num); 2046 if (!vtd_bus) { 2047 goto done; 2048 } 2049 2050 vtd_dev_as = vtd_bus->dev_as[devfn]; 2051 if (!vtd_dev_as) { 2052 goto done; 2053 } 2054 2055 /* According to ATS spec table 2.4: 2056 * S = 0, bits 15:12 = xxxx range size: 4K 2057 * S = 1, bits 15:12 = xxx0 range size: 8K 2058 * S = 1, bits 15:12 = xx01 range size: 16K 2059 * S = 1, bits 15:12 = x011 range size: 32K 2060 * S = 1, bits 15:12 = 0111 range size: 64K 2061 * ... 2062 */ 2063 if (size) { 2064 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 2065 addr &= ~(sz - 1); 2066 } else { 2067 sz = VTD_PAGE_SIZE; 2068 } 2069 2070 entry.target_as = &vtd_dev_as->as; 2071 entry.addr_mask = sz - 1; 2072 entry.iova = addr; 2073 entry.perm = IOMMU_NONE; 2074 entry.translated_addr = 0; 2075 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry); 2076 2077 done: 2078 return true; 2079 } 2080 2081 static bool vtd_process_inv_desc(IntelIOMMUState *s) 2082 { 2083 VTDInvDesc inv_desc; 2084 uint8_t desc_type; 2085 2086 trace_vtd_inv_qi_head(s->iq_head); 2087 if (!vtd_get_inv_desc(s->iq, s->iq_head, &inv_desc)) { 2088 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2089 return false; 2090 } 2091 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 2092 /* FIXME: should update at first or at last? */ 2093 s->iq_last_desc_type = desc_type; 2094 2095 switch (desc_type) { 2096 case VTD_INV_DESC_CC: 2097 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 2098 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 2099 return false; 2100 } 2101 break; 2102 2103 case VTD_INV_DESC_IOTLB: 2104 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 2105 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 2106 return false; 2107 } 2108 break; 2109 2110 case VTD_INV_DESC_WAIT: 2111 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 2112 if (!vtd_process_wait_desc(s, &inv_desc)) { 2113 return false; 2114 } 2115 break; 2116 2117 case VTD_INV_DESC_IEC: 2118 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 2119 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 2120 return false; 2121 } 2122 break; 2123 2124 case VTD_INV_DESC_DEVICE: 2125 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 2126 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 2127 return false; 2128 } 2129 break; 2130 2131 default: 2132 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 2133 " (unknown type)", __func__, inv_desc.hi, 2134 inv_desc.lo); 2135 return false; 2136 } 2137 s->iq_head++; 2138 if (s->iq_head == s->iq_size) { 2139 s->iq_head = 0; 2140 } 2141 return true; 2142 } 2143 2144 /* Try to fetch and process more Invalidation Descriptors */ 2145 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 2146 { 2147 trace_vtd_inv_qi_fetch(); 2148 2149 if (s->iq_tail >= s->iq_size) { 2150 /* Detects an invalid Tail pointer */ 2151 error_report_once("%s: detected invalid QI tail " 2152 "(tail=0x%x, size=0x%x)", 2153 __func__, s->iq_tail, s->iq_size); 2154 vtd_handle_inv_queue_error(s); 2155 return; 2156 } 2157 while (s->iq_head != s->iq_tail) { 2158 if (!vtd_process_inv_desc(s)) { 2159 /* Invalidation Queue Errors */ 2160 vtd_handle_inv_queue_error(s); 2161 break; 2162 } 2163 /* Must update the IQH_REG in time */ 2164 vtd_set_quad_raw(s, DMAR_IQH_REG, 2165 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) & 2166 VTD_IQH_QH_MASK); 2167 } 2168 } 2169 2170 /* Handle write to Invalidation Queue Tail Register */ 2171 static void vtd_handle_iqt_write(IntelIOMMUState *s) 2172 { 2173 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 2174 2175 s->iq_tail = VTD_IQT_QT(val); 2176 trace_vtd_inv_qi_tail(s->iq_tail); 2177 2178 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2179 /* Process Invalidation Queue here */ 2180 vtd_fetch_inv_desc(s); 2181 } 2182 } 2183 2184 static void vtd_handle_fsts_write(IntelIOMMUState *s) 2185 { 2186 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2187 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2188 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 2189 2190 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 2191 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2192 trace_vtd_fsts_clear_ip(); 2193 } 2194 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 2195 * Descriptors if there are any when Queued Invalidation is enabled? 2196 */ 2197 } 2198 2199 static void vtd_handle_fectl_write(IntelIOMMUState *s) 2200 { 2201 uint32_t fectl_reg; 2202 /* FIXME: when software clears the IM field, check the IP field. But do we 2203 * need to compare the old value and the new value to conclude that 2204 * software clears the IM field? Or just check if the IM field is zero? 2205 */ 2206 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2207 2208 trace_vtd_reg_write_fectl(fectl_reg); 2209 2210 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 2211 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 2212 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2213 } 2214 } 2215 2216 static void vtd_handle_ics_write(IntelIOMMUState *s) 2217 { 2218 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 2219 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2220 2221 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 2222 trace_vtd_reg_ics_clear_ip(); 2223 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2224 } 2225 } 2226 2227 static void vtd_handle_iectl_write(IntelIOMMUState *s) 2228 { 2229 uint32_t iectl_reg; 2230 /* FIXME: when software clears the IM field, check the IP field. But do we 2231 * need to compare the old value and the new value to conclude that 2232 * software clears the IM field? Or just check if the IM field is zero? 2233 */ 2234 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2235 2236 trace_vtd_reg_write_iectl(iectl_reg); 2237 2238 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 2239 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 2240 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2241 } 2242 } 2243 2244 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 2245 { 2246 IntelIOMMUState *s = opaque; 2247 uint64_t val; 2248 2249 trace_vtd_reg_read(addr, size); 2250 2251 if (addr + size > DMAR_REG_SIZE) { 2252 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2253 " size=0x%u", __func__, addr, size); 2254 return (uint64_t)-1; 2255 } 2256 2257 switch (addr) { 2258 /* Root Table Address Register, 64-bit */ 2259 case DMAR_RTADDR_REG: 2260 if (size == 4) { 2261 val = s->root & ((1ULL << 32) - 1); 2262 } else { 2263 val = s->root; 2264 } 2265 break; 2266 2267 case DMAR_RTADDR_REG_HI: 2268 assert(size == 4); 2269 val = s->root >> 32; 2270 break; 2271 2272 /* Invalidation Queue Address Register, 64-bit */ 2273 case DMAR_IQA_REG: 2274 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2275 if (size == 4) { 2276 val = val & ((1ULL << 32) - 1); 2277 } 2278 break; 2279 2280 case DMAR_IQA_REG_HI: 2281 assert(size == 4); 2282 val = s->iq >> 32; 2283 break; 2284 2285 default: 2286 if (size == 4) { 2287 val = vtd_get_long(s, addr); 2288 } else { 2289 val = vtd_get_quad(s, addr); 2290 } 2291 } 2292 2293 return val; 2294 } 2295 2296 static void vtd_mem_write(void *opaque, hwaddr addr, 2297 uint64_t val, unsigned size) 2298 { 2299 IntelIOMMUState *s = opaque; 2300 2301 trace_vtd_reg_write(addr, size, val); 2302 2303 if (addr + size > DMAR_REG_SIZE) { 2304 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2305 " size=0x%u", __func__, addr, size); 2306 return; 2307 } 2308 2309 switch (addr) { 2310 /* Global Command Register, 32-bit */ 2311 case DMAR_GCMD_REG: 2312 vtd_set_long(s, addr, val); 2313 vtd_handle_gcmd_write(s); 2314 break; 2315 2316 /* Context Command Register, 64-bit */ 2317 case DMAR_CCMD_REG: 2318 if (size == 4) { 2319 vtd_set_long(s, addr, val); 2320 } else { 2321 vtd_set_quad(s, addr, val); 2322 vtd_handle_ccmd_write(s); 2323 } 2324 break; 2325 2326 case DMAR_CCMD_REG_HI: 2327 assert(size == 4); 2328 vtd_set_long(s, addr, val); 2329 vtd_handle_ccmd_write(s); 2330 break; 2331 2332 /* IOTLB Invalidation Register, 64-bit */ 2333 case DMAR_IOTLB_REG: 2334 if (size == 4) { 2335 vtd_set_long(s, addr, val); 2336 } else { 2337 vtd_set_quad(s, addr, val); 2338 vtd_handle_iotlb_write(s); 2339 } 2340 break; 2341 2342 case DMAR_IOTLB_REG_HI: 2343 assert(size == 4); 2344 vtd_set_long(s, addr, val); 2345 vtd_handle_iotlb_write(s); 2346 break; 2347 2348 /* Invalidate Address Register, 64-bit */ 2349 case DMAR_IVA_REG: 2350 if (size == 4) { 2351 vtd_set_long(s, addr, val); 2352 } else { 2353 vtd_set_quad(s, addr, val); 2354 } 2355 break; 2356 2357 case DMAR_IVA_REG_HI: 2358 assert(size == 4); 2359 vtd_set_long(s, addr, val); 2360 break; 2361 2362 /* Fault Status Register, 32-bit */ 2363 case DMAR_FSTS_REG: 2364 assert(size == 4); 2365 vtd_set_long(s, addr, val); 2366 vtd_handle_fsts_write(s); 2367 break; 2368 2369 /* Fault Event Control Register, 32-bit */ 2370 case DMAR_FECTL_REG: 2371 assert(size == 4); 2372 vtd_set_long(s, addr, val); 2373 vtd_handle_fectl_write(s); 2374 break; 2375 2376 /* Fault Event Data Register, 32-bit */ 2377 case DMAR_FEDATA_REG: 2378 assert(size == 4); 2379 vtd_set_long(s, addr, val); 2380 break; 2381 2382 /* Fault Event Address Register, 32-bit */ 2383 case DMAR_FEADDR_REG: 2384 if (size == 4) { 2385 vtd_set_long(s, addr, val); 2386 } else { 2387 /* 2388 * While the register is 32-bit only, some guests (Xen...) write to 2389 * it with 64-bit. 2390 */ 2391 vtd_set_quad(s, addr, val); 2392 } 2393 break; 2394 2395 /* Fault Event Upper Address Register, 32-bit */ 2396 case DMAR_FEUADDR_REG: 2397 assert(size == 4); 2398 vtd_set_long(s, addr, val); 2399 break; 2400 2401 /* Protected Memory Enable Register, 32-bit */ 2402 case DMAR_PMEN_REG: 2403 assert(size == 4); 2404 vtd_set_long(s, addr, val); 2405 break; 2406 2407 /* Root Table Address Register, 64-bit */ 2408 case DMAR_RTADDR_REG: 2409 if (size == 4) { 2410 vtd_set_long(s, addr, val); 2411 } else { 2412 vtd_set_quad(s, addr, val); 2413 } 2414 break; 2415 2416 case DMAR_RTADDR_REG_HI: 2417 assert(size == 4); 2418 vtd_set_long(s, addr, val); 2419 break; 2420 2421 /* Invalidation Queue Tail Register, 64-bit */ 2422 case DMAR_IQT_REG: 2423 if (size == 4) { 2424 vtd_set_long(s, addr, val); 2425 } else { 2426 vtd_set_quad(s, addr, val); 2427 } 2428 vtd_handle_iqt_write(s); 2429 break; 2430 2431 case DMAR_IQT_REG_HI: 2432 assert(size == 4); 2433 vtd_set_long(s, addr, val); 2434 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 2435 break; 2436 2437 /* Invalidation Queue Address Register, 64-bit */ 2438 case DMAR_IQA_REG: 2439 if (size == 4) { 2440 vtd_set_long(s, addr, val); 2441 } else { 2442 vtd_set_quad(s, addr, val); 2443 } 2444 break; 2445 2446 case DMAR_IQA_REG_HI: 2447 assert(size == 4); 2448 vtd_set_long(s, addr, val); 2449 break; 2450 2451 /* Invalidation Completion Status Register, 32-bit */ 2452 case DMAR_ICS_REG: 2453 assert(size == 4); 2454 vtd_set_long(s, addr, val); 2455 vtd_handle_ics_write(s); 2456 break; 2457 2458 /* Invalidation Event Control Register, 32-bit */ 2459 case DMAR_IECTL_REG: 2460 assert(size == 4); 2461 vtd_set_long(s, addr, val); 2462 vtd_handle_iectl_write(s); 2463 break; 2464 2465 /* Invalidation Event Data Register, 32-bit */ 2466 case DMAR_IEDATA_REG: 2467 assert(size == 4); 2468 vtd_set_long(s, addr, val); 2469 break; 2470 2471 /* Invalidation Event Address Register, 32-bit */ 2472 case DMAR_IEADDR_REG: 2473 assert(size == 4); 2474 vtd_set_long(s, addr, val); 2475 break; 2476 2477 /* Invalidation Event Upper Address Register, 32-bit */ 2478 case DMAR_IEUADDR_REG: 2479 assert(size == 4); 2480 vtd_set_long(s, addr, val); 2481 break; 2482 2483 /* Fault Recording Registers, 128-bit */ 2484 case DMAR_FRCD_REG_0_0: 2485 if (size == 4) { 2486 vtd_set_long(s, addr, val); 2487 } else { 2488 vtd_set_quad(s, addr, val); 2489 } 2490 break; 2491 2492 case DMAR_FRCD_REG_0_1: 2493 assert(size == 4); 2494 vtd_set_long(s, addr, val); 2495 break; 2496 2497 case DMAR_FRCD_REG_0_2: 2498 if (size == 4) { 2499 vtd_set_long(s, addr, val); 2500 } else { 2501 vtd_set_quad(s, addr, val); 2502 /* May clear bit 127 (Fault), update PPF */ 2503 vtd_update_fsts_ppf(s); 2504 } 2505 break; 2506 2507 case DMAR_FRCD_REG_0_3: 2508 assert(size == 4); 2509 vtd_set_long(s, addr, val); 2510 /* May clear bit 127 (Fault), update PPF */ 2511 vtd_update_fsts_ppf(s); 2512 break; 2513 2514 case DMAR_IRTA_REG: 2515 if (size == 4) { 2516 vtd_set_long(s, addr, val); 2517 } else { 2518 vtd_set_quad(s, addr, val); 2519 } 2520 break; 2521 2522 case DMAR_IRTA_REG_HI: 2523 assert(size == 4); 2524 vtd_set_long(s, addr, val); 2525 break; 2526 2527 default: 2528 if (size == 4) { 2529 vtd_set_long(s, addr, val); 2530 } else { 2531 vtd_set_quad(s, addr, val); 2532 } 2533 } 2534 } 2535 2536 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 2537 IOMMUAccessFlags flag, int iommu_idx) 2538 { 2539 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 2540 IntelIOMMUState *s = vtd_as->iommu_state; 2541 IOMMUTLBEntry iotlb = { 2542 /* We'll fill in the rest later. */ 2543 .target_as = &address_space_memory, 2544 }; 2545 bool success; 2546 2547 if (likely(s->dmar_enabled)) { 2548 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 2549 addr, flag & IOMMU_WO, &iotlb); 2550 } else { 2551 /* DMAR disabled, passthrough, use 4k-page*/ 2552 iotlb.iova = addr & VTD_PAGE_MASK_4K; 2553 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 2554 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 2555 iotlb.perm = IOMMU_RW; 2556 success = true; 2557 } 2558 2559 if (likely(success)) { 2560 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 2561 VTD_PCI_SLOT(vtd_as->devfn), 2562 VTD_PCI_FUNC(vtd_as->devfn), 2563 iotlb.iova, iotlb.translated_addr, 2564 iotlb.addr_mask); 2565 } else { 2566 error_report_once("%s: detected translation failure " 2567 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 2568 __func__, pci_bus_num(vtd_as->bus), 2569 VTD_PCI_SLOT(vtd_as->devfn), 2570 VTD_PCI_FUNC(vtd_as->devfn), 2571 addr); 2572 } 2573 2574 return iotlb; 2575 } 2576 2577 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 2578 IOMMUNotifierFlag old, 2579 IOMMUNotifierFlag new) 2580 { 2581 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 2582 IntelIOMMUState *s = vtd_as->iommu_state; 2583 2584 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) { 2585 error_report("We need to set caching-mode=1 for intel-iommu to enable " 2586 "device assignment with IOMMU protection."); 2587 exit(1); 2588 } 2589 2590 /* Update per-address-space notifier flags */ 2591 vtd_as->notifier_flags = new; 2592 2593 if (old == IOMMU_NOTIFIER_NONE) { 2594 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 2595 } else if (new == IOMMU_NOTIFIER_NONE) { 2596 QLIST_REMOVE(vtd_as, next); 2597 } 2598 } 2599 2600 static int vtd_post_load(void *opaque, int version_id) 2601 { 2602 IntelIOMMUState *iommu = opaque; 2603 2604 /* 2605 * Memory regions are dynamically turned on/off depending on 2606 * context entry configurations from the guest. After migration, 2607 * we need to make sure the memory regions are still correct. 2608 */ 2609 vtd_switch_address_space_all(iommu); 2610 2611 return 0; 2612 } 2613 2614 static const VMStateDescription vtd_vmstate = { 2615 .name = "iommu-intel", 2616 .version_id = 1, 2617 .minimum_version_id = 1, 2618 .priority = MIG_PRI_IOMMU, 2619 .post_load = vtd_post_load, 2620 .fields = (VMStateField[]) { 2621 VMSTATE_UINT64(root, IntelIOMMUState), 2622 VMSTATE_UINT64(intr_root, IntelIOMMUState), 2623 VMSTATE_UINT64(iq, IntelIOMMUState), 2624 VMSTATE_UINT32(intr_size, IntelIOMMUState), 2625 VMSTATE_UINT16(iq_head, IntelIOMMUState), 2626 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 2627 VMSTATE_UINT16(iq_size, IntelIOMMUState), 2628 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 2629 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 2630 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 2631 VMSTATE_BOOL(root_extended, IntelIOMMUState), 2632 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 2633 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 2634 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 2635 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 2636 VMSTATE_END_OF_LIST() 2637 } 2638 }; 2639 2640 static const MemoryRegionOps vtd_mem_ops = { 2641 .read = vtd_mem_read, 2642 .write = vtd_mem_write, 2643 .endianness = DEVICE_LITTLE_ENDIAN, 2644 .impl = { 2645 .min_access_size = 4, 2646 .max_access_size = 8, 2647 }, 2648 .valid = { 2649 .min_access_size = 4, 2650 .max_access_size = 8, 2651 }, 2652 }; 2653 2654 static Property vtd_properties[] = { 2655 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 2656 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 2657 ON_OFF_AUTO_AUTO), 2658 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 2659 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 2660 VTD_HOST_ADDRESS_WIDTH), 2661 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 2662 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 2663 DEFINE_PROP_END_OF_LIST(), 2664 }; 2665 2666 /* Read IRTE entry with specific index */ 2667 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 2668 VTD_IR_TableEntry *entry, uint16_t sid) 2669 { 2670 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 2671 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 2672 dma_addr_t addr = 0x00; 2673 uint16_t mask, source_id; 2674 uint8_t bus, bus_max, bus_min; 2675 2676 addr = iommu->intr_root + index * sizeof(*entry); 2677 if (dma_memory_read(&address_space_memory, addr, entry, 2678 sizeof(*entry))) { 2679 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 2680 __func__, index, addr); 2681 return -VTD_FR_IR_ROOT_INVAL; 2682 } 2683 2684 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]), 2685 le64_to_cpu(entry->data[0])); 2686 2687 if (!entry->irte.present) { 2688 error_report_once("%s: detected non-present IRTE " 2689 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 2690 __func__, index, le64_to_cpu(entry->data[1]), 2691 le64_to_cpu(entry->data[0])); 2692 return -VTD_FR_IR_ENTRY_P; 2693 } 2694 2695 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 2696 entry->irte.__reserved_2) { 2697 error_report_once("%s: detected non-zero reserved IRTE " 2698 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 2699 __func__, index, le64_to_cpu(entry->data[1]), 2700 le64_to_cpu(entry->data[0])); 2701 return -VTD_FR_IR_IRTE_RSVD; 2702 } 2703 2704 if (sid != X86_IOMMU_SID_INVALID) { 2705 /* Validate IRTE SID */ 2706 source_id = le32_to_cpu(entry->irte.source_id); 2707 switch (entry->irte.sid_vtype) { 2708 case VTD_SVT_NONE: 2709 break; 2710 2711 case VTD_SVT_ALL: 2712 mask = vtd_svt_mask[entry->irte.sid_q]; 2713 if ((source_id & mask) != (sid & mask)) { 2714 error_report_once("%s: invalid IRTE SID " 2715 "(index=%u, sid=%u, source_id=%u)", 2716 __func__, index, sid, source_id); 2717 return -VTD_FR_IR_SID_ERR; 2718 } 2719 break; 2720 2721 case VTD_SVT_BUS: 2722 bus_max = source_id >> 8; 2723 bus_min = source_id & 0xff; 2724 bus = sid >> 8; 2725 if (bus > bus_max || bus < bus_min) { 2726 error_report_once("%s: invalid SVT_BUS " 2727 "(index=%u, bus=%u, min=%u, max=%u)", 2728 __func__, index, bus, bus_min, bus_max); 2729 return -VTD_FR_IR_SID_ERR; 2730 } 2731 break; 2732 2733 default: 2734 error_report_once("%s: detected invalid IRTE SVT " 2735 "(index=%u, type=%d)", __func__, 2736 index, entry->irte.sid_vtype); 2737 /* Take this as verification failure. */ 2738 return -VTD_FR_IR_SID_ERR; 2739 break; 2740 } 2741 } 2742 2743 return 0; 2744 } 2745 2746 /* Fetch IRQ information of specific IR index */ 2747 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 2748 X86IOMMUIrq *irq, uint16_t sid) 2749 { 2750 VTD_IR_TableEntry irte = {}; 2751 int ret = 0; 2752 2753 ret = vtd_irte_get(iommu, index, &irte, sid); 2754 if (ret) { 2755 return ret; 2756 } 2757 2758 irq->trigger_mode = irte.irte.trigger_mode; 2759 irq->vector = irte.irte.vector; 2760 irq->delivery_mode = irte.irte.delivery_mode; 2761 irq->dest = le32_to_cpu(irte.irte.dest_id); 2762 if (!iommu->intr_eime) { 2763 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 2764 #define VTD_IR_APIC_DEST_SHIFT (8) 2765 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 2766 VTD_IR_APIC_DEST_SHIFT; 2767 } 2768 irq->dest_mode = irte.irte.dest_mode; 2769 irq->redir_hint = irte.irte.redir_hint; 2770 2771 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 2772 irq->delivery_mode, irq->dest, irq->dest_mode); 2773 2774 return 0; 2775 } 2776 2777 /* Interrupt remapping for MSI/MSI-X entry */ 2778 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 2779 MSIMessage *origin, 2780 MSIMessage *translated, 2781 uint16_t sid) 2782 { 2783 int ret = 0; 2784 VTD_IR_MSIAddress addr; 2785 uint16_t index; 2786 X86IOMMUIrq irq = {}; 2787 2788 assert(origin && translated); 2789 2790 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 2791 2792 if (!iommu || !iommu->intr_enabled) { 2793 memcpy(translated, origin, sizeof(*origin)); 2794 goto out; 2795 } 2796 2797 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 2798 error_report_once("%s: MSI address high 32 bits non-zero detected: " 2799 "address=0x%" PRIx64, __func__, origin->address); 2800 return -VTD_FR_IR_REQ_RSVD; 2801 } 2802 2803 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 2804 if (addr.addr.__head != 0xfee) { 2805 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 2806 __func__, addr.data); 2807 return -VTD_FR_IR_REQ_RSVD; 2808 } 2809 2810 /* This is compatible mode. */ 2811 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 2812 memcpy(translated, origin, sizeof(*origin)); 2813 goto out; 2814 } 2815 2816 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l); 2817 2818 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 2819 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 2820 2821 if (addr.addr.sub_valid) { 2822 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 2823 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 2824 } 2825 2826 ret = vtd_remap_irq_get(iommu, index, &irq, sid); 2827 if (ret) { 2828 return ret; 2829 } 2830 2831 if (addr.addr.sub_valid) { 2832 trace_vtd_ir_remap_type("MSI"); 2833 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 2834 error_report_once("%s: invalid IR MSI " 2835 "(sid=%u, address=0x%" PRIx64 2836 ", data=0x%" PRIx32 ")", 2837 __func__, sid, origin->address, origin->data); 2838 return -VTD_FR_IR_REQ_RSVD; 2839 } 2840 } else { 2841 uint8_t vector = origin->data & 0xff; 2842 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 2843 2844 trace_vtd_ir_remap_type("IOAPIC"); 2845 /* IOAPIC entry vector should be aligned with IRTE vector 2846 * (see vt-d spec 5.1.5.1). */ 2847 if (vector != irq.vector) { 2848 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 2849 } 2850 2851 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 2852 * (see vt-d spec 5.1.5.1). */ 2853 if (trigger_mode != irq.trigger_mode) { 2854 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 2855 irq.trigger_mode); 2856 } 2857 } 2858 2859 /* 2860 * We'd better keep the last two bits, assuming that guest OS 2861 * might modify it. Keep it does not hurt after all. 2862 */ 2863 irq.msi_addr_last_bits = addr.addr.__not_care; 2864 2865 /* Translate X86IOMMUIrq to MSI message */ 2866 x86_iommu_irq_to_msi_message(&irq, translated); 2867 2868 out: 2869 trace_vtd_ir_remap_msi(origin->address, origin->data, 2870 translated->address, translated->data); 2871 return 0; 2872 } 2873 2874 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 2875 MSIMessage *dst, uint16_t sid) 2876 { 2877 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 2878 src, dst, sid); 2879 } 2880 2881 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 2882 uint64_t *data, unsigned size, 2883 MemTxAttrs attrs) 2884 { 2885 return MEMTX_OK; 2886 } 2887 2888 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 2889 uint64_t value, unsigned size, 2890 MemTxAttrs attrs) 2891 { 2892 int ret = 0; 2893 MSIMessage from = {}, to = {}; 2894 uint16_t sid = X86_IOMMU_SID_INVALID; 2895 2896 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 2897 from.data = (uint32_t) value; 2898 2899 if (!attrs.unspecified) { 2900 /* We have explicit Source ID */ 2901 sid = attrs.requester_id; 2902 } 2903 2904 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); 2905 if (ret) { 2906 /* TODO: report error */ 2907 /* Drop this interrupt */ 2908 return MEMTX_ERROR; 2909 } 2910 2911 apic_get_class()->send_msi(&to); 2912 2913 return MEMTX_OK; 2914 } 2915 2916 static const MemoryRegionOps vtd_mem_ir_ops = { 2917 .read_with_attrs = vtd_mem_ir_read, 2918 .write_with_attrs = vtd_mem_ir_write, 2919 .endianness = DEVICE_LITTLE_ENDIAN, 2920 .impl = { 2921 .min_access_size = 4, 2922 .max_access_size = 4, 2923 }, 2924 .valid = { 2925 .min_access_size = 4, 2926 .max_access_size = 4, 2927 }, 2928 }; 2929 2930 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn) 2931 { 2932 uintptr_t key = (uintptr_t)bus; 2933 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key); 2934 VTDAddressSpace *vtd_dev_as; 2935 char name[128]; 2936 2937 if (!vtd_bus) { 2938 uintptr_t *new_key = g_malloc(sizeof(*new_key)); 2939 *new_key = (uintptr_t)bus; 2940 /* No corresponding free() */ 2941 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \ 2942 PCI_DEVFN_MAX); 2943 vtd_bus->bus = bus; 2944 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus); 2945 } 2946 2947 vtd_dev_as = vtd_bus->dev_as[devfn]; 2948 2949 if (!vtd_dev_as) { 2950 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn); 2951 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace)); 2952 2953 vtd_dev_as->bus = bus; 2954 vtd_dev_as->devfn = (uint8_t)devfn; 2955 vtd_dev_as->iommu_state = s; 2956 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 2957 vtd_dev_as->iova_tree = iova_tree_new(); 2958 2959 /* 2960 * Memory region relationships looks like (Address range shows 2961 * only lower 32 bits to make it short in length...): 2962 * 2963 * |-----------------+-------------------+----------| 2964 * | Name | Address range | Priority | 2965 * |-----------------+-------------------+----------+ 2966 * | vtd_root | 00000000-ffffffff | 0 | 2967 * | intel_iommu | 00000000-ffffffff | 1 | 2968 * | vtd_sys_alias | 00000000-ffffffff | 1 | 2969 * | intel_iommu_ir | fee00000-feefffff | 64 | 2970 * |-----------------+-------------------+----------| 2971 * 2972 * We enable/disable DMAR by switching enablement for 2973 * vtd_sys_alias and intel_iommu regions. IR region is always 2974 * enabled. 2975 */ 2976 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 2977 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 2978 "intel_iommu_dmar", 2979 UINT64_MAX); 2980 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s), 2981 "vtd_sys_alias", get_system_memory(), 2982 0, memory_region_size(get_system_memory())); 2983 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s), 2984 &vtd_mem_ir_ops, s, "intel_iommu_ir", 2985 VTD_INTERRUPT_ADDR_SIZE); 2986 memory_region_init(&vtd_dev_as->root, OBJECT(s), 2987 "vtd_root", UINT64_MAX); 2988 memory_region_add_subregion_overlap(&vtd_dev_as->root, 2989 VTD_INTERRUPT_ADDR_FIRST, 2990 &vtd_dev_as->iommu_ir, 64); 2991 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name); 2992 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 2993 &vtd_dev_as->sys_alias, 1); 2994 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 2995 MEMORY_REGION(&vtd_dev_as->iommu), 2996 1); 2997 vtd_switch_address_space(vtd_dev_as); 2998 } 2999 return vtd_dev_as; 3000 } 3001 3002 /* Unmap the whole range in the notifier's scope. */ 3003 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 3004 { 3005 IOMMUTLBEntry entry; 3006 hwaddr size; 3007 hwaddr start = n->start; 3008 hwaddr end = n->end; 3009 IntelIOMMUState *s = as->iommu_state; 3010 DMAMap map; 3011 3012 /* 3013 * Note: all the codes in this function has a assumption that IOVA 3014 * bits are no more than VTD_MGAW bits (which is restricted by 3015 * VT-d spec), otherwise we need to consider overflow of 64 bits. 3016 */ 3017 3018 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) { 3019 /* 3020 * Don't need to unmap regions that is bigger than the whole 3021 * VT-d supported address space size 3022 */ 3023 end = VTD_ADDRESS_SIZE(s->aw_bits); 3024 } 3025 3026 assert(start <= end); 3027 size = end - start; 3028 3029 if (ctpop64(size) != 1) { 3030 /* 3031 * This size cannot format a correct mask. Let's enlarge it to 3032 * suite the minimum available mask. 3033 */ 3034 int n = 64 - clz64(size); 3035 if (n > s->aw_bits) { 3036 /* should not happen, but in case it happens, limit it */ 3037 n = s->aw_bits; 3038 } 3039 size = 1ULL << n; 3040 } 3041 3042 entry.target_as = &address_space_memory; 3043 /* Adjust iova for the size */ 3044 entry.iova = n->start & ~(size - 1); 3045 /* This field is meaningless for unmap */ 3046 entry.translated_addr = 0; 3047 entry.perm = IOMMU_NONE; 3048 entry.addr_mask = size - 1; 3049 3050 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 3051 VTD_PCI_SLOT(as->devfn), 3052 VTD_PCI_FUNC(as->devfn), 3053 entry.iova, size); 3054 3055 map.iova = entry.iova; 3056 map.size = entry.addr_mask; 3057 iova_tree_remove(as->iova_tree, &map); 3058 3059 memory_region_notify_one(n, &entry); 3060 } 3061 3062 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 3063 { 3064 VTDAddressSpace *vtd_as; 3065 IOMMUNotifier *n; 3066 3067 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 3068 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 3069 vtd_address_space_unmap(vtd_as, n); 3070 } 3071 } 3072 } 3073 3074 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 3075 { 3076 vtd_address_space_unmap_all(s); 3077 vtd_switch_address_space_all(s); 3078 } 3079 3080 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private) 3081 { 3082 memory_region_notify_one((IOMMUNotifier *)private, entry); 3083 return 0; 3084 } 3085 3086 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 3087 { 3088 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 3089 IntelIOMMUState *s = vtd_as->iommu_state; 3090 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3091 VTDContextEntry ce; 3092 3093 /* 3094 * The replay can be triggered by either a invalidation or a newly 3095 * created entry. No matter what, we release existing mappings 3096 * (it means flushing caches for UNMAP-only registers). 3097 */ 3098 vtd_address_space_unmap(vtd_as, n); 3099 3100 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3101 trace_vtd_replay_ce_valid(bus_n, PCI_SLOT(vtd_as->devfn), 3102 PCI_FUNC(vtd_as->devfn), 3103 VTD_CONTEXT_ENTRY_DID(ce.hi), 3104 ce.hi, ce.lo); 3105 if (vtd_as_has_map_notifier(vtd_as)) { 3106 /* This is required only for MAP typed notifiers */ 3107 vtd_page_walk_info info = { 3108 .hook_fn = vtd_replay_hook, 3109 .private = (void *)n, 3110 .notify_unmap = false, 3111 .aw = s->aw_bits, 3112 .as = vtd_as, 3113 .domain_id = VTD_CONTEXT_ENTRY_DID(ce.hi), 3114 }; 3115 3116 vtd_page_walk(&ce, 0, ~0ULL, &info); 3117 } 3118 } else { 3119 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 3120 PCI_FUNC(vtd_as->devfn)); 3121 } 3122 3123 return; 3124 } 3125 3126 /* Do the initialization. It will also be called when reset, so pay 3127 * attention when adding new initialization stuff. 3128 */ 3129 static void vtd_init(IntelIOMMUState *s) 3130 { 3131 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3132 3133 memset(s->csr, 0, DMAR_REG_SIZE); 3134 memset(s->wmask, 0, DMAR_REG_SIZE); 3135 memset(s->w1cmask, 0, DMAR_REG_SIZE); 3136 memset(s->womask, 0, DMAR_REG_SIZE); 3137 3138 s->root = 0; 3139 s->root_extended = false; 3140 s->dmar_enabled = false; 3141 s->iq_head = 0; 3142 s->iq_tail = 0; 3143 s->iq = 0; 3144 s->iq_size = 0; 3145 s->qi_enabled = false; 3146 s->iq_last_desc_type = VTD_INV_DESC_NONE; 3147 s->next_frcd_reg = 0; 3148 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 3149 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 3150 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits); 3151 if (s->dma_drain) { 3152 s->cap |= VTD_CAP_DRAIN; 3153 } 3154 if (s->aw_bits == VTD_HOST_AW_48BIT) { 3155 s->cap |= VTD_CAP_SAGAW_48bit; 3156 } 3157 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 3158 3159 /* 3160 * Rsvd field masks for spte 3161 */ 3162 vtd_paging_entry_rsvd_field[0] = ~0ULL; 3163 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits); 3164 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 3165 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 3166 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 3167 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits); 3168 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits); 3169 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits); 3170 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits); 3171 3172 if (x86_iommu_ir_supported(x86_iommu)) { 3173 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 3174 if (s->intr_eim == ON_OFF_AUTO_ON) { 3175 s->ecap |= VTD_ECAP_EIM; 3176 } 3177 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 3178 } 3179 3180 if (x86_iommu->dt_supported) { 3181 s->ecap |= VTD_ECAP_DT; 3182 } 3183 3184 if (x86_iommu->pt_supported) { 3185 s->ecap |= VTD_ECAP_PT; 3186 } 3187 3188 if (s->caching_mode) { 3189 s->cap |= VTD_CAP_CM; 3190 } 3191 3192 vtd_reset_caches(s); 3193 3194 /* Define registers with default values and bit semantics */ 3195 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 3196 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 3197 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 3198 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 3199 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 3200 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 3201 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0); 3202 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 3203 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 3204 3205 /* Advanced Fault Logging not supported */ 3206 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 3207 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3208 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 3209 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 3210 3211 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 3212 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 3213 */ 3214 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 3215 3216 /* Treated as RO for implementations that PLMR and PHMR fields reported 3217 * as Clear in the CAP_REG. 3218 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 3219 */ 3220 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 3221 3222 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 3223 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 3224 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff007ULL, 0); 3225 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 3226 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3227 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 3228 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 3229 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 3230 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 3231 3232 /* IOTLB registers */ 3233 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 3234 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 3235 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 3236 3237 /* Fault Recording Registers, 128-bit */ 3238 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 3239 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 3240 3241 /* 3242 * Interrupt remapping registers. 3243 */ 3244 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 3245 } 3246 3247 /* Should not reset address_spaces when reset because devices will still use 3248 * the address space they got at first (won't ask the bus again). 3249 */ 3250 static void vtd_reset(DeviceState *dev) 3251 { 3252 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 3253 3254 vtd_init(s); 3255 vtd_address_space_refresh_all(s); 3256 } 3257 3258 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 3259 { 3260 IntelIOMMUState *s = opaque; 3261 VTDAddressSpace *vtd_as; 3262 3263 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 3264 3265 vtd_as = vtd_find_add_as(s, bus, devfn); 3266 return &vtd_as->as; 3267 } 3268 3269 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 3270 { 3271 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3272 3273 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 3274 error_setg(errp, "eim=on cannot be selected without intremap=on"); 3275 return false; 3276 } 3277 3278 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 3279 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 3280 && x86_iommu_ir_supported(x86_iommu) ? 3281 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 3282 } 3283 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 3284 if (!kvm_irqchip_in_kernel()) { 3285 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); 3286 return false; 3287 } 3288 if (!kvm_enable_x2apic()) { 3289 error_setg(errp, "eim=on requires support on the KVM side" 3290 "(X2APIC_API, first shipped in v4.7)"); 3291 return false; 3292 } 3293 } 3294 3295 /* Currently only address widths supported are 39 and 48 bits */ 3296 if ((s->aw_bits != VTD_HOST_AW_39BIT) && 3297 (s->aw_bits != VTD_HOST_AW_48BIT)) { 3298 error_setg(errp, "Supported values for x-aw-bits are: %d, %d", 3299 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 3300 return false; 3301 } 3302 3303 return true; 3304 } 3305 3306 static void vtd_realize(DeviceState *dev, Error **errp) 3307 { 3308 MachineState *ms = MACHINE(qdev_get_machine()); 3309 PCMachineState *pcms = PC_MACHINE(ms); 3310 PCIBus *bus = pcms->bus; 3311 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 3312 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev); 3313 3314 x86_iommu->type = TYPE_INTEL; 3315 3316 if (!vtd_decide_config(s, errp)) { 3317 return; 3318 } 3319 3320 QLIST_INIT(&s->vtd_as_with_notifiers); 3321 qemu_mutex_init(&s->iommu_lock); 3322 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num)); 3323 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 3324 "intel_iommu", DMAR_REG_SIZE); 3325 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); 3326 /* No corresponding destroy */ 3327 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, 3328 g_free, g_free); 3329 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, 3330 g_free, g_free); 3331 vtd_init(s); 3332 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR); 3333 pci_setup_iommu(bus, vtd_host_dma_iommu, dev); 3334 /* Pseudo address space under root PCI bus. */ 3335 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 3336 } 3337 3338 static void vtd_class_init(ObjectClass *klass, void *data) 3339 { 3340 DeviceClass *dc = DEVICE_CLASS(klass); 3341 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass); 3342 3343 dc->reset = vtd_reset; 3344 dc->vmsd = &vtd_vmstate; 3345 dc->props = vtd_properties; 3346 dc->hotpluggable = false; 3347 x86_class->realize = vtd_realize; 3348 x86_class->int_remap = vtd_int_remap; 3349 /* Supported by the pc-q35-* machine types */ 3350 dc->user_creatable = true; 3351 } 3352 3353 static const TypeInfo vtd_info = { 3354 .name = TYPE_INTEL_IOMMU_DEVICE, 3355 .parent = TYPE_X86_IOMMU_DEVICE, 3356 .instance_size = sizeof(IntelIOMMUState), 3357 .class_init = vtd_class_init, 3358 }; 3359 3360 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 3361 void *data) 3362 { 3363 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 3364 3365 imrc->translate = vtd_iommu_translate; 3366 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 3367 imrc->replay = vtd_iommu_replay; 3368 } 3369 3370 static const TypeInfo vtd_iommu_memory_region_info = { 3371 .parent = TYPE_IOMMU_MEMORY_REGION, 3372 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 3373 .class_init = vtd_iommu_memory_region_class_init, 3374 }; 3375 3376 static void vtd_register_types(void) 3377 { 3378 type_register_static(&vtd_info); 3379 type_register_static(&vtd_iommu_memory_region_info); 3380 } 3381 3382 type_init(vtd_register_types) 3383