1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qemu/main-loop.h" 25 #include "qapi/error.h" 26 #include "hw/sysbus.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/i386/pc.h" 32 #include "hw/i386/apic-msidef.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "sysemu/dma.h" 37 #include "sysemu/sysemu.h" 38 #include "hw/i386/apic_internal.h" 39 #include "kvm/kvm_i386.h" 40 #include "migration/vmstate.h" 41 #include "trace.h" 42 43 /* context entry operations */ 44 #define VTD_CE_GET_RID2PASID(ce) \ 45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) 46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ 47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) 48 49 /* pe operations */ 50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) 51 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) 52 53 /* 54 * PCI bus number (or SID) is not reliable since the device is usaully 55 * initialized before guest can configure the PCI bridge 56 * (SECONDARY_BUS_NUMBER). 57 */ 58 struct vtd_as_key { 59 PCIBus *bus; 60 uint8_t devfn; 61 uint32_t pasid; 62 }; 63 64 struct vtd_iotlb_key { 65 uint64_t gfn; 66 uint32_t pasid; 67 uint16_t sid; 68 uint8_t level; 69 }; 70 71 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 72 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 73 74 static void vtd_panic_require_caching_mode(void) 75 { 76 error_report("We need to set caching-mode=on for intel-iommu to enable " 77 "device assignment with IOMMU protection."); 78 exit(1); 79 } 80 81 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 82 uint64_t wmask, uint64_t w1cmask) 83 { 84 stq_le_p(&s->csr[addr], val); 85 stq_le_p(&s->wmask[addr], wmask); 86 stq_le_p(&s->w1cmask[addr], w1cmask); 87 } 88 89 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 90 { 91 stq_le_p(&s->womask[addr], mask); 92 } 93 94 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 95 uint32_t wmask, uint32_t w1cmask) 96 { 97 stl_le_p(&s->csr[addr], val); 98 stl_le_p(&s->wmask[addr], wmask); 99 stl_le_p(&s->w1cmask[addr], w1cmask); 100 } 101 102 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 103 { 104 stl_le_p(&s->womask[addr], mask); 105 } 106 107 /* "External" get/set operations */ 108 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 109 { 110 uint64_t oldval = ldq_le_p(&s->csr[addr]); 111 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 112 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 113 stq_le_p(&s->csr[addr], 114 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 115 } 116 117 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 118 { 119 uint32_t oldval = ldl_le_p(&s->csr[addr]); 120 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 121 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 122 stl_le_p(&s->csr[addr], 123 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 124 } 125 126 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 127 { 128 uint64_t val = ldq_le_p(&s->csr[addr]); 129 uint64_t womask = ldq_le_p(&s->womask[addr]); 130 return val & ~womask; 131 } 132 133 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 134 { 135 uint32_t val = ldl_le_p(&s->csr[addr]); 136 uint32_t womask = ldl_le_p(&s->womask[addr]); 137 return val & ~womask; 138 } 139 140 /* "Internal" get/set operations */ 141 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 142 { 143 return ldq_le_p(&s->csr[addr]); 144 } 145 146 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 147 { 148 return ldl_le_p(&s->csr[addr]); 149 } 150 151 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 152 { 153 stq_le_p(&s->csr[addr], val); 154 } 155 156 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 157 uint32_t clear, uint32_t mask) 158 { 159 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 160 stl_le_p(&s->csr[addr], new_val); 161 return new_val; 162 } 163 164 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 165 uint64_t clear, uint64_t mask) 166 { 167 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 168 stq_le_p(&s->csr[addr], new_val); 169 return new_val; 170 } 171 172 static inline void vtd_iommu_lock(IntelIOMMUState *s) 173 { 174 qemu_mutex_lock(&s->iommu_lock); 175 } 176 177 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 178 { 179 qemu_mutex_unlock(&s->iommu_lock); 180 } 181 182 static void vtd_update_scalable_state(IntelIOMMUState *s) 183 { 184 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 185 186 if (s->scalable_mode) { 187 s->root_scalable = val & VTD_RTADDR_SMT; 188 } 189 } 190 191 static void vtd_update_iq_dw(IntelIOMMUState *s) 192 { 193 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG); 194 195 if (s->ecap & VTD_ECAP_SMTS && 196 val & VTD_IQA_DW_MASK) { 197 s->iq_dw = true; 198 } else { 199 s->iq_dw = false; 200 } 201 } 202 203 /* Whether the address space needs to notify new mappings */ 204 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 205 { 206 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 207 } 208 209 /* GHashTable functions */ 210 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2) 211 { 212 const struct vtd_iotlb_key *key1 = v1; 213 const struct vtd_iotlb_key *key2 = v2; 214 215 return key1->sid == key2->sid && 216 key1->pasid == key2->pasid && 217 key1->level == key2->level && 218 key1->gfn == key2->gfn; 219 } 220 221 static guint vtd_iotlb_hash(gconstpointer v) 222 { 223 const struct vtd_iotlb_key *key = v; 224 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) | 225 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT | 226 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT; 227 228 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU)); 229 } 230 231 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2) 232 { 233 const struct vtd_as_key *key1 = v1; 234 const struct vtd_as_key *key2 = v2; 235 236 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) && 237 (key1->pasid == key2->pasid); 238 } 239 240 /* 241 * Note that we use pointer to PCIBus as the key, so hashing/shifting 242 * based on the pointer value is intended. Note that we deal with 243 * collisions through vtd_as_equal(). 244 */ 245 static guint vtd_as_hash(gconstpointer v) 246 { 247 const struct vtd_as_key *key = v; 248 guint value = (guint)(uintptr_t)key->bus; 249 250 return (guint)(value << 8 | key->devfn); 251 } 252 253 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 254 gpointer user_data) 255 { 256 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 257 uint16_t domain_id = *(uint16_t *)user_data; 258 return entry->domain_id == domain_id; 259 } 260 261 /* The shift of an addr for a certain level of paging structure */ 262 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 263 { 264 assert(level != 0); 265 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 266 } 267 268 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 269 { 270 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 271 } 272 273 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 274 gpointer user_data) 275 { 276 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 277 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 278 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 279 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 280 return (entry->domain_id == info->domain_id) && 281 (((entry->gfn & info->mask) == gfn) || 282 (entry->gfn == gfn_tlb)); 283 } 284 285 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 286 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 287 */ 288 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 289 { 290 VTDAddressSpace *vtd_as; 291 GHashTableIter as_it; 292 293 trace_vtd_context_cache_reset(); 294 295 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 296 297 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 298 vtd_as->context_cache_entry.context_cache_gen = 0; 299 } 300 s->context_cache_gen = 1; 301 } 302 303 /* Must be called with IOMMU lock held. */ 304 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 305 { 306 assert(s->iotlb); 307 g_hash_table_remove_all(s->iotlb); 308 } 309 310 static void vtd_reset_iotlb(IntelIOMMUState *s) 311 { 312 vtd_iommu_lock(s); 313 vtd_reset_iotlb_locked(s); 314 vtd_iommu_unlock(s); 315 } 316 317 static void vtd_reset_caches(IntelIOMMUState *s) 318 { 319 vtd_iommu_lock(s); 320 vtd_reset_iotlb_locked(s); 321 vtd_reset_context_cache_locked(s); 322 vtd_iommu_unlock(s); 323 } 324 325 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 326 { 327 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 328 } 329 330 /* Must be called with IOMMU lock held */ 331 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 332 uint32_t pasid, hwaddr addr) 333 { 334 struct vtd_iotlb_key key; 335 VTDIOTLBEntry *entry; 336 int level; 337 338 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 339 key.gfn = vtd_get_iotlb_gfn(addr, level); 340 key.level = level; 341 key.sid = source_id; 342 key.pasid = pasid; 343 entry = g_hash_table_lookup(s->iotlb, &key); 344 if (entry) { 345 goto out; 346 } 347 } 348 349 out: 350 return entry; 351 } 352 353 /* Must be with IOMMU lock held */ 354 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 355 uint16_t domain_id, hwaddr addr, uint64_t slpte, 356 uint8_t access_flags, uint32_t level, 357 uint32_t pasid) 358 { 359 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 360 struct vtd_iotlb_key *key = g_malloc(sizeof(*key)); 361 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 362 363 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 364 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 365 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 366 vtd_reset_iotlb_locked(s); 367 } 368 369 entry->gfn = gfn; 370 entry->domain_id = domain_id; 371 entry->slpte = slpte; 372 entry->access_flags = access_flags; 373 entry->mask = vtd_slpt_level_page_mask(level); 374 entry->pasid = pasid; 375 376 key->gfn = gfn; 377 key->sid = source_id; 378 key->level = level; 379 key->pasid = pasid; 380 381 g_hash_table_replace(s->iotlb, key, entry); 382 } 383 384 /* Given the reg addr of both the message data and address, generate an 385 * interrupt via MSI. 386 */ 387 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 388 hwaddr mesg_data_reg) 389 { 390 MSIMessage msi; 391 392 assert(mesg_data_reg < DMAR_REG_SIZE); 393 assert(mesg_addr_reg < DMAR_REG_SIZE); 394 395 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 396 msi.data = vtd_get_long_raw(s, mesg_data_reg); 397 398 trace_vtd_irq_generate(msi.address, msi.data); 399 400 apic_get_class(NULL)->send_msi(&msi); 401 } 402 403 /* Generate a fault event to software via MSI if conditions are met. 404 * Notice that the value of FSTS_REG being passed to it should be the one 405 * before any update. 406 */ 407 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 408 { 409 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 410 pre_fsts & VTD_FSTS_IQE) { 411 error_report_once("There are previous interrupt conditions " 412 "to be serviced by software, fault event " 413 "is not generated"); 414 return; 415 } 416 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 417 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 418 error_report_once("Interrupt Mask set, irq is not generated"); 419 } else { 420 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 421 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 422 } 423 } 424 425 /* Check if the Fault (F) field of the Fault Recording Register referenced by 426 * @index is Set. 427 */ 428 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 429 { 430 /* Each reg is 128-bit */ 431 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 432 addr += 8; /* Access the high 64-bit half */ 433 434 assert(index < DMAR_FRCD_REG_NR); 435 436 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 437 } 438 439 /* Update the PPF field of Fault Status Register. 440 * Should be called whenever change the F field of any fault recording 441 * registers. 442 */ 443 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 444 { 445 uint32_t i; 446 uint32_t ppf_mask = 0; 447 448 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 449 if (vtd_is_frcd_set(s, i)) { 450 ppf_mask = VTD_FSTS_PPF; 451 break; 452 } 453 } 454 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 455 trace_vtd_fsts_ppf(!!ppf_mask); 456 } 457 458 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 459 { 460 /* Each reg is 128-bit */ 461 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 462 addr += 8; /* Access the high 64-bit half */ 463 464 assert(index < DMAR_FRCD_REG_NR); 465 466 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 467 vtd_update_fsts_ppf(s); 468 } 469 470 /* Must not update F field now, should be done later */ 471 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 472 uint16_t source_id, hwaddr addr, 473 VTDFaultReason fault, bool is_write, 474 bool is_pasid, uint32_t pasid) 475 { 476 uint64_t hi = 0, lo; 477 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 478 479 assert(index < DMAR_FRCD_REG_NR); 480 481 lo = VTD_FRCD_FI(addr); 482 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) | 483 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid); 484 if (!is_write) { 485 hi |= VTD_FRCD_T; 486 } 487 vtd_set_quad_raw(s, frcd_reg_addr, lo); 488 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 489 490 trace_vtd_frr_new(index, hi, lo); 491 } 492 493 /* Try to collapse multiple pending faults from the same requester */ 494 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 495 { 496 uint32_t i; 497 uint64_t frcd_reg; 498 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 499 500 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 501 frcd_reg = vtd_get_quad_raw(s, addr); 502 if ((frcd_reg & VTD_FRCD_F) && 503 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 504 return true; 505 } 506 addr += 16; /* 128-bit for each */ 507 } 508 return false; 509 } 510 511 /* Log and report an DMAR (address translation) fault to software */ 512 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 513 hwaddr addr, VTDFaultReason fault, 514 bool is_write, bool is_pasid, 515 uint32_t pasid) 516 { 517 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 518 519 assert(fault < VTD_FR_MAX); 520 521 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 522 523 if (fsts_reg & VTD_FSTS_PFO) { 524 error_report_once("New fault is not recorded due to " 525 "Primary Fault Overflow"); 526 return; 527 } 528 529 if (vtd_try_collapse_fault(s, source_id)) { 530 error_report_once("New fault is not recorded due to " 531 "compression of faults"); 532 return; 533 } 534 535 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 536 error_report_once("Next Fault Recording Reg is used, " 537 "new fault is not recorded, set PFO field"); 538 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 539 return; 540 } 541 542 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, 543 is_write, is_pasid, pasid); 544 545 if (fsts_reg & VTD_FSTS_PPF) { 546 error_report_once("There are pending faults already, " 547 "fault event is not generated"); 548 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 549 s->next_frcd_reg++; 550 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 551 s->next_frcd_reg = 0; 552 } 553 } else { 554 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 555 VTD_FSTS_FRI(s->next_frcd_reg)); 556 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 557 s->next_frcd_reg++; 558 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 559 s->next_frcd_reg = 0; 560 } 561 /* This case actually cause the PPF to be Set. 562 * So generate fault event (interrupt). 563 */ 564 vtd_generate_fault_event(s, fsts_reg); 565 } 566 } 567 568 /* Handle Invalidation Queue Errors of queued invalidation interface error 569 * conditions. 570 */ 571 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 572 { 573 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 574 575 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 576 vtd_generate_fault_event(s, fsts_reg); 577 } 578 579 /* Set the IWC field and try to generate an invalidation completion interrupt */ 580 static void vtd_generate_completion_event(IntelIOMMUState *s) 581 { 582 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 583 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 584 return; 585 } 586 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 587 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 588 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 589 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 590 "new event not generated"); 591 return; 592 } else { 593 /* Generate the interrupt event */ 594 trace_vtd_inv_desc_wait_irq("Generating complete event"); 595 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 596 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 597 } 598 } 599 600 static inline bool vtd_root_entry_present(IntelIOMMUState *s, 601 VTDRootEntry *re, 602 uint8_t devfn) 603 { 604 if (s->root_scalable && devfn > UINT8_MAX / 2) { 605 return re->hi & VTD_ROOT_ENTRY_P; 606 } 607 608 return re->lo & VTD_ROOT_ENTRY_P; 609 } 610 611 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 612 VTDRootEntry *re) 613 { 614 dma_addr_t addr; 615 616 addr = s->root + index * sizeof(*re); 617 if (dma_memory_read(&address_space_memory, addr, 618 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) { 619 re->lo = 0; 620 return -VTD_FR_ROOT_TABLE_INV; 621 } 622 re->lo = le64_to_cpu(re->lo); 623 re->hi = le64_to_cpu(re->hi); 624 return 0; 625 } 626 627 static inline bool vtd_ce_present(VTDContextEntry *context) 628 { 629 return context->lo & VTD_CONTEXT_ENTRY_P; 630 } 631 632 static int vtd_get_context_entry_from_root(IntelIOMMUState *s, 633 VTDRootEntry *re, 634 uint8_t index, 635 VTDContextEntry *ce) 636 { 637 dma_addr_t addr, ce_size; 638 639 /* we have checked that root entry is present */ 640 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : 641 VTD_CTX_ENTRY_LEGACY_SIZE; 642 643 if (s->root_scalable && index > UINT8_MAX / 2) { 644 index = index & (~VTD_DEVFN_CHECK_MASK); 645 addr = re->hi & VTD_ROOT_ENTRY_CTP; 646 } else { 647 addr = re->lo & VTD_ROOT_ENTRY_CTP; 648 } 649 650 addr = addr + index * ce_size; 651 if (dma_memory_read(&address_space_memory, addr, 652 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) { 653 return -VTD_FR_CONTEXT_TABLE_INV; 654 } 655 656 ce->lo = le64_to_cpu(ce->lo); 657 ce->hi = le64_to_cpu(ce->hi); 658 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { 659 ce->val[2] = le64_to_cpu(ce->val[2]); 660 ce->val[3] = le64_to_cpu(ce->val[3]); 661 } 662 return 0; 663 } 664 665 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 666 { 667 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 668 } 669 670 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) 671 { 672 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); 673 } 674 675 /* Whether the pte indicates the address of the page frame */ 676 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 677 { 678 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 679 } 680 681 /* Get the content of a spte located in @base_addr[@index] */ 682 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 683 { 684 uint64_t slpte; 685 686 assert(index < VTD_SL_PT_ENTRY_NR); 687 688 if (dma_memory_read(&address_space_memory, 689 base_addr + index * sizeof(slpte), 690 &slpte, sizeof(slpte), MEMTXATTRS_UNSPECIFIED)) { 691 slpte = (uint64_t)-1; 692 return slpte; 693 } 694 slpte = le64_to_cpu(slpte); 695 return slpte; 696 } 697 698 /* Given an iova and the level of paging structure, return the offset 699 * of current level. 700 */ 701 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 702 { 703 return (iova >> vtd_slpt_level_shift(level)) & 704 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 705 } 706 707 /* Check Capability Register to see if the @level of page-table is supported */ 708 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 709 { 710 return VTD_CAP_SAGAW_MASK & s->cap & 711 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 712 } 713 714 /* Return true if check passed, otherwise false */ 715 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, 716 VTDPASIDEntry *pe) 717 { 718 switch (VTD_PE_GET_TYPE(pe)) { 719 case VTD_SM_PASID_ENTRY_FLT: 720 case VTD_SM_PASID_ENTRY_SLT: 721 case VTD_SM_PASID_ENTRY_NESTED: 722 break; 723 case VTD_SM_PASID_ENTRY_PT: 724 if (!x86_iommu->pt_supported) { 725 return false; 726 } 727 break; 728 default: 729 /* Unknown type */ 730 return false; 731 } 732 return true; 733 } 734 735 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire) 736 { 737 return pdire->val & 1; 738 } 739 740 /** 741 * Caller of this function should check present bit if wants 742 * to use pdir entry for further usage except for fpd bit check. 743 */ 744 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base, 745 uint32_t pasid, 746 VTDPASIDDirEntry *pdire) 747 { 748 uint32_t index; 749 dma_addr_t addr, entry_size; 750 751 index = VTD_PASID_DIR_INDEX(pasid); 752 entry_size = VTD_PASID_DIR_ENTRY_SIZE; 753 addr = pasid_dir_base + index * entry_size; 754 if (dma_memory_read(&address_space_memory, addr, 755 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) { 756 return -VTD_FR_PASID_TABLE_INV; 757 } 758 759 pdire->val = le64_to_cpu(pdire->val); 760 761 return 0; 762 } 763 764 static inline bool vtd_pe_present(VTDPASIDEntry *pe) 765 { 766 return pe->val[0] & VTD_PASID_ENTRY_P; 767 } 768 769 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s, 770 uint32_t pasid, 771 dma_addr_t addr, 772 VTDPASIDEntry *pe) 773 { 774 uint32_t index; 775 dma_addr_t entry_size; 776 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 777 778 index = VTD_PASID_TABLE_INDEX(pasid); 779 entry_size = VTD_PASID_ENTRY_SIZE; 780 addr = addr + index * entry_size; 781 if (dma_memory_read(&address_space_memory, addr, 782 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) { 783 return -VTD_FR_PASID_TABLE_INV; 784 } 785 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) { 786 pe->val[i] = le64_to_cpu(pe->val[i]); 787 } 788 789 /* Do translation type check */ 790 if (!vtd_pe_type_check(x86_iommu, pe)) { 791 return -VTD_FR_PASID_TABLE_INV; 792 } 793 794 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { 795 return -VTD_FR_PASID_TABLE_INV; 796 } 797 798 return 0; 799 } 800 801 /** 802 * Caller of this function should check present bit if wants 803 * to use pasid entry for further usage except for fpd bit check. 804 */ 805 static int vtd_get_pe_from_pdire(IntelIOMMUState *s, 806 uint32_t pasid, 807 VTDPASIDDirEntry *pdire, 808 VTDPASIDEntry *pe) 809 { 810 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; 811 812 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe); 813 } 814 815 /** 816 * This function gets a pasid entry from a specified pasid 817 * table (includes dir and leaf table) with a specified pasid. 818 * Sanity check should be done to ensure return a present 819 * pasid entry to caller. 820 */ 821 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s, 822 dma_addr_t pasid_dir_base, 823 uint32_t pasid, 824 VTDPASIDEntry *pe) 825 { 826 int ret; 827 VTDPASIDDirEntry pdire; 828 829 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, 830 pasid, &pdire); 831 if (ret) { 832 return ret; 833 } 834 835 if (!vtd_pdire_present(&pdire)) { 836 return -VTD_FR_PASID_TABLE_INV; 837 } 838 839 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe); 840 if (ret) { 841 return ret; 842 } 843 844 if (!vtd_pe_present(pe)) { 845 return -VTD_FR_PASID_TABLE_INV; 846 } 847 848 return 0; 849 } 850 851 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, 852 VTDContextEntry *ce, 853 VTDPASIDEntry *pe, 854 uint32_t pasid) 855 { 856 dma_addr_t pasid_dir_base; 857 int ret = 0; 858 859 if (pasid == PCI_NO_PASID) { 860 pasid = VTD_CE_GET_RID2PASID(ce); 861 } 862 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 863 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe); 864 865 return ret; 866 } 867 868 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, 869 VTDContextEntry *ce, 870 bool *pe_fpd_set, 871 uint32_t pasid) 872 { 873 int ret; 874 dma_addr_t pasid_dir_base; 875 VTDPASIDDirEntry pdire; 876 VTDPASIDEntry pe; 877 878 if (pasid == PCI_NO_PASID) { 879 pasid = VTD_CE_GET_RID2PASID(ce); 880 } 881 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 882 883 /* 884 * No present bit check since fpd is meaningful even 885 * if the present bit is clear. 886 */ 887 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); 888 if (ret) { 889 return ret; 890 } 891 892 if (pdire.val & VTD_PASID_DIR_FPD) { 893 *pe_fpd_set = true; 894 return 0; 895 } 896 897 if (!vtd_pdire_present(&pdire)) { 898 return -VTD_FR_PASID_TABLE_INV; 899 } 900 901 /* 902 * No present bit check since fpd is meaningful even 903 * if the present bit is clear. 904 */ 905 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe); 906 if (ret) { 907 return ret; 908 } 909 910 if (pe.val[0] & VTD_PASID_ENTRY_FPD) { 911 *pe_fpd_set = true; 912 } 913 914 return 0; 915 } 916 917 /* Get the page-table level that hardware should use for the second-level 918 * page-table walk from the Address Width field of context-entry. 919 */ 920 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 921 { 922 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 923 } 924 925 static uint32_t vtd_get_iova_level(IntelIOMMUState *s, 926 VTDContextEntry *ce, 927 uint32_t pasid) 928 { 929 VTDPASIDEntry pe; 930 931 if (s->root_scalable) { 932 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 933 return VTD_PE_GET_LEVEL(&pe); 934 } 935 936 return vtd_ce_get_level(ce); 937 } 938 939 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 940 { 941 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 942 } 943 944 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, 945 VTDContextEntry *ce, 946 uint32_t pasid) 947 { 948 VTDPASIDEntry pe; 949 950 if (s->root_scalable) { 951 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 952 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; 953 } 954 955 return vtd_ce_get_agaw(ce); 956 } 957 958 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 959 { 960 return ce->lo & VTD_CONTEXT_ENTRY_TT; 961 } 962 963 /* Only for Legacy Mode. Return true if check passed, otherwise false */ 964 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 965 VTDContextEntry *ce) 966 { 967 switch (vtd_ce_get_type(ce)) { 968 case VTD_CONTEXT_TT_MULTI_LEVEL: 969 /* Always supported */ 970 break; 971 case VTD_CONTEXT_TT_DEV_IOTLB: 972 if (!x86_iommu->dt_supported) { 973 error_report_once("%s: DT specified but not supported", __func__); 974 return false; 975 } 976 break; 977 case VTD_CONTEXT_TT_PASS_THROUGH: 978 if (!x86_iommu->pt_supported) { 979 error_report_once("%s: PT specified but not supported", __func__); 980 return false; 981 } 982 break; 983 default: 984 /* Unknown type */ 985 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 986 vtd_ce_get_type(ce)); 987 return false; 988 } 989 return true; 990 } 991 992 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, 993 VTDContextEntry *ce, uint8_t aw, 994 uint32_t pasid) 995 { 996 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid); 997 return 1ULL << MIN(ce_agaw, aw); 998 } 999 1000 /* Return true if IOVA passes range check, otherwise false. */ 1001 static inline bool vtd_iova_range_check(IntelIOMMUState *s, 1002 uint64_t iova, VTDContextEntry *ce, 1003 uint8_t aw, uint32_t pasid) 1004 { 1005 /* 1006 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 1007 * in CAP_REG and AW in context-entry. 1008 */ 1009 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1)); 1010 } 1011 1012 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, 1013 VTDContextEntry *ce, 1014 uint32_t pasid) 1015 { 1016 VTDPASIDEntry pe; 1017 1018 if (s->root_scalable) { 1019 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1020 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; 1021 } 1022 1023 return vtd_ce_get_slpt_base(ce); 1024 } 1025 1026 /* 1027 * Rsvd field masks for spte: 1028 * vtd_spte_rsvd 4k pages 1029 * vtd_spte_rsvd_large large pages 1030 */ 1031 static uint64_t vtd_spte_rsvd[5]; 1032 static uint64_t vtd_spte_rsvd_large[5]; 1033 1034 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 1035 { 1036 uint64_t rsvd_mask = vtd_spte_rsvd[level]; 1037 1038 if ((level == VTD_SL_PD_LEVEL || level == VTD_SL_PDP_LEVEL) && 1039 (slpte & VTD_SL_PT_PAGE_SIZE_MASK)) { 1040 /* large page */ 1041 rsvd_mask = vtd_spte_rsvd_large[level]; 1042 } 1043 1044 return slpte & rsvd_mask; 1045 } 1046 1047 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 1048 * of the translation, can be used for deciding the size of large page. 1049 */ 1050 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, 1051 uint64_t iova, bool is_write, 1052 uint64_t *slptep, uint32_t *slpte_level, 1053 bool *reads, bool *writes, uint8_t aw_bits, 1054 uint32_t pasid) 1055 { 1056 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1057 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1058 uint32_t offset; 1059 uint64_t slpte; 1060 uint64_t access_right_check; 1061 uint64_t xlat, size; 1062 1063 if (!vtd_iova_range_check(s, iova, ce, aw_bits, pasid)) { 1064 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 "," 1065 "pasid=0x%" PRIx32 ")", __func__, iova, pasid); 1066 return -VTD_FR_ADDR_BEYOND_MGAW; 1067 } 1068 1069 /* FIXME: what is the Atomics request here? */ 1070 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 1071 1072 while (true) { 1073 offset = vtd_iova_level_offset(iova, level); 1074 slpte = vtd_get_slpte(addr, offset); 1075 1076 if (slpte == (uint64_t)-1) { 1077 error_report_once("%s: detected read error on DMAR slpte " 1078 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")", 1079 __func__, iova, pasid); 1080 if (level == vtd_get_iova_level(s, ce, pasid)) { 1081 /* Invalid programming of context-entry */ 1082 return -VTD_FR_CONTEXT_ENTRY_INV; 1083 } else { 1084 return -VTD_FR_PAGING_ENTRY_INV; 1085 } 1086 } 1087 *reads = (*reads) && (slpte & VTD_SL_R); 1088 *writes = (*writes) && (slpte & VTD_SL_W); 1089 if (!(slpte & access_right_check)) { 1090 error_report_once("%s: detected slpte permission error " 1091 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1092 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%" 1093 PRIx32 ")", __func__, iova, level, 1094 slpte, is_write, pasid); 1095 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 1096 } 1097 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1098 error_report_once("%s: detected splte reserve non-zero " 1099 "iova=0x%" PRIx64 ", level=0x%" PRIx32 1100 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", 1101 __func__, iova, level, slpte, pasid); 1102 return -VTD_FR_PAGING_ENTRY_RSVD; 1103 } 1104 1105 if (vtd_is_last_slpte(slpte, level)) { 1106 *slptep = slpte; 1107 *slpte_level = level; 1108 break; 1109 } 1110 addr = vtd_get_slpte_addr(slpte, aw_bits); 1111 level--; 1112 } 1113 1114 xlat = vtd_get_slpte_addr(*slptep, aw_bits); 1115 size = ~vtd_slpt_level_page_mask(level) + 1; 1116 1117 /* 1118 * From VT-d spec 3.14: Untranslated requests and translation 1119 * requests that result in an address in the interrupt range will be 1120 * blocked with condition code LGN.4 or SGN.8. 1121 */ 1122 if ((xlat > VTD_INTERRUPT_ADDR_LAST || 1123 xlat + size - 1 < VTD_INTERRUPT_ADDR_FIRST)) { 1124 return 0; 1125 } else { 1126 error_report_once("%s: xlat address is in interrupt range " 1127 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1128 "slpte=0x%" PRIx64 ", write=%d, " 1129 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", " 1130 "pasid=0x%" PRIx32 ")", 1131 __func__, iova, level, slpte, is_write, 1132 xlat, size, pasid); 1133 return s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR : 1134 -VTD_FR_INTERRUPT_ADDR; 1135 } 1136 } 1137 1138 typedef int (*vtd_page_walk_hook)(IOMMUTLBEvent *event, void *private); 1139 1140 /** 1141 * Constant information used during page walking 1142 * 1143 * @hook_fn: hook func to be called when detected page 1144 * @private: private data to be passed into hook func 1145 * @notify_unmap: whether we should notify invalid entries 1146 * @as: VT-d address space of the device 1147 * @aw: maximum address width 1148 * @domain: domain ID of the page walk 1149 */ 1150 typedef struct { 1151 VTDAddressSpace *as; 1152 vtd_page_walk_hook hook_fn; 1153 void *private; 1154 bool notify_unmap; 1155 uint8_t aw; 1156 uint16_t domain_id; 1157 } vtd_page_walk_info; 1158 1159 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info) 1160 { 1161 VTDAddressSpace *as = info->as; 1162 vtd_page_walk_hook hook_fn = info->hook_fn; 1163 void *private = info->private; 1164 IOMMUTLBEntry *entry = &event->entry; 1165 DMAMap target = { 1166 .iova = entry->iova, 1167 .size = entry->addr_mask, 1168 .translated_addr = entry->translated_addr, 1169 .perm = entry->perm, 1170 }; 1171 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 1172 1173 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) { 1174 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1175 return 0; 1176 } 1177 1178 assert(hook_fn); 1179 1180 /* Update local IOVA mapped ranges */ 1181 if (event->type == IOMMU_NOTIFIER_MAP) { 1182 if (mapped) { 1183 /* If it's exactly the same translation, skip */ 1184 if (!memcmp(mapped, &target, sizeof(target))) { 1185 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 1186 entry->translated_addr); 1187 return 0; 1188 } else { 1189 /* 1190 * Translation changed. Normally this should not 1191 * happen, but it can happen when with buggy guest 1192 * OSes. Note that there will be a small window that 1193 * we don't have map at all. But that's the best 1194 * effort we can do. The ideal way to emulate this is 1195 * atomically modify the PTE to follow what has 1196 * changed, but we can't. One example is that vfio 1197 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 1198 * interface to modify a mapping (meanwhile it seems 1199 * meaningless to even provide one). Anyway, let's 1200 * mark this as a TODO in case one day we'll have 1201 * a better solution. 1202 */ 1203 IOMMUAccessFlags cache_perm = entry->perm; 1204 int ret; 1205 1206 /* Emulate an UNMAP */ 1207 event->type = IOMMU_NOTIFIER_UNMAP; 1208 entry->perm = IOMMU_NONE; 1209 trace_vtd_page_walk_one(info->domain_id, 1210 entry->iova, 1211 entry->translated_addr, 1212 entry->addr_mask, 1213 entry->perm); 1214 ret = hook_fn(event, private); 1215 if (ret) { 1216 return ret; 1217 } 1218 /* Drop any existing mapping */ 1219 iova_tree_remove(as->iova_tree, target); 1220 /* Recover the correct type */ 1221 event->type = IOMMU_NOTIFIER_MAP; 1222 entry->perm = cache_perm; 1223 } 1224 } 1225 iova_tree_insert(as->iova_tree, &target); 1226 } else { 1227 if (!mapped) { 1228 /* Skip since we didn't map this range at all */ 1229 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1230 return 0; 1231 } 1232 iova_tree_remove(as->iova_tree, target); 1233 } 1234 1235 trace_vtd_page_walk_one(info->domain_id, entry->iova, 1236 entry->translated_addr, entry->addr_mask, 1237 entry->perm); 1238 return hook_fn(event, private); 1239 } 1240 1241 /** 1242 * vtd_page_walk_level - walk over specific level for IOVA range 1243 * 1244 * @addr: base GPA addr to start the walk 1245 * @start: IOVA range start address 1246 * @end: IOVA range end address (start <= addr < end) 1247 * @read: whether parent level has read permission 1248 * @write: whether parent level has write permission 1249 * @info: constant information for the page walk 1250 */ 1251 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 1252 uint64_t end, uint32_t level, bool read, 1253 bool write, vtd_page_walk_info *info) 1254 { 1255 bool read_cur, write_cur, entry_valid; 1256 uint32_t offset; 1257 uint64_t slpte; 1258 uint64_t subpage_size, subpage_mask; 1259 IOMMUTLBEvent event; 1260 uint64_t iova = start; 1261 uint64_t iova_next; 1262 int ret = 0; 1263 1264 trace_vtd_page_walk_level(addr, level, start, end); 1265 1266 subpage_size = 1ULL << vtd_slpt_level_shift(level); 1267 subpage_mask = vtd_slpt_level_page_mask(level); 1268 1269 while (iova < end) { 1270 iova_next = (iova & subpage_mask) + subpage_size; 1271 1272 offset = vtd_iova_level_offset(iova, level); 1273 slpte = vtd_get_slpte(addr, offset); 1274 1275 if (slpte == (uint64_t)-1) { 1276 trace_vtd_page_walk_skip_read(iova, iova_next); 1277 goto next; 1278 } 1279 1280 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1281 trace_vtd_page_walk_skip_reserve(iova, iova_next); 1282 goto next; 1283 } 1284 1285 /* Permissions are stacked with parents' */ 1286 read_cur = read && (slpte & VTD_SL_R); 1287 write_cur = write && (slpte & VTD_SL_W); 1288 1289 /* 1290 * As long as we have either read/write permission, this is a 1291 * valid entry. The rule works for both page entries and page 1292 * table entries. 1293 */ 1294 entry_valid = read_cur | write_cur; 1295 1296 if (!vtd_is_last_slpte(slpte, level) && entry_valid) { 1297 /* 1298 * This is a valid PDE (or even bigger than PDE). We need 1299 * to walk one further level. 1300 */ 1301 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), 1302 iova, MIN(iova_next, end), level - 1, 1303 read_cur, write_cur, info); 1304 } else { 1305 /* 1306 * This means we are either: 1307 * 1308 * (1) the real page entry (either 4K page, or huge page) 1309 * (2) the whole range is invalid 1310 * 1311 * In either case, we send an IOTLB notification down. 1312 */ 1313 event.entry.target_as = &address_space_memory; 1314 event.entry.iova = iova & subpage_mask; 1315 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 1316 event.entry.addr_mask = ~subpage_mask; 1317 /* NOTE: this is only meaningful if entry_valid == true */ 1318 event.entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); 1319 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP : 1320 IOMMU_NOTIFIER_UNMAP; 1321 ret = vtd_page_walk_one(&event, info); 1322 } 1323 1324 if (ret < 0) { 1325 return ret; 1326 } 1327 1328 next: 1329 iova = iova_next; 1330 } 1331 1332 return 0; 1333 } 1334 1335 /** 1336 * vtd_page_walk - walk specific IOVA range, and call the hook 1337 * 1338 * @s: intel iommu state 1339 * @ce: context entry to walk upon 1340 * @start: IOVA address to start the walk 1341 * @end: IOVA range end address (start <= addr < end) 1342 * @info: page walking information struct 1343 */ 1344 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, 1345 uint64_t start, uint64_t end, 1346 vtd_page_walk_info *info, 1347 uint32_t pasid) 1348 { 1349 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1350 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1351 1352 if (!vtd_iova_range_check(s, start, ce, info->aw, pasid)) { 1353 return -VTD_FR_ADDR_BEYOND_MGAW; 1354 } 1355 1356 if (!vtd_iova_range_check(s, end, ce, info->aw, pasid)) { 1357 /* Fix end so that it reaches the maximum */ 1358 end = vtd_iova_limit(s, ce, info->aw, pasid); 1359 } 1360 1361 return vtd_page_walk_level(addr, start, end, level, true, true, info); 1362 } 1363 1364 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, 1365 VTDRootEntry *re) 1366 { 1367 /* Legacy Mode reserved bits check */ 1368 if (!s->root_scalable && 1369 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1370 goto rsvd_err; 1371 1372 /* Scalable Mode reserved bits check */ 1373 if (s->root_scalable && 1374 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || 1375 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1376 goto rsvd_err; 1377 1378 return 0; 1379 1380 rsvd_err: 1381 error_report_once("%s: invalid root entry: hi=0x%"PRIx64 1382 ", lo=0x%"PRIx64, 1383 __func__, re->hi, re->lo); 1384 return -VTD_FR_ROOT_ENTRY_RSVD; 1385 } 1386 1387 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, 1388 VTDContextEntry *ce) 1389 { 1390 if (!s->root_scalable && 1391 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || 1392 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1393 error_report_once("%s: invalid context entry: hi=%"PRIx64 1394 ", lo=%"PRIx64" (reserved nonzero)", 1395 __func__, ce->hi, ce->lo); 1396 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1397 } 1398 1399 if (s->root_scalable && 1400 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || 1401 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || 1402 ce->val[2] || 1403 ce->val[3])) { 1404 error_report_once("%s: invalid context entry: val[3]=%"PRIx64 1405 ", val[2]=%"PRIx64 1406 ", val[1]=%"PRIx64 1407 ", val[0]=%"PRIx64" (reserved nonzero)", 1408 __func__, ce->val[3], ce->val[2], 1409 ce->val[1], ce->val[0]); 1410 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, 1417 VTDContextEntry *ce) 1418 { 1419 VTDPASIDEntry pe; 1420 1421 /* 1422 * Make sure in Scalable Mode, a present context entry 1423 * has valid rid2pasid setting, which includes valid 1424 * rid2pasid field and corresponding pasid entry setting 1425 */ 1426 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID); 1427 } 1428 1429 /* Map a device to its corresponding domain (context-entry) */ 1430 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 1431 uint8_t devfn, VTDContextEntry *ce) 1432 { 1433 VTDRootEntry re; 1434 int ret_fr; 1435 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 1436 1437 ret_fr = vtd_get_root_entry(s, bus_num, &re); 1438 if (ret_fr) { 1439 return ret_fr; 1440 } 1441 1442 if (!vtd_root_entry_present(s, &re, devfn)) { 1443 /* Not error - it's okay we don't have root entry. */ 1444 trace_vtd_re_not_present(bus_num); 1445 return -VTD_FR_ROOT_ENTRY_P; 1446 } 1447 1448 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); 1449 if (ret_fr) { 1450 return ret_fr; 1451 } 1452 1453 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); 1454 if (ret_fr) { 1455 return ret_fr; 1456 } 1457 1458 if (!vtd_ce_present(ce)) { 1459 /* Not error - it's okay we don't have context entry. */ 1460 trace_vtd_ce_not_present(bus_num, devfn); 1461 return -VTD_FR_CONTEXT_ENTRY_P; 1462 } 1463 1464 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); 1465 if (ret_fr) { 1466 return ret_fr; 1467 } 1468 1469 /* Check if the programming of context-entry is valid */ 1470 if (!s->root_scalable && 1471 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 1472 error_report_once("%s: invalid context entry: hi=%"PRIx64 1473 ", lo=%"PRIx64" (level %d not supported)", 1474 __func__, ce->hi, ce->lo, 1475 vtd_ce_get_level(ce)); 1476 return -VTD_FR_CONTEXT_ENTRY_INV; 1477 } 1478 1479 if (!s->root_scalable) { 1480 /* Do translation type check */ 1481 if (!vtd_ce_type_check(x86_iommu, ce)) { 1482 /* Errors dumped in vtd_ce_type_check() */ 1483 return -VTD_FR_CONTEXT_ENTRY_INV; 1484 } 1485 } else { 1486 /* 1487 * Check if the programming of context-entry.rid2pasid 1488 * and corresponding pasid setting is valid, and thus 1489 * avoids to check pasid entry fetching result in future 1490 * helper function calling. 1491 */ 1492 ret_fr = vtd_ce_rid2pasid_check(s, ce); 1493 if (ret_fr) { 1494 return ret_fr; 1495 } 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int vtd_sync_shadow_page_hook(IOMMUTLBEvent *event, 1502 void *private) 1503 { 1504 memory_region_notify_iommu(private, 0, *event); 1505 return 0; 1506 } 1507 1508 static uint16_t vtd_get_domain_id(IntelIOMMUState *s, 1509 VTDContextEntry *ce, 1510 uint32_t pasid) 1511 { 1512 VTDPASIDEntry pe; 1513 1514 if (s->root_scalable) { 1515 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1516 return VTD_SM_PASID_ENTRY_DID(pe.val[1]); 1517 } 1518 1519 return VTD_CONTEXT_ENTRY_DID(ce->hi); 1520 } 1521 1522 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1523 VTDContextEntry *ce, 1524 hwaddr addr, hwaddr size) 1525 { 1526 IntelIOMMUState *s = vtd_as->iommu_state; 1527 vtd_page_walk_info info = { 1528 .hook_fn = vtd_sync_shadow_page_hook, 1529 .private = (void *)&vtd_as->iommu, 1530 .notify_unmap = true, 1531 .aw = s->aw_bits, 1532 .as = vtd_as, 1533 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid), 1534 }; 1535 1536 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid); 1537 } 1538 1539 static int vtd_address_space_sync(VTDAddressSpace *vtd_as) 1540 { 1541 int ret; 1542 VTDContextEntry ce; 1543 IOMMUNotifier *n; 1544 1545 /* If no MAP notifier registered, we simply invalidate all the cache */ 1546 if (!vtd_as_has_map_notifier(vtd_as)) { 1547 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1548 memory_region_unmap_iommu_notifier_range(n); 1549 } 1550 return 0; 1551 } 1552 1553 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1554 pci_bus_num(vtd_as->bus), 1555 vtd_as->devfn, &ce); 1556 if (ret) { 1557 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1558 /* 1559 * It's a valid scenario to have a context entry that is 1560 * not present. For example, when a device is removed 1561 * from an existing domain then the context entry will be 1562 * zeroed by the guest before it was put into another 1563 * domain. When this happens, instead of synchronizing 1564 * the shadow pages we should invalidate all existing 1565 * mappings and notify the backends. 1566 */ 1567 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1568 vtd_address_space_unmap(vtd_as, n); 1569 } 1570 ret = 0; 1571 } 1572 return ret; 1573 } 1574 1575 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1576 } 1577 1578 /* 1579 * Check if specific device is configured to bypass address 1580 * translation for DMA requests. In Scalable Mode, bypass 1581 * 1st-level translation or 2nd-level translation, it depends 1582 * on PGTT setting. 1583 */ 1584 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce, 1585 uint32_t pasid) 1586 { 1587 VTDPASIDEntry pe; 1588 int ret; 1589 1590 if (s->root_scalable) { 1591 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1592 if (ret) { 1593 /* 1594 * This error is guest triggerable. We should assumt PT 1595 * not enabled for safety. 1596 */ 1597 return false; 1598 } 1599 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); 1600 } 1601 1602 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH); 1603 1604 } 1605 1606 static bool vtd_as_pt_enabled(VTDAddressSpace *as) 1607 { 1608 IntelIOMMUState *s; 1609 VTDContextEntry ce; 1610 1611 assert(as); 1612 1613 s = as->iommu_state; 1614 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn, 1615 &ce)) { 1616 /* 1617 * Possibly failed to parse the context entry for some reason 1618 * (e.g., during init, or any guest configuration errors on 1619 * context entries). We should assume PT not enabled for 1620 * safety. 1621 */ 1622 return false; 1623 } 1624 1625 return vtd_dev_pt_enabled(s, &ce, as->pasid); 1626 } 1627 1628 /* Return whether the device is using IOMMU translation. */ 1629 static bool vtd_switch_address_space(VTDAddressSpace *as) 1630 { 1631 bool use_iommu, pt; 1632 /* Whether we need to take the BQL on our own */ 1633 bool take_bql = !qemu_mutex_iothread_locked(); 1634 1635 assert(as); 1636 1637 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as); 1638 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as); 1639 1640 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1641 VTD_PCI_SLOT(as->devfn), 1642 VTD_PCI_FUNC(as->devfn), 1643 use_iommu); 1644 1645 /* 1646 * It's possible that we reach here without BQL, e.g., when called 1647 * from vtd_pt_enable_fast_path(). However the memory APIs need 1648 * it. We'd better make sure we have had it already, or, take it. 1649 */ 1650 if (take_bql) { 1651 qemu_mutex_lock_iothread(); 1652 } 1653 1654 /* Turn off first then on the other */ 1655 if (use_iommu) { 1656 memory_region_set_enabled(&as->nodmar, false); 1657 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1658 /* 1659 * vt-d spec v3.4 3.14: 1660 * 1661 * """ 1662 * Requests-with-PASID with input address in range 0xFEEx_xxxx 1663 * are translated normally like any other request-with-PASID 1664 * through DMA-remapping hardware. 1665 * """ 1666 * 1667 * Need to disable ir for as with PASID. 1668 */ 1669 if (as->pasid != PCI_NO_PASID) { 1670 memory_region_set_enabled(&as->iommu_ir, false); 1671 } else { 1672 memory_region_set_enabled(&as->iommu_ir, true); 1673 } 1674 } else { 1675 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1676 memory_region_set_enabled(&as->nodmar, true); 1677 } 1678 1679 /* 1680 * vtd-spec v3.4 3.14: 1681 * 1682 * """ 1683 * Requests-with-PASID with input address in range 0xFEEx_xxxx are 1684 * translated normally like any other request-with-PASID through 1685 * DMA-remapping hardware. However, if such a request is processed 1686 * using pass-through translation, it will be blocked as described 1687 * in the paragraph below. 1688 * 1689 * Software must not program paging-structure entries to remap any 1690 * address to the interrupt address range. Untranslated requests 1691 * and translation requests that result in an address in the 1692 * interrupt range will be blocked with condition code LGN.4 or 1693 * SGN.8. 1694 * """ 1695 * 1696 * We enable per as memory region (iommu_ir_fault) for catching 1697 * the translation for interrupt range through PASID + PT. 1698 */ 1699 if (pt && as->pasid != PCI_NO_PASID) { 1700 memory_region_set_enabled(&as->iommu_ir_fault, true); 1701 } else { 1702 memory_region_set_enabled(&as->iommu_ir_fault, false); 1703 } 1704 1705 if (take_bql) { 1706 qemu_mutex_unlock_iothread(); 1707 } 1708 1709 return use_iommu; 1710 } 1711 1712 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1713 { 1714 VTDAddressSpace *vtd_as; 1715 GHashTableIter iter; 1716 1717 g_hash_table_iter_init(&iter, s->vtd_address_spaces); 1718 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) { 1719 vtd_switch_address_space(vtd_as); 1720 } 1721 } 1722 1723 static const bool vtd_qualified_faults[] = { 1724 [VTD_FR_RESERVED] = false, 1725 [VTD_FR_ROOT_ENTRY_P] = false, 1726 [VTD_FR_CONTEXT_ENTRY_P] = true, 1727 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1728 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1729 [VTD_FR_WRITE] = true, 1730 [VTD_FR_READ] = true, 1731 [VTD_FR_PAGING_ENTRY_INV] = true, 1732 [VTD_FR_ROOT_TABLE_INV] = false, 1733 [VTD_FR_CONTEXT_TABLE_INV] = false, 1734 [VTD_FR_INTERRUPT_ADDR] = true, 1735 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1736 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1737 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1738 [VTD_FR_PASID_TABLE_INV] = false, 1739 [VTD_FR_SM_INTERRUPT_ADDR] = true, 1740 [VTD_FR_MAX] = false, 1741 }; 1742 1743 /* To see if a fault condition is "qualified", which is reported to software 1744 * only if the FPD field in the context-entry used to process the faulting 1745 * request is 0. 1746 */ 1747 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1748 { 1749 return vtd_qualified_faults[fault]; 1750 } 1751 1752 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1753 { 1754 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1755 } 1756 1757 static gboolean vtd_find_as_by_sid(gpointer key, gpointer value, 1758 gpointer user_data) 1759 { 1760 struct vtd_as_key *as_key = (struct vtd_as_key *)key; 1761 uint16_t target_sid = *(uint16_t *)user_data; 1762 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn); 1763 return sid == target_sid; 1764 } 1765 1766 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid) 1767 { 1768 uint8_t bus_num = PCI_BUS_NUM(sid); 1769 VTDAddressSpace *vtd_as = s->vtd_as_cache[bus_num]; 1770 1771 if (vtd_as && 1772 (sid == PCI_BUILD_BDF(pci_bus_num(vtd_as->bus), vtd_as->devfn))) { 1773 return vtd_as; 1774 } 1775 1776 vtd_as = g_hash_table_find(s->vtd_address_spaces, vtd_find_as_by_sid, &sid); 1777 s->vtd_as_cache[bus_num] = vtd_as; 1778 1779 return vtd_as; 1780 } 1781 1782 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1783 { 1784 VTDAddressSpace *vtd_as; 1785 bool success = false; 1786 1787 vtd_as = vtd_get_as_by_sid(s, source_id); 1788 if (!vtd_as) { 1789 goto out; 1790 } 1791 1792 if (vtd_switch_address_space(vtd_as) == false) { 1793 /* We switched off IOMMU region successfully. */ 1794 success = true; 1795 } 1796 1797 out: 1798 trace_vtd_pt_enable_fast_path(source_id, success); 1799 } 1800 1801 static void vtd_report_fault(IntelIOMMUState *s, 1802 int err, bool is_fpd_set, 1803 uint16_t source_id, 1804 hwaddr addr, 1805 bool is_write, 1806 bool is_pasid, 1807 uint32_t pasid) 1808 { 1809 if (is_fpd_set && vtd_is_qualified_fault(err)) { 1810 trace_vtd_fault_disabled(); 1811 } else { 1812 vtd_report_dmar_fault(s, source_id, addr, err, is_write, 1813 is_pasid, pasid); 1814 } 1815 } 1816 1817 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1818 * translation. 1819 * 1820 * Called from RCU critical section. 1821 * 1822 * @bus_num: The bus number 1823 * @devfn: The devfn, which is the combined of device and function number 1824 * @is_write: The access is a write operation 1825 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1826 * 1827 * Returns true if translation is successful, otherwise false. 1828 */ 1829 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1830 uint8_t devfn, hwaddr addr, bool is_write, 1831 IOMMUTLBEntry *entry) 1832 { 1833 IntelIOMMUState *s = vtd_as->iommu_state; 1834 VTDContextEntry ce; 1835 uint8_t bus_num = pci_bus_num(bus); 1836 VTDContextCacheEntry *cc_entry; 1837 uint64_t slpte, page_mask; 1838 uint32_t level, pasid = vtd_as->pasid; 1839 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn); 1840 int ret_fr; 1841 bool is_fpd_set = false; 1842 bool reads = true; 1843 bool writes = true; 1844 uint8_t access_flags; 1845 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable; 1846 VTDIOTLBEntry *iotlb_entry; 1847 1848 /* 1849 * We have standalone memory region for interrupt addresses, we 1850 * should never receive translation requests in this region. 1851 */ 1852 assert(!vtd_is_interrupt_addr(addr)); 1853 1854 vtd_iommu_lock(s); 1855 1856 cc_entry = &vtd_as->context_cache_entry; 1857 1858 /* Try to fetch slpte form IOTLB, we don't need RID2PASID logic */ 1859 if (!rid2pasid) { 1860 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1861 if (iotlb_entry) { 1862 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1863 iotlb_entry->domain_id); 1864 slpte = iotlb_entry->slpte; 1865 access_flags = iotlb_entry->access_flags; 1866 page_mask = iotlb_entry->mask; 1867 goto out; 1868 } 1869 } 1870 1871 /* Try to fetch context-entry from cache first */ 1872 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1873 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1874 cc_entry->context_entry.lo, 1875 cc_entry->context_cache_gen); 1876 ce = cc_entry->context_entry; 1877 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1878 if (!is_fpd_set && s->root_scalable) { 1879 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1880 if (ret_fr) { 1881 vtd_report_fault(s, -ret_fr, is_fpd_set, 1882 source_id, addr, is_write, 1883 false, 0); 1884 goto error; 1885 } 1886 } 1887 } else { 1888 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1889 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1890 if (!ret_fr && !is_fpd_set && s->root_scalable) { 1891 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 1892 } 1893 if (ret_fr) { 1894 vtd_report_fault(s, -ret_fr, is_fpd_set, 1895 source_id, addr, is_write, 1896 false, 0); 1897 goto error; 1898 } 1899 /* Update context-cache */ 1900 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1901 cc_entry->context_cache_gen, 1902 s->context_cache_gen); 1903 cc_entry->context_entry = ce; 1904 cc_entry->context_cache_gen = s->context_cache_gen; 1905 } 1906 1907 if (rid2pasid) { 1908 pasid = VTD_CE_GET_RID2PASID(&ce); 1909 } 1910 1911 /* 1912 * We don't need to translate for pass-through context entries. 1913 * Also, let's ignore IOTLB caching as well for PT devices. 1914 */ 1915 if (vtd_dev_pt_enabled(s, &ce, pasid)) { 1916 entry->iova = addr & VTD_PAGE_MASK_4K; 1917 entry->translated_addr = entry->iova; 1918 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1919 entry->perm = IOMMU_RW; 1920 trace_vtd_translate_pt(source_id, entry->iova); 1921 1922 /* 1923 * When this happens, it means firstly caching-mode is not 1924 * enabled, and this is the first passthrough translation for 1925 * the device. Let's enable the fast path for passthrough. 1926 * 1927 * When passthrough is disabled again for the device, we can 1928 * capture it via the context entry invalidation, then the 1929 * IOMMU region can be swapped back. 1930 */ 1931 vtd_pt_enable_fast_path(s, source_id); 1932 vtd_iommu_unlock(s); 1933 return true; 1934 } 1935 1936 /* Try to fetch slpte form IOTLB for RID2PASID slow path */ 1937 if (rid2pasid) { 1938 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 1939 if (iotlb_entry) { 1940 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1941 iotlb_entry->domain_id); 1942 slpte = iotlb_entry->slpte; 1943 access_flags = iotlb_entry->access_flags; 1944 page_mask = iotlb_entry->mask; 1945 goto out; 1946 } 1947 } 1948 1949 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, 1950 &reads, &writes, s->aw_bits, pasid); 1951 if (ret_fr) { 1952 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, 1953 addr, is_write, pasid != PCI_NO_PASID, pasid); 1954 goto error; 1955 } 1956 1957 page_mask = vtd_slpt_level_page_mask(level); 1958 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 1959 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid), 1960 addr, slpte, access_flags, level, pasid); 1961 out: 1962 vtd_iommu_unlock(s); 1963 entry->iova = addr & page_mask; 1964 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; 1965 entry->addr_mask = ~page_mask; 1966 entry->perm = access_flags; 1967 return true; 1968 1969 error: 1970 vtd_iommu_unlock(s); 1971 entry->iova = 0; 1972 entry->translated_addr = 0; 1973 entry->addr_mask = 0; 1974 entry->perm = IOMMU_NONE; 1975 return false; 1976 } 1977 1978 static void vtd_root_table_setup(IntelIOMMUState *s) 1979 { 1980 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 1981 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 1982 1983 vtd_update_scalable_state(s); 1984 1985 trace_vtd_reg_dmar_root(s->root, s->root_scalable); 1986 } 1987 1988 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 1989 uint32_t index, uint32_t mask) 1990 { 1991 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 1992 } 1993 1994 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 1995 { 1996 uint64_t value = 0; 1997 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 1998 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 1999 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 2000 s->intr_eime = value & VTD_IRTA_EIME; 2001 2002 /* Notify global invalidation */ 2003 vtd_iec_notify_all(s, true, 0, 0); 2004 2005 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 2006 } 2007 2008 static void vtd_iommu_replay_all(IntelIOMMUState *s) 2009 { 2010 VTDAddressSpace *vtd_as; 2011 2012 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2013 vtd_address_space_sync(vtd_as); 2014 } 2015 } 2016 2017 static void vtd_context_global_invalidate(IntelIOMMUState *s) 2018 { 2019 trace_vtd_inv_desc_cc_global(); 2020 /* Protects context cache */ 2021 vtd_iommu_lock(s); 2022 s->context_cache_gen++; 2023 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 2024 vtd_reset_context_cache_locked(s); 2025 } 2026 vtd_iommu_unlock(s); 2027 vtd_address_space_refresh_all(s); 2028 /* 2029 * From VT-d spec 6.5.2.1, a global context entry invalidation 2030 * should be followed by a IOTLB global invalidation, so we should 2031 * be safe even without this. Hoewever, let's replay the region as 2032 * well to be safer, and go back here when we need finer tunes for 2033 * VT-d emulation codes. 2034 */ 2035 vtd_iommu_replay_all(s); 2036 } 2037 2038 /* Do a context-cache device-selective invalidation. 2039 * @func_mask: FM field after shifting 2040 */ 2041 static void vtd_context_device_invalidate(IntelIOMMUState *s, 2042 uint16_t source_id, 2043 uint16_t func_mask) 2044 { 2045 GHashTableIter as_it; 2046 uint16_t mask; 2047 VTDAddressSpace *vtd_as; 2048 uint8_t bus_n, devfn; 2049 2050 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 2051 2052 switch (func_mask & 3) { 2053 case 0: 2054 mask = 0; /* No bits in the SID field masked */ 2055 break; 2056 case 1: 2057 mask = 4; /* Mask bit 2 in the SID field */ 2058 break; 2059 case 2: 2060 mask = 6; /* Mask bit 2:1 in the SID field */ 2061 break; 2062 case 3: 2063 mask = 7; /* Mask bit 2:0 in the SID field */ 2064 break; 2065 default: 2066 g_assert_not_reached(); 2067 } 2068 mask = ~mask; 2069 2070 bus_n = VTD_SID_TO_BUS(source_id); 2071 devfn = VTD_SID_TO_DEVFN(source_id); 2072 2073 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 2074 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 2075 if ((pci_bus_num(vtd_as->bus) == bus_n) && 2076 (vtd_as->devfn & mask) == (devfn & mask)) { 2077 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn), 2078 VTD_PCI_FUNC(vtd_as->devfn)); 2079 vtd_iommu_lock(s); 2080 vtd_as->context_cache_entry.context_cache_gen = 0; 2081 vtd_iommu_unlock(s); 2082 /* 2083 * Do switch address space when needed, in case if the 2084 * device passthrough bit is switched. 2085 */ 2086 vtd_switch_address_space(vtd_as); 2087 /* 2088 * So a device is moving out of (or moving into) a 2089 * domain, resync the shadow page table. 2090 * This won't bring bad even if we have no such 2091 * notifier registered - the IOMMU notification 2092 * framework will skip MAP notifications if that 2093 * happened. 2094 */ 2095 vtd_address_space_sync(vtd_as); 2096 } 2097 } 2098 } 2099 2100 /* Context-cache invalidation 2101 * Returns the Context Actual Invalidation Granularity. 2102 * @val: the content of the CCMD_REG 2103 */ 2104 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 2105 { 2106 uint64_t caig; 2107 uint64_t type = val & VTD_CCMD_CIRG_MASK; 2108 2109 switch (type) { 2110 case VTD_CCMD_DOMAIN_INVL: 2111 /* Fall through */ 2112 case VTD_CCMD_GLOBAL_INVL: 2113 caig = VTD_CCMD_GLOBAL_INVL_A; 2114 vtd_context_global_invalidate(s); 2115 break; 2116 2117 case VTD_CCMD_DEVICE_INVL: 2118 caig = VTD_CCMD_DEVICE_INVL_A; 2119 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 2120 break; 2121 2122 default: 2123 error_report_once("%s: invalid context: 0x%" PRIx64, 2124 __func__, val); 2125 caig = 0; 2126 } 2127 return caig; 2128 } 2129 2130 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 2131 { 2132 trace_vtd_inv_desc_iotlb_global(); 2133 vtd_reset_iotlb(s); 2134 vtd_iommu_replay_all(s); 2135 } 2136 2137 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 2138 { 2139 VTDContextEntry ce; 2140 VTDAddressSpace *vtd_as; 2141 2142 trace_vtd_inv_desc_iotlb_domain(domain_id); 2143 2144 vtd_iommu_lock(s); 2145 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 2146 &domain_id); 2147 vtd_iommu_unlock(s); 2148 2149 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2150 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2151 vtd_as->devfn, &ce) && 2152 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2153 vtd_address_space_sync(vtd_as); 2154 } 2155 } 2156 } 2157 2158 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 2159 uint16_t domain_id, hwaddr addr, 2160 uint8_t am, uint32_t pasid) 2161 { 2162 VTDAddressSpace *vtd_as; 2163 VTDContextEntry ce; 2164 int ret; 2165 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 2166 2167 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 2168 if (pasid != PCI_NO_PASID && pasid != vtd_as->pasid) { 2169 continue; 2170 } 2171 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2172 vtd_as->devfn, &ce); 2173 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2174 if (vtd_as_has_map_notifier(vtd_as)) { 2175 /* 2176 * As long as we have MAP notifications registered in 2177 * any of our IOMMU notifiers, we need to sync the 2178 * shadow page table. 2179 */ 2180 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 2181 } else { 2182 /* 2183 * For UNMAP-only notifiers, we don't need to walk the 2184 * page tables. We just deliver the PSI down to 2185 * invalidate caches. 2186 */ 2187 IOMMUTLBEvent event = { 2188 .type = IOMMU_NOTIFIER_UNMAP, 2189 .entry = { 2190 .target_as = &address_space_memory, 2191 .iova = addr, 2192 .translated_addr = 0, 2193 .addr_mask = size - 1, 2194 .perm = IOMMU_NONE, 2195 }, 2196 }; 2197 memory_region_notify_iommu(&vtd_as->iommu, 0, event); 2198 } 2199 } 2200 } 2201 } 2202 2203 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 2204 hwaddr addr, uint8_t am) 2205 { 2206 VTDIOTLBPageInvInfo info; 2207 2208 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 2209 2210 assert(am <= VTD_MAMV); 2211 info.domain_id = domain_id; 2212 info.addr = addr; 2213 info.mask = ~((1 << am) - 1); 2214 vtd_iommu_lock(s); 2215 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 2216 vtd_iommu_unlock(s); 2217 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID); 2218 } 2219 2220 /* Flush IOTLB 2221 * Returns the IOTLB Actual Invalidation Granularity. 2222 * @val: the content of the IOTLB_REG 2223 */ 2224 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 2225 { 2226 uint64_t iaig; 2227 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 2228 uint16_t domain_id; 2229 hwaddr addr; 2230 uint8_t am; 2231 2232 switch (type) { 2233 case VTD_TLB_GLOBAL_FLUSH: 2234 iaig = VTD_TLB_GLOBAL_FLUSH_A; 2235 vtd_iotlb_global_invalidate(s); 2236 break; 2237 2238 case VTD_TLB_DSI_FLUSH: 2239 domain_id = VTD_TLB_DID(val); 2240 iaig = VTD_TLB_DSI_FLUSH_A; 2241 vtd_iotlb_domain_invalidate(s, domain_id); 2242 break; 2243 2244 case VTD_TLB_PSI_FLUSH: 2245 domain_id = VTD_TLB_DID(val); 2246 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 2247 am = VTD_IVA_AM(addr); 2248 addr = VTD_IVA_ADDR(addr); 2249 if (am > VTD_MAMV) { 2250 error_report_once("%s: address mask overflow: 0x%" PRIx64, 2251 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 2252 iaig = 0; 2253 break; 2254 } 2255 iaig = VTD_TLB_PSI_FLUSH_A; 2256 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2257 break; 2258 2259 default: 2260 error_report_once("%s: invalid granularity: 0x%" PRIx64, 2261 __func__, val); 2262 iaig = 0; 2263 } 2264 return iaig; 2265 } 2266 2267 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 2268 2269 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 2270 { 2271 return s->qi_enabled && (s->iq_tail == s->iq_head) && 2272 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 2273 } 2274 2275 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 2276 { 2277 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 2278 2279 trace_vtd_inv_qi_enable(en); 2280 2281 if (en) { 2282 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 2283 /* 2^(x+8) entries */ 2284 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); 2285 s->qi_enabled = true; 2286 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 2287 /* Ok - report back to driver */ 2288 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 2289 2290 if (s->iq_tail != 0) { 2291 /* 2292 * This is a spec violation but Windows guests are known to set up 2293 * Queued Invalidation this way so we allow the write and process 2294 * Invalidation Descriptors right away. 2295 */ 2296 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 2297 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2298 vtd_fetch_inv_desc(s); 2299 } 2300 } 2301 } else { 2302 if (vtd_queued_inv_disable_check(s)) { 2303 /* disable Queued Invalidation */ 2304 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 2305 s->iq_head = 0; 2306 s->qi_enabled = false; 2307 /* Ok - report back to driver */ 2308 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 2309 } else { 2310 error_report_once("%s: detected improper state when disable QI " 2311 "(head=0x%x, tail=0x%x, last_type=%d)", 2312 __func__, 2313 s->iq_head, s->iq_tail, s->iq_last_desc_type); 2314 } 2315 } 2316 } 2317 2318 /* Set Root Table Pointer */ 2319 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 2320 { 2321 vtd_root_table_setup(s); 2322 /* Ok - report back to driver */ 2323 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 2324 vtd_reset_caches(s); 2325 vtd_address_space_refresh_all(s); 2326 } 2327 2328 /* Set Interrupt Remap Table Pointer */ 2329 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 2330 { 2331 vtd_interrupt_remap_table_setup(s); 2332 /* Ok - report back to driver */ 2333 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 2334 } 2335 2336 /* Handle Translation Enable/Disable */ 2337 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 2338 { 2339 if (s->dmar_enabled == en) { 2340 return; 2341 } 2342 2343 trace_vtd_dmar_enable(en); 2344 2345 if (en) { 2346 s->dmar_enabled = true; 2347 /* Ok - report back to driver */ 2348 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 2349 } else { 2350 s->dmar_enabled = false; 2351 2352 /* Clear the index of Fault Recording Register */ 2353 s->next_frcd_reg = 0; 2354 /* Ok - report back to driver */ 2355 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 2356 } 2357 2358 vtd_reset_caches(s); 2359 vtd_address_space_refresh_all(s); 2360 } 2361 2362 /* Handle Interrupt Remap Enable/Disable */ 2363 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 2364 { 2365 trace_vtd_ir_enable(en); 2366 2367 if (en) { 2368 s->intr_enabled = true; 2369 /* Ok - report back to driver */ 2370 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 2371 } else { 2372 s->intr_enabled = false; 2373 /* Ok - report back to driver */ 2374 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 2375 } 2376 } 2377 2378 /* Handle write to Global Command Register */ 2379 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 2380 { 2381 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2382 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 2383 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 2384 uint32_t changed = status ^ val; 2385 2386 trace_vtd_reg_write_gcmd(status, val); 2387 if ((changed & VTD_GCMD_TE) && s->dma_translation) { 2388 /* Translation enable/disable */ 2389 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 2390 } 2391 if (val & VTD_GCMD_SRTP) { 2392 /* Set/update the root-table pointer */ 2393 vtd_handle_gcmd_srtp(s); 2394 } 2395 if (changed & VTD_GCMD_QIE) { 2396 /* Queued Invalidation Enable */ 2397 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 2398 } 2399 if (val & VTD_GCMD_SIRTP) { 2400 /* Set/update the interrupt remapping root-table pointer */ 2401 vtd_handle_gcmd_sirtp(s); 2402 } 2403 if ((changed & VTD_GCMD_IRE) && 2404 x86_iommu_ir_supported(x86_iommu)) { 2405 /* Interrupt remap enable/disable */ 2406 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 2407 } 2408 } 2409 2410 /* Handle write to Context Command Register */ 2411 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 2412 { 2413 uint64_t ret; 2414 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 2415 2416 /* Context-cache invalidation request */ 2417 if (val & VTD_CCMD_ICC) { 2418 if (s->qi_enabled) { 2419 error_report_once("Queued Invalidation enabled, " 2420 "should not use register-based invalidation"); 2421 return; 2422 } 2423 ret = vtd_context_cache_invalidate(s, val); 2424 /* Invalidation completed. Change something to show */ 2425 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 2426 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 2427 ret); 2428 } 2429 } 2430 2431 /* Handle write to IOTLB Invalidation Register */ 2432 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 2433 { 2434 uint64_t ret; 2435 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 2436 2437 /* IOTLB invalidation request */ 2438 if (val & VTD_TLB_IVT) { 2439 if (s->qi_enabled) { 2440 error_report_once("Queued Invalidation enabled, " 2441 "should not use register-based invalidation"); 2442 return; 2443 } 2444 ret = vtd_iotlb_flush(s, val); 2445 /* Invalidation completed. Change something to show */ 2446 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 2447 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 2448 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 2449 } 2450 } 2451 2452 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 2453 static bool vtd_get_inv_desc(IntelIOMMUState *s, 2454 VTDInvDesc *inv_desc) 2455 { 2456 dma_addr_t base_addr = s->iq; 2457 uint32_t offset = s->iq_head; 2458 uint32_t dw = s->iq_dw ? 32 : 16; 2459 dma_addr_t addr = base_addr + offset * dw; 2460 2461 if (dma_memory_read(&address_space_memory, addr, 2462 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) { 2463 error_report_once("Read INV DESC failed."); 2464 return false; 2465 } 2466 inv_desc->lo = le64_to_cpu(inv_desc->lo); 2467 inv_desc->hi = le64_to_cpu(inv_desc->hi); 2468 if (dw == 32) { 2469 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); 2470 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); 2471 } 2472 return true; 2473 } 2474 2475 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2476 { 2477 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 2478 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 2479 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2480 " (reserved nonzero)", __func__, inv_desc->hi, 2481 inv_desc->lo); 2482 return false; 2483 } 2484 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 2485 /* Status Write */ 2486 uint32_t status_data = (uint32_t)(inv_desc->lo >> 2487 VTD_INV_DESC_WAIT_DATA_SHIFT); 2488 2489 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 2490 2491 /* FIXME: need to be masked with HAW? */ 2492 dma_addr_t status_addr = inv_desc->hi; 2493 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 2494 status_data = cpu_to_le32(status_data); 2495 if (dma_memory_write(&address_space_memory, status_addr, 2496 &status_data, sizeof(status_data), 2497 MEMTXATTRS_UNSPECIFIED)) { 2498 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 2499 return false; 2500 } 2501 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 2502 /* Interrupt flag */ 2503 vtd_generate_completion_event(s); 2504 } else { 2505 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2506 " (unknown type)", __func__, inv_desc->hi, 2507 inv_desc->lo); 2508 return false; 2509 } 2510 return true; 2511 } 2512 2513 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 2514 VTDInvDesc *inv_desc) 2515 { 2516 uint16_t sid, fmask; 2517 2518 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 2519 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2520 " (reserved nonzero)", __func__, inv_desc->hi, 2521 inv_desc->lo); 2522 return false; 2523 } 2524 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 2525 case VTD_INV_DESC_CC_DOMAIN: 2526 trace_vtd_inv_desc_cc_domain( 2527 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 2528 /* Fall through */ 2529 case VTD_INV_DESC_CC_GLOBAL: 2530 vtd_context_global_invalidate(s); 2531 break; 2532 2533 case VTD_INV_DESC_CC_DEVICE: 2534 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 2535 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 2536 vtd_context_device_invalidate(s, sid, fmask); 2537 break; 2538 2539 default: 2540 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2541 " (invalid type)", __func__, inv_desc->hi, 2542 inv_desc->lo); 2543 return false; 2544 } 2545 return true; 2546 } 2547 2548 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2549 { 2550 uint16_t domain_id; 2551 uint8_t am; 2552 hwaddr addr; 2553 2554 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 2555 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 2556 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2557 ", lo=0x%"PRIx64" (reserved bits unzero)", 2558 __func__, inv_desc->hi, inv_desc->lo); 2559 return false; 2560 } 2561 2562 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 2563 case VTD_INV_DESC_IOTLB_GLOBAL: 2564 vtd_iotlb_global_invalidate(s); 2565 break; 2566 2567 case VTD_INV_DESC_IOTLB_DOMAIN: 2568 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2569 vtd_iotlb_domain_invalidate(s, domain_id); 2570 break; 2571 2572 case VTD_INV_DESC_IOTLB_PAGE: 2573 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2574 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 2575 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 2576 if (am > VTD_MAMV) { 2577 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2578 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)", 2579 __func__, inv_desc->hi, inv_desc->lo, 2580 am, (unsigned)VTD_MAMV); 2581 return false; 2582 } 2583 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2584 break; 2585 2586 default: 2587 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2588 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", 2589 __func__, inv_desc->hi, inv_desc->lo, 2590 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2591 return false; 2592 } 2593 return true; 2594 } 2595 2596 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 2597 VTDInvDesc *inv_desc) 2598 { 2599 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 2600 inv_desc->iec.index, 2601 inv_desc->iec.index_mask); 2602 2603 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 2604 inv_desc->iec.index, 2605 inv_desc->iec.index_mask); 2606 return true; 2607 } 2608 2609 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 2610 VTDInvDesc *inv_desc) 2611 { 2612 VTDAddressSpace *vtd_dev_as; 2613 IOMMUTLBEvent event; 2614 hwaddr addr; 2615 uint64_t sz; 2616 uint16_t sid; 2617 bool size; 2618 2619 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 2620 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 2621 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 2622 2623 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 2624 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 2625 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 2626 ", lo=%"PRIx64" (reserved nonzero)", __func__, 2627 inv_desc->hi, inv_desc->lo); 2628 return false; 2629 } 2630 2631 /* 2632 * Using sid is OK since the guest should have finished the 2633 * initialization of both the bus and device. 2634 */ 2635 vtd_dev_as = vtd_get_as_by_sid(s, sid); 2636 if (!vtd_dev_as) { 2637 goto done; 2638 } 2639 2640 /* According to ATS spec table 2.4: 2641 * S = 0, bits 15:12 = xxxx range size: 4K 2642 * S = 1, bits 15:12 = xxx0 range size: 8K 2643 * S = 1, bits 15:12 = xx01 range size: 16K 2644 * S = 1, bits 15:12 = x011 range size: 32K 2645 * S = 1, bits 15:12 = 0111 range size: 64K 2646 * ... 2647 */ 2648 if (size) { 2649 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 2650 addr &= ~(sz - 1); 2651 } else { 2652 sz = VTD_PAGE_SIZE; 2653 } 2654 2655 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP; 2656 event.entry.target_as = &vtd_dev_as->as; 2657 event.entry.addr_mask = sz - 1; 2658 event.entry.iova = addr; 2659 event.entry.perm = IOMMU_NONE; 2660 event.entry.translated_addr = 0; 2661 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event); 2662 2663 done: 2664 return true; 2665 } 2666 2667 static bool vtd_process_inv_desc(IntelIOMMUState *s) 2668 { 2669 VTDInvDesc inv_desc; 2670 uint8_t desc_type; 2671 2672 trace_vtd_inv_qi_head(s->iq_head); 2673 if (!vtd_get_inv_desc(s, &inv_desc)) { 2674 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2675 return false; 2676 } 2677 2678 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 2679 /* FIXME: should update at first or at last? */ 2680 s->iq_last_desc_type = desc_type; 2681 2682 switch (desc_type) { 2683 case VTD_INV_DESC_CC: 2684 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 2685 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 2686 return false; 2687 } 2688 break; 2689 2690 case VTD_INV_DESC_IOTLB: 2691 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 2692 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 2693 return false; 2694 } 2695 break; 2696 2697 /* 2698 * TODO: the entity of below two cases will be implemented in future series. 2699 * To make guest (which integrates scalable mode support patch set in 2700 * iommu driver) work, just return true is enough so far. 2701 */ 2702 case VTD_INV_DESC_PC: 2703 break; 2704 2705 case VTD_INV_DESC_PIOTLB: 2706 break; 2707 2708 case VTD_INV_DESC_WAIT: 2709 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 2710 if (!vtd_process_wait_desc(s, &inv_desc)) { 2711 return false; 2712 } 2713 break; 2714 2715 case VTD_INV_DESC_IEC: 2716 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 2717 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 2718 return false; 2719 } 2720 break; 2721 2722 case VTD_INV_DESC_DEVICE: 2723 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 2724 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 2725 return false; 2726 } 2727 break; 2728 2729 default: 2730 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 2731 " (unknown type)", __func__, inv_desc.hi, 2732 inv_desc.lo); 2733 return false; 2734 } 2735 s->iq_head++; 2736 if (s->iq_head == s->iq_size) { 2737 s->iq_head = 0; 2738 } 2739 return true; 2740 } 2741 2742 /* Try to fetch and process more Invalidation Descriptors */ 2743 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 2744 { 2745 int qi_shift; 2746 2747 /* Refer to 10.4.23 of VT-d spec 3.0 */ 2748 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4; 2749 2750 trace_vtd_inv_qi_fetch(); 2751 2752 if (s->iq_tail >= s->iq_size) { 2753 /* Detects an invalid Tail pointer */ 2754 error_report_once("%s: detected invalid QI tail " 2755 "(tail=0x%x, size=0x%x)", 2756 __func__, s->iq_tail, s->iq_size); 2757 vtd_handle_inv_queue_error(s); 2758 return; 2759 } 2760 while (s->iq_head != s->iq_tail) { 2761 if (!vtd_process_inv_desc(s)) { 2762 /* Invalidation Queue Errors */ 2763 vtd_handle_inv_queue_error(s); 2764 break; 2765 } 2766 /* Must update the IQH_REG in time */ 2767 vtd_set_quad_raw(s, DMAR_IQH_REG, 2768 (((uint64_t)(s->iq_head)) << qi_shift) & 2769 VTD_IQH_QH_MASK); 2770 } 2771 } 2772 2773 /* Handle write to Invalidation Queue Tail Register */ 2774 static void vtd_handle_iqt_write(IntelIOMMUState *s) 2775 { 2776 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 2777 2778 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { 2779 error_report_once("%s: RSV bit is set: val=0x%"PRIx64, 2780 __func__, val); 2781 return; 2782 } 2783 s->iq_tail = VTD_IQT_QT(s->iq_dw, val); 2784 trace_vtd_inv_qi_tail(s->iq_tail); 2785 2786 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2787 /* Process Invalidation Queue here */ 2788 vtd_fetch_inv_desc(s); 2789 } 2790 } 2791 2792 static void vtd_handle_fsts_write(IntelIOMMUState *s) 2793 { 2794 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2795 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2796 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 2797 2798 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 2799 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2800 trace_vtd_fsts_clear_ip(); 2801 } 2802 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 2803 * Descriptors if there are any when Queued Invalidation is enabled? 2804 */ 2805 } 2806 2807 static void vtd_handle_fectl_write(IntelIOMMUState *s) 2808 { 2809 uint32_t fectl_reg; 2810 /* FIXME: when software clears the IM field, check the IP field. But do we 2811 * need to compare the old value and the new value to conclude that 2812 * software clears the IM field? Or just check if the IM field is zero? 2813 */ 2814 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2815 2816 trace_vtd_reg_write_fectl(fectl_reg); 2817 2818 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 2819 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 2820 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2821 } 2822 } 2823 2824 static void vtd_handle_ics_write(IntelIOMMUState *s) 2825 { 2826 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 2827 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2828 2829 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 2830 trace_vtd_reg_ics_clear_ip(); 2831 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2832 } 2833 } 2834 2835 static void vtd_handle_iectl_write(IntelIOMMUState *s) 2836 { 2837 uint32_t iectl_reg; 2838 /* FIXME: when software clears the IM field, check the IP field. But do we 2839 * need to compare the old value and the new value to conclude that 2840 * software clears the IM field? Or just check if the IM field is zero? 2841 */ 2842 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2843 2844 trace_vtd_reg_write_iectl(iectl_reg); 2845 2846 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 2847 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 2848 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2849 } 2850 } 2851 2852 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 2853 { 2854 IntelIOMMUState *s = opaque; 2855 uint64_t val; 2856 2857 trace_vtd_reg_read(addr, size); 2858 2859 if (addr + size > DMAR_REG_SIZE) { 2860 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2861 " size=0x%x", __func__, addr, size); 2862 return (uint64_t)-1; 2863 } 2864 2865 switch (addr) { 2866 /* Root Table Address Register, 64-bit */ 2867 case DMAR_RTADDR_REG: 2868 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 2869 if (size == 4) { 2870 val = val & ((1ULL << 32) - 1); 2871 } 2872 break; 2873 2874 case DMAR_RTADDR_REG_HI: 2875 assert(size == 4); 2876 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32; 2877 break; 2878 2879 /* Invalidation Queue Address Register, 64-bit */ 2880 case DMAR_IQA_REG: 2881 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2882 if (size == 4) { 2883 val = val & ((1ULL << 32) - 1); 2884 } 2885 break; 2886 2887 case DMAR_IQA_REG_HI: 2888 assert(size == 4); 2889 val = s->iq >> 32; 2890 break; 2891 2892 default: 2893 if (size == 4) { 2894 val = vtd_get_long(s, addr); 2895 } else { 2896 val = vtd_get_quad(s, addr); 2897 } 2898 } 2899 2900 return val; 2901 } 2902 2903 static void vtd_mem_write(void *opaque, hwaddr addr, 2904 uint64_t val, unsigned size) 2905 { 2906 IntelIOMMUState *s = opaque; 2907 2908 trace_vtd_reg_write(addr, size, val); 2909 2910 if (addr + size > DMAR_REG_SIZE) { 2911 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2912 " size=0x%x", __func__, addr, size); 2913 return; 2914 } 2915 2916 switch (addr) { 2917 /* Global Command Register, 32-bit */ 2918 case DMAR_GCMD_REG: 2919 vtd_set_long(s, addr, val); 2920 vtd_handle_gcmd_write(s); 2921 break; 2922 2923 /* Context Command Register, 64-bit */ 2924 case DMAR_CCMD_REG: 2925 if (size == 4) { 2926 vtd_set_long(s, addr, val); 2927 } else { 2928 vtd_set_quad(s, addr, val); 2929 vtd_handle_ccmd_write(s); 2930 } 2931 break; 2932 2933 case DMAR_CCMD_REG_HI: 2934 assert(size == 4); 2935 vtd_set_long(s, addr, val); 2936 vtd_handle_ccmd_write(s); 2937 break; 2938 2939 /* IOTLB Invalidation Register, 64-bit */ 2940 case DMAR_IOTLB_REG: 2941 if (size == 4) { 2942 vtd_set_long(s, addr, val); 2943 } else { 2944 vtd_set_quad(s, addr, val); 2945 vtd_handle_iotlb_write(s); 2946 } 2947 break; 2948 2949 case DMAR_IOTLB_REG_HI: 2950 assert(size == 4); 2951 vtd_set_long(s, addr, val); 2952 vtd_handle_iotlb_write(s); 2953 break; 2954 2955 /* Invalidate Address Register, 64-bit */ 2956 case DMAR_IVA_REG: 2957 if (size == 4) { 2958 vtd_set_long(s, addr, val); 2959 } else { 2960 vtd_set_quad(s, addr, val); 2961 } 2962 break; 2963 2964 case DMAR_IVA_REG_HI: 2965 assert(size == 4); 2966 vtd_set_long(s, addr, val); 2967 break; 2968 2969 /* Fault Status Register, 32-bit */ 2970 case DMAR_FSTS_REG: 2971 assert(size == 4); 2972 vtd_set_long(s, addr, val); 2973 vtd_handle_fsts_write(s); 2974 break; 2975 2976 /* Fault Event Control Register, 32-bit */ 2977 case DMAR_FECTL_REG: 2978 assert(size == 4); 2979 vtd_set_long(s, addr, val); 2980 vtd_handle_fectl_write(s); 2981 break; 2982 2983 /* Fault Event Data Register, 32-bit */ 2984 case DMAR_FEDATA_REG: 2985 assert(size == 4); 2986 vtd_set_long(s, addr, val); 2987 break; 2988 2989 /* Fault Event Address Register, 32-bit */ 2990 case DMAR_FEADDR_REG: 2991 if (size == 4) { 2992 vtd_set_long(s, addr, val); 2993 } else { 2994 /* 2995 * While the register is 32-bit only, some guests (Xen...) write to 2996 * it with 64-bit. 2997 */ 2998 vtd_set_quad(s, addr, val); 2999 } 3000 break; 3001 3002 /* Fault Event Upper Address Register, 32-bit */ 3003 case DMAR_FEUADDR_REG: 3004 assert(size == 4); 3005 vtd_set_long(s, addr, val); 3006 break; 3007 3008 /* Protected Memory Enable Register, 32-bit */ 3009 case DMAR_PMEN_REG: 3010 assert(size == 4); 3011 vtd_set_long(s, addr, val); 3012 break; 3013 3014 /* Root Table Address Register, 64-bit */ 3015 case DMAR_RTADDR_REG: 3016 if (size == 4) { 3017 vtd_set_long(s, addr, val); 3018 } else { 3019 vtd_set_quad(s, addr, val); 3020 } 3021 break; 3022 3023 case DMAR_RTADDR_REG_HI: 3024 assert(size == 4); 3025 vtd_set_long(s, addr, val); 3026 break; 3027 3028 /* Invalidation Queue Tail Register, 64-bit */ 3029 case DMAR_IQT_REG: 3030 if (size == 4) { 3031 vtd_set_long(s, addr, val); 3032 } else { 3033 vtd_set_quad(s, addr, val); 3034 } 3035 vtd_handle_iqt_write(s); 3036 break; 3037 3038 case DMAR_IQT_REG_HI: 3039 assert(size == 4); 3040 vtd_set_long(s, addr, val); 3041 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 3042 break; 3043 3044 /* Invalidation Queue Address Register, 64-bit */ 3045 case DMAR_IQA_REG: 3046 if (size == 4) { 3047 vtd_set_long(s, addr, val); 3048 } else { 3049 vtd_set_quad(s, addr, val); 3050 } 3051 vtd_update_iq_dw(s); 3052 break; 3053 3054 case DMAR_IQA_REG_HI: 3055 assert(size == 4); 3056 vtd_set_long(s, addr, val); 3057 break; 3058 3059 /* Invalidation Completion Status Register, 32-bit */ 3060 case DMAR_ICS_REG: 3061 assert(size == 4); 3062 vtd_set_long(s, addr, val); 3063 vtd_handle_ics_write(s); 3064 break; 3065 3066 /* Invalidation Event Control Register, 32-bit */ 3067 case DMAR_IECTL_REG: 3068 assert(size == 4); 3069 vtd_set_long(s, addr, val); 3070 vtd_handle_iectl_write(s); 3071 break; 3072 3073 /* Invalidation Event Data Register, 32-bit */ 3074 case DMAR_IEDATA_REG: 3075 assert(size == 4); 3076 vtd_set_long(s, addr, val); 3077 break; 3078 3079 /* Invalidation Event Address Register, 32-bit */ 3080 case DMAR_IEADDR_REG: 3081 assert(size == 4); 3082 vtd_set_long(s, addr, val); 3083 break; 3084 3085 /* Invalidation Event Upper Address Register, 32-bit */ 3086 case DMAR_IEUADDR_REG: 3087 assert(size == 4); 3088 vtd_set_long(s, addr, val); 3089 break; 3090 3091 /* Fault Recording Registers, 128-bit */ 3092 case DMAR_FRCD_REG_0_0: 3093 if (size == 4) { 3094 vtd_set_long(s, addr, val); 3095 } else { 3096 vtd_set_quad(s, addr, val); 3097 } 3098 break; 3099 3100 case DMAR_FRCD_REG_0_1: 3101 assert(size == 4); 3102 vtd_set_long(s, addr, val); 3103 break; 3104 3105 case DMAR_FRCD_REG_0_2: 3106 if (size == 4) { 3107 vtd_set_long(s, addr, val); 3108 } else { 3109 vtd_set_quad(s, addr, val); 3110 /* May clear bit 127 (Fault), update PPF */ 3111 vtd_update_fsts_ppf(s); 3112 } 3113 break; 3114 3115 case DMAR_FRCD_REG_0_3: 3116 assert(size == 4); 3117 vtd_set_long(s, addr, val); 3118 /* May clear bit 127 (Fault), update PPF */ 3119 vtd_update_fsts_ppf(s); 3120 break; 3121 3122 case DMAR_IRTA_REG: 3123 if (size == 4) { 3124 vtd_set_long(s, addr, val); 3125 } else { 3126 vtd_set_quad(s, addr, val); 3127 } 3128 break; 3129 3130 case DMAR_IRTA_REG_HI: 3131 assert(size == 4); 3132 vtd_set_long(s, addr, val); 3133 break; 3134 3135 default: 3136 if (size == 4) { 3137 vtd_set_long(s, addr, val); 3138 } else { 3139 vtd_set_quad(s, addr, val); 3140 } 3141 } 3142 } 3143 3144 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 3145 IOMMUAccessFlags flag, int iommu_idx) 3146 { 3147 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3148 IntelIOMMUState *s = vtd_as->iommu_state; 3149 IOMMUTLBEntry iotlb = { 3150 /* We'll fill in the rest later. */ 3151 .target_as = &address_space_memory, 3152 }; 3153 bool success; 3154 3155 if (likely(s->dmar_enabled)) { 3156 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 3157 addr, flag & IOMMU_WO, &iotlb); 3158 } else { 3159 /* DMAR disabled, passthrough, use 4k-page*/ 3160 iotlb.iova = addr & VTD_PAGE_MASK_4K; 3161 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 3162 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 3163 iotlb.perm = IOMMU_RW; 3164 success = true; 3165 } 3166 3167 if (likely(success)) { 3168 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 3169 VTD_PCI_SLOT(vtd_as->devfn), 3170 VTD_PCI_FUNC(vtd_as->devfn), 3171 iotlb.iova, iotlb.translated_addr, 3172 iotlb.addr_mask); 3173 } else { 3174 error_report_once("%s: detected translation failure " 3175 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 3176 __func__, pci_bus_num(vtd_as->bus), 3177 VTD_PCI_SLOT(vtd_as->devfn), 3178 VTD_PCI_FUNC(vtd_as->devfn), 3179 addr); 3180 } 3181 3182 return iotlb; 3183 } 3184 3185 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 3186 IOMMUNotifierFlag old, 3187 IOMMUNotifierFlag new, 3188 Error **errp) 3189 { 3190 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3191 IntelIOMMUState *s = vtd_as->iommu_state; 3192 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3193 3194 /* TODO: add support for VFIO and vhost users */ 3195 if (s->snoop_control) { 3196 error_setg_errno(errp, ENOTSUP, 3197 "Snoop Control with vhost or VFIO is not supported"); 3198 return -ENOTSUP; 3199 } 3200 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) { 3201 error_setg_errno(errp, ENOTSUP, 3202 "device %02x.%02x.%x requires caching mode", 3203 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3204 PCI_FUNC(vtd_as->devfn)); 3205 return -ENOTSUP; 3206 } 3207 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) { 3208 error_setg_errno(errp, ENOTSUP, 3209 "device %02x.%02x.%x requires device IOTLB mode", 3210 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3211 PCI_FUNC(vtd_as->devfn)); 3212 return -ENOTSUP; 3213 } 3214 3215 /* Update per-address-space notifier flags */ 3216 vtd_as->notifier_flags = new; 3217 3218 if (old == IOMMU_NOTIFIER_NONE) { 3219 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 3220 } else if (new == IOMMU_NOTIFIER_NONE) { 3221 QLIST_REMOVE(vtd_as, next); 3222 } 3223 return 0; 3224 } 3225 3226 static int vtd_post_load(void *opaque, int version_id) 3227 { 3228 IntelIOMMUState *iommu = opaque; 3229 3230 /* 3231 * We don't need to migrate the root_scalable because we can 3232 * simply do the calculation after the loading is complete. We 3233 * can actually do similar things with root, dmar_enabled, etc. 3234 * however since we've had them already so we'd better keep them 3235 * for compatibility of migration. 3236 */ 3237 vtd_update_scalable_state(iommu); 3238 3239 vtd_update_iq_dw(iommu); 3240 3241 /* 3242 * Memory regions are dynamically turned on/off depending on 3243 * context entry configurations from the guest. After migration, 3244 * we need to make sure the memory regions are still correct. 3245 */ 3246 vtd_switch_address_space_all(iommu); 3247 3248 return 0; 3249 } 3250 3251 static const VMStateDescription vtd_vmstate = { 3252 .name = "iommu-intel", 3253 .version_id = 1, 3254 .minimum_version_id = 1, 3255 .priority = MIG_PRI_IOMMU, 3256 .post_load = vtd_post_load, 3257 .fields = (VMStateField[]) { 3258 VMSTATE_UINT64(root, IntelIOMMUState), 3259 VMSTATE_UINT64(intr_root, IntelIOMMUState), 3260 VMSTATE_UINT64(iq, IntelIOMMUState), 3261 VMSTATE_UINT32(intr_size, IntelIOMMUState), 3262 VMSTATE_UINT16(iq_head, IntelIOMMUState), 3263 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 3264 VMSTATE_UINT16(iq_size, IntelIOMMUState), 3265 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 3266 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 3267 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 3268 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */ 3269 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 3270 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 3271 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 3272 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 3273 VMSTATE_END_OF_LIST() 3274 } 3275 }; 3276 3277 static const MemoryRegionOps vtd_mem_ops = { 3278 .read = vtd_mem_read, 3279 .write = vtd_mem_write, 3280 .endianness = DEVICE_LITTLE_ENDIAN, 3281 .impl = { 3282 .min_access_size = 4, 3283 .max_access_size = 8, 3284 }, 3285 .valid = { 3286 .min_access_size = 4, 3287 .max_access_size = 8, 3288 }, 3289 }; 3290 3291 static Property vtd_properties[] = { 3292 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 3293 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 3294 ON_OFF_AUTO_AUTO), 3295 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 3296 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 3297 VTD_HOST_ADDRESS_WIDTH), 3298 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 3299 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), 3300 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false), 3301 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false), 3302 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 3303 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true), 3304 DEFINE_PROP_END_OF_LIST(), 3305 }; 3306 3307 /* Read IRTE entry with specific index */ 3308 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 3309 VTD_IR_TableEntry *entry, uint16_t sid) 3310 { 3311 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 3312 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 3313 dma_addr_t addr = 0x00; 3314 uint16_t mask, source_id; 3315 uint8_t bus, bus_max, bus_min; 3316 3317 if (index >= iommu->intr_size) { 3318 error_report_once("%s: index too large: ind=0x%x", 3319 __func__, index); 3320 return -VTD_FR_IR_INDEX_OVER; 3321 } 3322 3323 addr = iommu->intr_root + index * sizeof(*entry); 3324 if (dma_memory_read(&address_space_memory, addr, 3325 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) { 3326 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 3327 __func__, index, addr); 3328 return -VTD_FR_IR_ROOT_INVAL; 3329 } 3330 3331 entry->data[0] = le64_to_cpu(entry->data[0]); 3332 entry->data[1] = le64_to_cpu(entry->data[1]); 3333 3334 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]); 3335 3336 if (!entry->irte.present) { 3337 error_report_once("%s: detected non-present IRTE " 3338 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3339 __func__, index, entry->data[1], entry->data[0]); 3340 return -VTD_FR_IR_ENTRY_P; 3341 } 3342 3343 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 3344 entry->irte.__reserved_2) { 3345 error_report_once("%s: detected non-zero reserved IRTE " 3346 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3347 __func__, index, entry->data[1], entry->data[0]); 3348 return -VTD_FR_IR_IRTE_RSVD; 3349 } 3350 3351 if (sid != X86_IOMMU_SID_INVALID) { 3352 /* Validate IRTE SID */ 3353 source_id = entry->irte.source_id; 3354 switch (entry->irte.sid_vtype) { 3355 case VTD_SVT_NONE: 3356 break; 3357 3358 case VTD_SVT_ALL: 3359 mask = vtd_svt_mask[entry->irte.sid_q]; 3360 if ((source_id & mask) != (sid & mask)) { 3361 error_report_once("%s: invalid IRTE SID " 3362 "(index=%u, sid=%u, source_id=%u)", 3363 __func__, index, sid, source_id); 3364 return -VTD_FR_IR_SID_ERR; 3365 } 3366 break; 3367 3368 case VTD_SVT_BUS: 3369 bus_max = source_id >> 8; 3370 bus_min = source_id & 0xff; 3371 bus = sid >> 8; 3372 if (bus > bus_max || bus < bus_min) { 3373 error_report_once("%s: invalid SVT_BUS " 3374 "(index=%u, bus=%u, min=%u, max=%u)", 3375 __func__, index, bus, bus_min, bus_max); 3376 return -VTD_FR_IR_SID_ERR; 3377 } 3378 break; 3379 3380 default: 3381 error_report_once("%s: detected invalid IRTE SVT " 3382 "(index=%u, type=%d)", __func__, 3383 index, entry->irte.sid_vtype); 3384 /* Take this as verification failure. */ 3385 return -VTD_FR_IR_SID_ERR; 3386 } 3387 } 3388 3389 return 0; 3390 } 3391 3392 /* Fetch IRQ information of specific IR index */ 3393 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 3394 X86IOMMUIrq *irq, uint16_t sid) 3395 { 3396 VTD_IR_TableEntry irte = {}; 3397 int ret = 0; 3398 3399 ret = vtd_irte_get(iommu, index, &irte, sid); 3400 if (ret) { 3401 return ret; 3402 } 3403 3404 irq->trigger_mode = irte.irte.trigger_mode; 3405 irq->vector = irte.irte.vector; 3406 irq->delivery_mode = irte.irte.delivery_mode; 3407 irq->dest = irte.irte.dest_id; 3408 if (!iommu->intr_eime) { 3409 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 3410 #define VTD_IR_APIC_DEST_SHIFT (8) 3411 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 3412 VTD_IR_APIC_DEST_SHIFT; 3413 } 3414 irq->dest_mode = irte.irte.dest_mode; 3415 irq->redir_hint = irte.irte.redir_hint; 3416 3417 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 3418 irq->delivery_mode, irq->dest, irq->dest_mode); 3419 3420 return 0; 3421 } 3422 3423 /* Interrupt remapping for MSI/MSI-X entry */ 3424 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 3425 MSIMessage *origin, 3426 MSIMessage *translated, 3427 uint16_t sid) 3428 { 3429 int ret = 0; 3430 VTD_IR_MSIAddress addr; 3431 uint16_t index; 3432 X86IOMMUIrq irq = {}; 3433 3434 assert(origin && translated); 3435 3436 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 3437 3438 if (!iommu || !iommu->intr_enabled) { 3439 memcpy(translated, origin, sizeof(*origin)); 3440 goto out; 3441 } 3442 3443 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 3444 error_report_once("%s: MSI address high 32 bits non-zero detected: " 3445 "address=0x%" PRIx64, __func__, origin->address); 3446 return -VTD_FR_IR_REQ_RSVD; 3447 } 3448 3449 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 3450 if (addr.addr.__head != 0xfee) { 3451 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 3452 __func__, addr.data); 3453 return -VTD_FR_IR_REQ_RSVD; 3454 } 3455 3456 /* This is compatible mode. */ 3457 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 3458 memcpy(translated, origin, sizeof(*origin)); 3459 goto out; 3460 } 3461 3462 index = addr.addr.index_h << 15 | addr.addr.index_l; 3463 3464 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 3465 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 3466 3467 if (addr.addr.sub_valid) { 3468 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 3469 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 3470 } 3471 3472 ret = vtd_remap_irq_get(iommu, index, &irq, sid); 3473 if (ret) { 3474 return ret; 3475 } 3476 3477 if (addr.addr.sub_valid) { 3478 trace_vtd_ir_remap_type("MSI"); 3479 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 3480 error_report_once("%s: invalid IR MSI " 3481 "(sid=%u, address=0x%" PRIx64 3482 ", data=0x%" PRIx32 ")", 3483 __func__, sid, origin->address, origin->data); 3484 return -VTD_FR_IR_REQ_RSVD; 3485 } 3486 } else { 3487 uint8_t vector = origin->data & 0xff; 3488 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 3489 3490 trace_vtd_ir_remap_type("IOAPIC"); 3491 /* IOAPIC entry vector should be aligned with IRTE vector 3492 * (see vt-d spec 5.1.5.1). */ 3493 if (vector != irq.vector) { 3494 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 3495 } 3496 3497 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 3498 * (see vt-d spec 5.1.5.1). */ 3499 if (trigger_mode != irq.trigger_mode) { 3500 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 3501 irq.trigger_mode); 3502 } 3503 } 3504 3505 /* 3506 * We'd better keep the last two bits, assuming that guest OS 3507 * might modify it. Keep it does not hurt after all. 3508 */ 3509 irq.msi_addr_last_bits = addr.addr.__not_care; 3510 3511 /* Translate X86IOMMUIrq to MSI message */ 3512 x86_iommu_irq_to_msi_message(&irq, translated); 3513 3514 out: 3515 trace_vtd_ir_remap_msi(origin->address, origin->data, 3516 translated->address, translated->data); 3517 return 0; 3518 } 3519 3520 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 3521 MSIMessage *dst, uint16_t sid) 3522 { 3523 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 3524 src, dst, sid); 3525 } 3526 3527 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 3528 uint64_t *data, unsigned size, 3529 MemTxAttrs attrs) 3530 { 3531 return MEMTX_OK; 3532 } 3533 3534 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 3535 uint64_t value, unsigned size, 3536 MemTxAttrs attrs) 3537 { 3538 int ret = 0; 3539 MSIMessage from = {}, to = {}; 3540 uint16_t sid = X86_IOMMU_SID_INVALID; 3541 3542 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 3543 from.data = (uint32_t) value; 3544 3545 if (!attrs.unspecified) { 3546 /* We have explicit Source ID */ 3547 sid = attrs.requester_id; 3548 } 3549 3550 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); 3551 if (ret) { 3552 /* TODO: report error */ 3553 /* Drop this interrupt */ 3554 return MEMTX_ERROR; 3555 } 3556 3557 apic_get_class(NULL)->send_msi(&to); 3558 3559 return MEMTX_OK; 3560 } 3561 3562 static const MemoryRegionOps vtd_mem_ir_ops = { 3563 .read_with_attrs = vtd_mem_ir_read, 3564 .write_with_attrs = vtd_mem_ir_write, 3565 .endianness = DEVICE_LITTLE_ENDIAN, 3566 .impl = { 3567 .min_access_size = 4, 3568 .max_access_size = 4, 3569 }, 3570 .valid = { 3571 .min_access_size = 4, 3572 .max_access_size = 4, 3573 }, 3574 }; 3575 3576 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as, 3577 hwaddr addr, bool is_write) 3578 { 3579 IntelIOMMUState *s = vtd_as->iommu_state; 3580 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3581 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn); 3582 bool is_fpd_set = false; 3583 VTDContextEntry ce; 3584 3585 assert(vtd_as->pasid != PCI_NO_PASID); 3586 3587 /* Try out best to fetch FPD, we can't do anything more */ 3588 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3589 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 3590 if (!is_fpd_set && s->root_scalable) { 3591 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid); 3592 } 3593 } 3594 3595 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR, 3596 is_fpd_set, sid, addr, is_write, 3597 true, vtd_as->pasid); 3598 } 3599 3600 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr, 3601 uint64_t *data, unsigned size, 3602 MemTxAttrs attrs) 3603 { 3604 vtd_report_ir_illegal_access(opaque, addr, false); 3605 3606 return MEMTX_ERROR; 3607 } 3608 3609 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr, 3610 uint64_t value, unsigned size, 3611 MemTxAttrs attrs) 3612 { 3613 vtd_report_ir_illegal_access(opaque, addr, true); 3614 3615 return MEMTX_ERROR; 3616 } 3617 3618 static const MemoryRegionOps vtd_mem_ir_fault_ops = { 3619 .read_with_attrs = vtd_mem_ir_fault_read, 3620 .write_with_attrs = vtd_mem_ir_fault_write, 3621 .endianness = DEVICE_LITTLE_ENDIAN, 3622 .impl = { 3623 .min_access_size = 1, 3624 .max_access_size = 8, 3625 }, 3626 .valid = { 3627 .min_access_size = 1, 3628 .max_access_size = 8, 3629 }, 3630 }; 3631 3632 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, 3633 int devfn, unsigned int pasid) 3634 { 3635 /* 3636 * We can't simply use sid here since the bus number might not be 3637 * initialized by the guest. 3638 */ 3639 struct vtd_as_key key = { 3640 .bus = bus, 3641 .devfn = devfn, 3642 .pasid = pasid, 3643 }; 3644 VTDAddressSpace *vtd_dev_as; 3645 char name[128]; 3646 3647 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); 3648 if (!vtd_dev_as) { 3649 struct vtd_as_key *new_key = g_malloc(sizeof(*new_key)); 3650 3651 new_key->bus = bus; 3652 new_key->devfn = devfn; 3653 new_key->pasid = pasid; 3654 3655 if (pasid == PCI_NO_PASID) { 3656 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), 3657 PCI_FUNC(devfn)); 3658 } else { 3659 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn), 3660 PCI_FUNC(devfn), pasid); 3661 } 3662 3663 vtd_dev_as = g_new0(VTDAddressSpace, 1); 3664 3665 vtd_dev_as->bus = bus; 3666 vtd_dev_as->devfn = (uint8_t)devfn; 3667 vtd_dev_as->pasid = pasid; 3668 vtd_dev_as->iommu_state = s; 3669 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 3670 vtd_dev_as->iova_tree = iova_tree_new(); 3671 3672 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); 3673 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); 3674 3675 /* 3676 * Build the DMAR-disabled container with aliases to the 3677 * shared MRs. Note that aliasing to a shared memory region 3678 * could help the memory API to detect same FlatViews so we 3679 * can have devices to share the same FlatView when DMAR is 3680 * disabled (either by not providing "intel_iommu=on" or with 3681 * "iommu=pt"). It will greatly reduce the total number of 3682 * FlatViews of the system hence VM runs faster. 3683 */ 3684 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), 3685 "vtd-nodmar", &s->mr_nodmar, 0, 3686 memory_region_size(&s->mr_nodmar)); 3687 3688 /* 3689 * Build the per-device DMAR-enabled container. 3690 * 3691 * TODO: currently we have per-device IOMMU memory region only 3692 * because we have per-device IOMMU notifiers for devices. If 3693 * one day we can abstract the IOMMU notifiers out of the 3694 * memory regions then we can also share the same memory 3695 * region here just like what we've done above with the nodmar 3696 * region. 3697 */ 3698 strcat(name, "-dmar"); 3699 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 3700 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 3701 name, UINT64_MAX); 3702 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", 3703 &s->mr_ir, 0, memory_region_size(&s->mr_ir)); 3704 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), 3705 VTD_INTERRUPT_ADDR_FIRST, 3706 &vtd_dev_as->iommu_ir, 1); 3707 3708 /* 3709 * This region is used for catching fault to access interrupt 3710 * range via passthrough + PASID. See also 3711 * vtd_switch_address_space(). We can't use alias since we 3712 * need to know the sid which is valid for MSI who uses 3713 * bus_master_as (see msi_send_message()). 3714 */ 3715 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s), 3716 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir", 3717 VTD_INTERRUPT_ADDR_SIZE); 3718 /* 3719 * Hook to root since when PT is enabled vtd_dev_as->iommu 3720 * will be disabled. 3721 */ 3722 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root), 3723 VTD_INTERRUPT_ADDR_FIRST, 3724 &vtd_dev_as->iommu_ir_fault, 2); 3725 3726 /* 3727 * Hook both the containers under the root container, we 3728 * switch between DMAR & noDMAR by enable/disable 3729 * corresponding sub-containers 3730 */ 3731 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3732 MEMORY_REGION(&vtd_dev_as->iommu), 3733 0); 3734 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3735 &vtd_dev_as->nodmar, 0); 3736 3737 vtd_switch_address_space(vtd_dev_as); 3738 3739 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as); 3740 } 3741 return vtd_dev_as; 3742 } 3743 3744 /* Unmap the whole range in the notifier's scope. */ 3745 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 3746 { 3747 hwaddr total, remain; 3748 hwaddr start = n->start; 3749 hwaddr end = n->end; 3750 IntelIOMMUState *s = as->iommu_state; 3751 DMAMap map; 3752 3753 /* 3754 * Note: all the codes in this function has a assumption that IOVA 3755 * bits are no more than VTD_MGAW bits (which is restricted by 3756 * VT-d spec), otherwise we need to consider overflow of 64 bits. 3757 */ 3758 3759 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) { 3760 /* 3761 * Don't need to unmap regions that is bigger than the whole 3762 * VT-d supported address space size 3763 */ 3764 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1; 3765 } 3766 3767 assert(start <= end); 3768 total = remain = end - start + 1; 3769 3770 while (remain >= VTD_PAGE_SIZE) { 3771 IOMMUTLBEvent event; 3772 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits); 3773 uint64_t size = mask + 1; 3774 3775 assert(size); 3776 3777 event.type = IOMMU_NOTIFIER_UNMAP; 3778 event.entry.iova = start; 3779 event.entry.addr_mask = mask; 3780 event.entry.target_as = &address_space_memory; 3781 event.entry.perm = IOMMU_NONE; 3782 /* This field is meaningless for unmap */ 3783 event.entry.translated_addr = 0; 3784 3785 memory_region_notify_iommu_one(n, &event); 3786 3787 start += size; 3788 remain -= size; 3789 } 3790 3791 assert(!remain); 3792 3793 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 3794 VTD_PCI_SLOT(as->devfn), 3795 VTD_PCI_FUNC(as->devfn), 3796 n->start, total); 3797 3798 map.iova = n->start; 3799 map.size = total - 1; /* Inclusive */ 3800 iova_tree_remove(as->iova_tree, map); 3801 } 3802 3803 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 3804 { 3805 VTDAddressSpace *vtd_as; 3806 IOMMUNotifier *n; 3807 3808 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 3809 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 3810 vtd_address_space_unmap(vtd_as, n); 3811 } 3812 } 3813 } 3814 3815 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 3816 { 3817 vtd_address_space_unmap_all(s); 3818 vtd_switch_address_space_all(s); 3819 } 3820 3821 static int vtd_replay_hook(IOMMUTLBEvent *event, void *private) 3822 { 3823 memory_region_notify_iommu_one(private, event); 3824 return 0; 3825 } 3826 3827 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 3828 { 3829 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 3830 IntelIOMMUState *s = vtd_as->iommu_state; 3831 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3832 VTDContextEntry ce; 3833 DMAMap map = { .iova = 0, .size = HWADDR_MAX }; 3834 3835 /* replay is protected by BQL, page walk will re-setup it safely */ 3836 iova_tree_remove(vtd_as->iova_tree, map); 3837 3838 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3839 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : 3840 "legacy mode", 3841 bus_n, PCI_SLOT(vtd_as->devfn), 3842 PCI_FUNC(vtd_as->devfn), 3843 vtd_get_domain_id(s, &ce, vtd_as->pasid), 3844 ce.hi, ce.lo); 3845 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) { 3846 /* This is required only for MAP typed notifiers */ 3847 vtd_page_walk_info info = { 3848 .hook_fn = vtd_replay_hook, 3849 .private = (void *)n, 3850 .notify_unmap = false, 3851 .aw = s->aw_bits, 3852 .as = vtd_as, 3853 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid), 3854 }; 3855 3856 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid); 3857 } 3858 } else { 3859 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 3860 PCI_FUNC(vtd_as->devfn)); 3861 } 3862 3863 return; 3864 } 3865 3866 /* Do the initialization. It will also be called when reset, so pay 3867 * attention when adding new initialization stuff. 3868 */ 3869 static void vtd_init(IntelIOMMUState *s) 3870 { 3871 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3872 3873 memset(s->csr, 0, DMAR_REG_SIZE); 3874 memset(s->wmask, 0, DMAR_REG_SIZE); 3875 memset(s->w1cmask, 0, DMAR_REG_SIZE); 3876 memset(s->womask, 0, DMAR_REG_SIZE); 3877 3878 s->root = 0; 3879 s->root_scalable = false; 3880 s->dmar_enabled = false; 3881 s->intr_enabled = false; 3882 s->iq_head = 0; 3883 s->iq_tail = 0; 3884 s->iq = 0; 3885 s->iq_size = 0; 3886 s->qi_enabled = false; 3887 s->iq_last_desc_type = VTD_INV_DESC_NONE; 3888 s->iq_dw = false; 3889 s->next_frcd_reg = 0; 3890 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 3891 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 3892 VTD_CAP_MGAW(s->aw_bits); 3893 if (s->dma_drain) { 3894 s->cap |= VTD_CAP_DRAIN; 3895 } 3896 if (s->dma_translation) { 3897 if (s->aw_bits >= VTD_HOST_AW_39BIT) { 3898 s->cap |= VTD_CAP_SAGAW_39bit; 3899 } 3900 if (s->aw_bits >= VTD_HOST_AW_48BIT) { 3901 s->cap |= VTD_CAP_SAGAW_48bit; 3902 } 3903 } 3904 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 3905 3906 /* 3907 * Rsvd field masks for spte 3908 */ 3909 vtd_spte_rsvd[0] = ~0ULL; 3910 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits, 3911 x86_iommu->dt_supported); 3912 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 3913 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 3914 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 3915 3916 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits, 3917 x86_iommu->dt_supported); 3918 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits, 3919 x86_iommu->dt_supported); 3920 3921 if (s->scalable_mode || s->snoop_control) { 3922 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP; 3923 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP; 3924 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP; 3925 } 3926 3927 if (x86_iommu_ir_supported(x86_iommu)) { 3928 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 3929 if (s->intr_eim == ON_OFF_AUTO_ON) { 3930 s->ecap |= VTD_ECAP_EIM; 3931 } 3932 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 3933 } 3934 3935 if (x86_iommu->dt_supported) { 3936 s->ecap |= VTD_ECAP_DT; 3937 } 3938 3939 if (x86_iommu->pt_supported) { 3940 s->ecap |= VTD_ECAP_PT; 3941 } 3942 3943 if (s->caching_mode) { 3944 s->cap |= VTD_CAP_CM; 3945 } 3946 3947 /* TODO: read cap/ecap from host to decide which cap to be exposed. */ 3948 if (s->scalable_mode) { 3949 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; 3950 } 3951 3952 if (s->snoop_control) { 3953 s->ecap |= VTD_ECAP_SC; 3954 } 3955 3956 if (s->pasid) { 3957 s->ecap |= VTD_ECAP_PASID; 3958 } 3959 3960 vtd_reset_caches(s); 3961 3962 /* Define registers with default values and bit semantics */ 3963 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 3964 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 3965 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 3966 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 3967 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 3968 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 3969 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); 3970 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 3971 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 3972 3973 /* Advanced Fault Logging not supported */ 3974 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 3975 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3976 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 3977 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 3978 3979 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 3980 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 3981 */ 3982 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 3983 3984 /* Treated as RO for implementations that PLMR and PHMR fields reported 3985 * as Clear in the CAP_REG. 3986 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 3987 */ 3988 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 3989 3990 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 3991 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 3992 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); 3993 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 3994 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3995 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 3996 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 3997 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 3998 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 3999 4000 /* IOTLB registers */ 4001 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 4002 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 4003 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 4004 4005 /* Fault Recording Registers, 128-bit */ 4006 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 4007 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 4008 4009 /* 4010 * Interrupt remapping registers. 4011 */ 4012 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 4013 } 4014 4015 /* Should not reset address_spaces when reset because devices will still use 4016 * the address space they got at first (won't ask the bus again). 4017 */ 4018 static void vtd_reset(DeviceState *dev) 4019 { 4020 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4021 4022 vtd_init(s); 4023 vtd_address_space_refresh_all(s); 4024 } 4025 4026 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 4027 { 4028 IntelIOMMUState *s = opaque; 4029 VTDAddressSpace *vtd_as; 4030 4031 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 4032 4033 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID); 4034 return &vtd_as->as; 4035 } 4036 4037 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 4038 { 4039 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4040 4041 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 4042 error_setg(errp, "eim=on cannot be selected without intremap=on"); 4043 return false; 4044 } 4045 4046 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 4047 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 4048 && x86_iommu_ir_supported(x86_iommu) ? 4049 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 4050 } 4051 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 4052 if (!kvm_irqchip_is_split()) { 4053 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); 4054 return false; 4055 } 4056 if (kvm_enabled() && !kvm_enable_x2apic()) { 4057 error_setg(errp, "eim=on requires support on the KVM side" 4058 "(X2APIC_API, first shipped in v4.7)"); 4059 return false; 4060 } 4061 } 4062 4063 /* Currently only address widths supported are 39 and 48 bits */ 4064 if ((s->aw_bits != VTD_HOST_AW_39BIT) && 4065 (s->aw_bits != VTD_HOST_AW_48BIT)) { 4066 error_setg(errp, "Supported values for aw-bits are: %d, %d", 4067 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 4068 return false; 4069 } 4070 4071 if (s->scalable_mode && !s->dma_drain) { 4072 error_setg(errp, "Need to set dma_drain for scalable mode"); 4073 return false; 4074 } 4075 4076 if (s->pasid && !s->scalable_mode) { 4077 error_setg(errp, "Need to set scalable mode for PASID"); 4078 return false; 4079 } 4080 4081 return true; 4082 } 4083 4084 static int vtd_machine_done_notify_one(Object *child, void *unused) 4085 { 4086 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 4087 4088 /* 4089 * We hard-coded here because vfio-pci is the only special case 4090 * here. Let's be more elegant in the future when we can, but so 4091 * far there seems to be no better way. 4092 */ 4093 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) { 4094 vtd_panic_require_caching_mode(); 4095 } 4096 4097 return 0; 4098 } 4099 4100 static void vtd_machine_done_hook(Notifier *notifier, void *unused) 4101 { 4102 object_child_foreach_recursive(object_get_root(), 4103 vtd_machine_done_notify_one, NULL); 4104 } 4105 4106 static Notifier vtd_machine_done_notify = { 4107 .notify = vtd_machine_done_hook, 4108 }; 4109 4110 static void vtd_realize(DeviceState *dev, Error **errp) 4111 { 4112 MachineState *ms = MACHINE(qdev_get_machine()); 4113 PCMachineState *pcms = PC_MACHINE(ms); 4114 X86MachineState *x86ms = X86_MACHINE(ms); 4115 PCIBus *bus = pcms->bus; 4116 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4117 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4118 4119 if (s->pasid && x86_iommu->dt_supported) { 4120 /* 4121 * PASID-based-Device-TLB Invalidate Descriptor is not 4122 * implemented and it requires support from vhost layer which 4123 * needs to be implemented in the future. 4124 */ 4125 error_setg(errp, "PASID based device IOTLB is not supported"); 4126 return; 4127 } 4128 4129 if (!vtd_decide_config(s, errp)) { 4130 return; 4131 } 4132 4133 QLIST_INIT(&s->vtd_as_with_notifiers); 4134 qemu_mutex_init(&s->iommu_lock); 4135 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 4136 "intel_iommu", DMAR_REG_SIZE); 4137 memory_region_add_subregion(get_system_memory(), 4138 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem); 4139 4140 /* Create the shared memory regions by all devices */ 4141 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", 4142 UINT64_MAX); 4143 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, 4144 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); 4145 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), 4146 "vtd-sys-alias", get_system_memory(), 0, 4147 memory_region_size(get_system_memory())); 4148 memory_region_add_subregion_overlap(&s->mr_nodmar, 0, 4149 &s->mr_sys_alias, 0); 4150 memory_region_add_subregion_overlap(&s->mr_nodmar, 4151 VTD_INTERRUPT_ADDR_FIRST, 4152 &s->mr_ir, 1); 4153 /* No corresponding destroy */ 4154 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal, 4155 g_free, g_free); 4156 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal, 4157 g_free, g_free); 4158 vtd_init(s); 4159 pci_setup_iommu(bus, vtd_host_dma_iommu, dev); 4160 /* Pseudo address space under root PCI bus. */ 4161 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 4162 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify); 4163 } 4164 4165 static void vtd_class_init(ObjectClass *klass, void *data) 4166 { 4167 DeviceClass *dc = DEVICE_CLASS(klass); 4168 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass); 4169 4170 dc->reset = vtd_reset; 4171 dc->vmsd = &vtd_vmstate; 4172 device_class_set_props(dc, vtd_properties); 4173 dc->hotpluggable = false; 4174 x86_class->realize = vtd_realize; 4175 x86_class->int_remap = vtd_int_remap; 4176 /* Supported by the pc-q35-* machine types */ 4177 dc->user_creatable = true; 4178 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 4179 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device"; 4180 } 4181 4182 static const TypeInfo vtd_info = { 4183 .name = TYPE_INTEL_IOMMU_DEVICE, 4184 .parent = TYPE_X86_IOMMU_DEVICE, 4185 .instance_size = sizeof(IntelIOMMUState), 4186 .class_init = vtd_class_init, 4187 }; 4188 4189 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 4190 void *data) 4191 { 4192 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 4193 4194 imrc->translate = vtd_iommu_translate; 4195 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 4196 imrc->replay = vtd_iommu_replay; 4197 } 4198 4199 static const TypeInfo vtd_iommu_memory_region_info = { 4200 .parent = TYPE_IOMMU_MEMORY_REGION, 4201 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 4202 .class_init = vtd_iommu_memory_region_class_init, 4203 }; 4204 4205 static void vtd_register_types(void) 4206 { 4207 type_register_static(&vtd_info); 4208 type_register_static(&vtd_iommu_memory_region_info); 4209 } 4210 4211 type_init(vtd_register_types) 4212