1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qemu/main-loop.h" 25 #include "qapi/error.h" 26 #include "hw/sysbus.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/i386/pc.h" 32 #include "hw/i386/apic-msidef.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "system/kvm.h" 36 #include "system/dma.h" 37 #include "system/system.h" 38 #include "hw/i386/apic_internal.h" 39 #include "kvm/kvm_i386.h" 40 #include "migration/vmstate.h" 41 #include "trace.h" 42 43 /* context entry operations */ 44 #define VTD_CE_GET_RID2PASID(ce) \ 45 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) 46 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ 47 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) 48 49 /* pe operations */ 50 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) 51 #define VTD_PE_GET_FL_LEVEL(pe) \ 52 (4 + (((pe)->val[2] >> 2) & VTD_SM_PASID_ENTRY_FLPM)) 53 #define VTD_PE_GET_SL_LEVEL(pe) \ 54 (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) 55 56 /* 57 * PCI bus number (or SID) is not reliable since the device is usaully 58 * initialized before guest can configure the PCI bridge 59 * (SECONDARY_BUS_NUMBER). 60 */ 61 struct vtd_as_key { 62 PCIBus *bus; 63 uint8_t devfn; 64 uint32_t pasid; 65 }; 66 67 /* bus/devfn is PCI device's real BDF not the aliased one */ 68 struct vtd_hiod_key { 69 PCIBus *bus; 70 uint8_t devfn; 71 }; 72 73 struct vtd_as_raw_key { 74 uint16_t sid; 75 uint32_t pasid; 76 }; 77 78 struct vtd_iotlb_key { 79 uint64_t gfn; 80 uint32_t pasid; 81 uint16_t sid; 82 uint8_t level; 83 }; 84 85 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 86 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 87 88 static void vtd_panic_require_caching_mode(void) 89 { 90 error_report("We need to set caching-mode=on for intel-iommu to enable " 91 "device assignment with IOMMU protection."); 92 exit(1); 93 } 94 95 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 96 uint64_t wmask, uint64_t w1cmask) 97 { 98 stq_le_p(&s->csr[addr], val); 99 stq_le_p(&s->wmask[addr], wmask); 100 stq_le_p(&s->w1cmask[addr], w1cmask); 101 } 102 103 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 104 { 105 stq_le_p(&s->womask[addr], mask); 106 } 107 108 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 109 uint32_t wmask, uint32_t w1cmask) 110 { 111 stl_le_p(&s->csr[addr], val); 112 stl_le_p(&s->wmask[addr], wmask); 113 stl_le_p(&s->w1cmask[addr], w1cmask); 114 } 115 116 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 117 { 118 stl_le_p(&s->womask[addr], mask); 119 } 120 121 /* "External" get/set operations */ 122 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 123 { 124 uint64_t oldval = ldq_le_p(&s->csr[addr]); 125 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 126 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 127 stq_le_p(&s->csr[addr], 128 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 129 } 130 131 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 132 { 133 uint32_t oldval = ldl_le_p(&s->csr[addr]); 134 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 135 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 136 stl_le_p(&s->csr[addr], 137 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 138 } 139 140 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 141 { 142 uint64_t val = ldq_le_p(&s->csr[addr]); 143 uint64_t womask = ldq_le_p(&s->womask[addr]); 144 return val & ~womask; 145 } 146 147 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 148 { 149 uint32_t val = ldl_le_p(&s->csr[addr]); 150 uint32_t womask = ldl_le_p(&s->womask[addr]); 151 return val & ~womask; 152 } 153 154 /* "Internal" get/set operations */ 155 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 156 { 157 return ldq_le_p(&s->csr[addr]); 158 } 159 160 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 161 { 162 return ldl_le_p(&s->csr[addr]); 163 } 164 165 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 166 { 167 stq_le_p(&s->csr[addr], val); 168 } 169 170 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 171 uint32_t clear, uint32_t mask) 172 { 173 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 174 stl_le_p(&s->csr[addr], new_val); 175 return new_val; 176 } 177 178 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 179 uint64_t clear, uint64_t mask) 180 { 181 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 182 stq_le_p(&s->csr[addr], new_val); 183 return new_val; 184 } 185 186 static inline void vtd_iommu_lock(IntelIOMMUState *s) 187 { 188 qemu_mutex_lock(&s->iommu_lock); 189 } 190 191 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 192 { 193 qemu_mutex_unlock(&s->iommu_lock); 194 } 195 196 static void vtd_update_scalable_state(IntelIOMMUState *s) 197 { 198 uint64_t val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 199 200 if (s->scalable_mode) { 201 s->root_scalable = val & VTD_RTADDR_SMT; 202 } 203 } 204 205 static void vtd_update_iq_dw(IntelIOMMUState *s) 206 { 207 uint64_t val = vtd_get_quad_raw(s, DMAR_IQA_REG); 208 209 if (s->ecap & VTD_ECAP_SMTS && 210 val & VTD_IQA_DW_MASK) { 211 s->iq_dw = true; 212 } else { 213 s->iq_dw = false; 214 } 215 } 216 217 /* Whether the address space needs to notify new mappings */ 218 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 219 { 220 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 221 } 222 223 /* GHashTable functions */ 224 static gboolean vtd_iotlb_equal(gconstpointer v1, gconstpointer v2) 225 { 226 const struct vtd_iotlb_key *key1 = v1; 227 const struct vtd_iotlb_key *key2 = v2; 228 229 return key1->sid == key2->sid && 230 key1->pasid == key2->pasid && 231 key1->level == key2->level && 232 key1->gfn == key2->gfn; 233 } 234 235 static guint vtd_iotlb_hash(gconstpointer v) 236 { 237 const struct vtd_iotlb_key *key = v; 238 uint64_t hash64 = key->gfn | ((uint64_t)(key->sid) << VTD_IOTLB_SID_SHIFT) | 239 (uint64_t)(key->level - 1) << VTD_IOTLB_LVL_SHIFT | 240 (uint64_t)(key->pasid) << VTD_IOTLB_PASID_SHIFT; 241 242 return (guint)((hash64 >> 32) ^ (hash64 & 0xffffffffU)); 243 } 244 245 static gboolean vtd_as_equal(gconstpointer v1, gconstpointer v2) 246 { 247 const struct vtd_as_key *key1 = v1; 248 const struct vtd_as_key *key2 = v2; 249 250 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn) && 251 (key1->pasid == key2->pasid); 252 } 253 254 /* 255 * Note that we use pointer to PCIBus as the key, so hashing/shifting 256 * based on the pointer value is intended. Note that we deal with 257 * collisions through vtd_as_equal(). 258 */ 259 static guint vtd_as_hash(gconstpointer v) 260 { 261 const struct vtd_as_key *key = v; 262 guint value = (guint)(uintptr_t)key->bus; 263 264 return (guint)(value << 8 | key->devfn); 265 } 266 267 /* Same implementation as vtd_as_hash() */ 268 static guint vtd_hiod_hash(gconstpointer v) 269 { 270 return vtd_as_hash(v); 271 } 272 273 static gboolean vtd_hiod_equal(gconstpointer v1, gconstpointer v2) 274 { 275 const struct vtd_hiod_key *key1 = v1; 276 const struct vtd_hiod_key *key2 = v2; 277 278 return (key1->bus == key2->bus) && (key1->devfn == key2->devfn); 279 } 280 281 static void vtd_hiod_destroy(gpointer v) 282 { 283 object_unref(v); 284 } 285 286 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 287 gpointer user_data) 288 { 289 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 290 uint16_t domain_id = *(uint16_t *)user_data; 291 return entry->domain_id == domain_id; 292 } 293 294 /* The shift of an addr for a certain level of paging structure */ 295 static inline uint32_t vtd_pt_level_shift(uint32_t level) 296 { 297 assert(level != 0); 298 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_LEVEL_BITS; 299 } 300 301 static inline uint64_t vtd_pt_level_page_mask(uint32_t level) 302 { 303 return ~((1ULL << vtd_pt_level_shift(level)) - 1); 304 } 305 306 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 307 gpointer user_data) 308 { 309 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 310 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 311 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 312 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 313 314 if (entry->domain_id != info->domain_id) { 315 return false; 316 } 317 318 /* 319 * According to spec, IOTLB entries caching first-stage (PGTT=001b) or 320 * nested (PGTT=011b) mapping associated with specified domain-id are 321 * invalidated. Nested isn't supported yet, so only need to check 001b. 322 */ 323 if (entry->pgtt == VTD_SM_PASID_ENTRY_FLT) { 324 return true; 325 } 326 327 return (entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb; 328 } 329 330 static gboolean vtd_hash_remove_by_page_piotlb(gpointer key, gpointer value, 331 gpointer user_data) 332 { 333 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 334 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 335 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 336 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 337 338 /* 339 * According to spec, PASID-based-IOTLB Invalidation in page granularity 340 * doesn't invalidate IOTLB entries caching second-stage (PGTT=010b) 341 * or pass-through (PGTT=100b) mappings. Nested isn't supported yet, 342 * so only need to check first-stage (PGTT=001b) mappings. 343 */ 344 if (entry->pgtt != VTD_SM_PASID_ENTRY_FLT) { 345 return false; 346 } 347 348 return entry->domain_id == info->domain_id && entry->pasid == info->pasid && 349 ((entry->gfn & info->mask) == gfn || entry->gfn == gfn_tlb); 350 } 351 352 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 353 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 354 */ 355 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 356 { 357 VTDAddressSpace *vtd_as; 358 GHashTableIter as_it; 359 360 trace_vtd_context_cache_reset(); 361 362 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 363 364 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 365 vtd_as->context_cache_entry.context_cache_gen = 0; 366 } 367 s->context_cache_gen = 1; 368 } 369 370 /* Must be called with IOMMU lock held. */ 371 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 372 { 373 assert(s->iotlb); 374 g_hash_table_remove_all(s->iotlb); 375 } 376 377 static void vtd_reset_iotlb(IntelIOMMUState *s) 378 { 379 vtd_iommu_lock(s); 380 vtd_reset_iotlb_locked(s); 381 vtd_iommu_unlock(s); 382 } 383 384 static void vtd_reset_caches(IntelIOMMUState *s) 385 { 386 vtd_iommu_lock(s); 387 vtd_reset_iotlb_locked(s); 388 vtd_reset_context_cache_locked(s); 389 vtd_iommu_unlock(s); 390 } 391 392 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 393 { 394 return (addr & vtd_pt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 395 } 396 397 /* Must be called with IOMMU lock held */ 398 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 399 uint32_t pasid, hwaddr addr) 400 { 401 struct vtd_iotlb_key key; 402 VTDIOTLBEntry *entry; 403 unsigned level; 404 405 for (level = VTD_PT_LEVEL; level < VTD_PML4_LEVEL; level++) { 406 key.gfn = vtd_get_iotlb_gfn(addr, level); 407 key.level = level; 408 key.sid = source_id; 409 key.pasid = pasid; 410 entry = g_hash_table_lookup(s->iotlb, &key); 411 if (entry) { 412 goto out; 413 } 414 } 415 416 out: 417 return entry; 418 } 419 420 /* Must be with IOMMU lock held */ 421 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 422 uint16_t domain_id, hwaddr addr, uint64_t pte, 423 uint8_t access_flags, uint32_t level, 424 uint32_t pasid, uint8_t pgtt) 425 { 426 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 427 struct vtd_iotlb_key *key = g_malloc(sizeof(*key)); 428 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 429 430 trace_vtd_iotlb_page_update(source_id, addr, pte, domain_id); 431 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 432 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 433 vtd_reset_iotlb_locked(s); 434 } 435 436 entry->gfn = gfn; 437 entry->domain_id = domain_id; 438 entry->pte = pte; 439 entry->access_flags = access_flags; 440 entry->mask = vtd_pt_level_page_mask(level); 441 entry->pasid = pasid; 442 entry->pgtt = pgtt; 443 444 key->gfn = gfn; 445 key->sid = source_id; 446 key->level = level; 447 key->pasid = pasid; 448 449 g_hash_table_replace(s->iotlb, key, entry); 450 } 451 452 /* Given the reg addr of both the message data and address, generate an 453 * interrupt via MSI. 454 */ 455 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 456 hwaddr mesg_data_reg) 457 { 458 MSIMessage msi; 459 460 assert(mesg_data_reg < DMAR_REG_SIZE); 461 assert(mesg_addr_reg < DMAR_REG_SIZE); 462 463 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 464 msi.data = vtd_get_long_raw(s, mesg_data_reg); 465 466 trace_vtd_irq_generate(msi.address, msi.data); 467 468 apic_get_class(NULL)->send_msi(&msi); 469 } 470 471 /* Generate a fault event to software via MSI if conditions are met. 472 * Notice that the value of FSTS_REG being passed to it should be the one 473 * before any update. 474 */ 475 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 476 { 477 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 478 pre_fsts & VTD_FSTS_IQE) { 479 error_report_once("There are previous interrupt conditions " 480 "to be serviced by software, fault event " 481 "is not generated"); 482 return; 483 } 484 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 485 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 486 error_report_once("Interrupt Mask set, irq is not generated"); 487 } else { 488 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 489 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 490 } 491 } 492 493 /* Check if the Fault (F) field of the Fault Recording Register referenced by 494 * @index is Set. 495 */ 496 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 497 { 498 /* Each reg is 128-bit */ 499 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 500 addr += 8; /* Access the high 64-bit half */ 501 502 assert(index < DMAR_FRCD_REG_NR); 503 504 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 505 } 506 507 /* Update the PPF field of Fault Status Register. 508 * Should be called whenever change the F field of any fault recording 509 * registers. 510 */ 511 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 512 { 513 uint32_t i; 514 uint32_t ppf_mask = 0; 515 516 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 517 if (vtd_is_frcd_set(s, i)) { 518 ppf_mask = VTD_FSTS_PPF; 519 break; 520 } 521 } 522 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 523 trace_vtd_fsts_ppf(!!ppf_mask); 524 } 525 526 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 527 { 528 /* Each reg is 128-bit */ 529 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 530 addr += 8; /* Access the high 64-bit half */ 531 532 assert(index < DMAR_FRCD_REG_NR); 533 534 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 535 vtd_update_fsts_ppf(s); 536 } 537 538 /* Must not update F field now, should be done later */ 539 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 540 uint64_t hi, uint64_t lo) 541 { 542 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 543 544 assert(index < DMAR_FRCD_REG_NR); 545 546 vtd_set_quad_raw(s, frcd_reg_addr, lo); 547 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 548 549 trace_vtd_frr_new(index, hi, lo); 550 } 551 552 /* Try to collapse multiple pending faults from the same requester */ 553 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 554 { 555 uint32_t i; 556 uint64_t frcd_reg; 557 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 558 559 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 560 frcd_reg = vtd_get_quad_raw(s, addr); 561 if ((frcd_reg & VTD_FRCD_F) && 562 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 563 return true; 564 } 565 addr += 16; /* 128-bit for each */ 566 } 567 return false; 568 } 569 570 /* Log and report an DMAR (address translation) fault to software */ 571 static void vtd_report_frcd_fault(IntelIOMMUState *s, uint64_t source_id, 572 uint64_t hi, uint64_t lo) 573 { 574 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 575 576 if (fsts_reg & VTD_FSTS_PFO) { 577 error_report_once("New fault is not recorded due to " 578 "Primary Fault Overflow"); 579 return; 580 } 581 582 if (vtd_try_collapse_fault(s, source_id)) { 583 error_report_once("New fault is not recorded due to " 584 "compression of faults"); 585 return; 586 } 587 588 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 589 error_report_once("Next Fault Recording Reg is used, " 590 "new fault is not recorded, set PFO field"); 591 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 592 return; 593 } 594 595 vtd_record_frcd(s, s->next_frcd_reg, hi, lo); 596 597 if (fsts_reg & VTD_FSTS_PPF) { 598 error_report_once("There are pending faults already, " 599 "fault event is not generated"); 600 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 601 s->next_frcd_reg++; 602 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 603 s->next_frcd_reg = 0; 604 } 605 } else { 606 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 607 VTD_FSTS_FRI(s->next_frcd_reg)); 608 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 609 s->next_frcd_reg++; 610 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 611 s->next_frcd_reg = 0; 612 } 613 /* This case actually cause the PPF to be Set. 614 * So generate fault event (interrupt). 615 */ 616 vtd_generate_fault_event(s, fsts_reg); 617 } 618 } 619 620 /* Log and report an DMAR (address translation) fault to software */ 621 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 622 hwaddr addr, VTDFaultReason fault, 623 bool is_write, bool is_pasid, 624 uint32_t pasid) 625 { 626 uint64_t hi, lo; 627 628 assert(fault < VTD_FR_MAX); 629 630 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 631 632 lo = VTD_FRCD_FI(addr); 633 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault) | 634 VTD_FRCD_PV(pasid) | VTD_FRCD_PP(is_pasid); 635 if (!is_write) { 636 hi |= VTD_FRCD_T; 637 } 638 639 vtd_report_frcd_fault(s, source_id, hi, lo); 640 } 641 642 643 static void vtd_report_ir_fault(IntelIOMMUState *s, uint64_t source_id, 644 VTDFaultReason fault, uint16_t index) 645 { 646 uint64_t hi, lo; 647 648 lo = VTD_FRCD_IR_IDX(index); 649 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); 650 651 vtd_report_frcd_fault(s, source_id, hi, lo); 652 } 653 654 /* Handle Invalidation Queue Errors of queued invalidation interface error 655 * conditions. 656 */ 657 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 658 { 659 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 660 661 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 662 vtd_generate_fault_event(s, fsts_reg); 663 } 664 665 /* Set the IWC field and try to generate an invalidation completion interrupt */ 666 static void vtd_generate_completion_event(IntelIOMMUState *s) 667 { 668 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 669 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 670 return; 671 } 672 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 673 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 674 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 675 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 676 "new event not generated"); 677 return; 678 } else { 679 /* Generate the interrupt event */ 680 trace_vtd_inv_desc_wait_irq("Generating complete event"); 681 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 682 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 683 } 684 } 685 686 static inline bool vtd_root_entry_present(IntelIOMMUState *s, 687 VTDRootEntry *re, 688 uint8_t devfn) 689 { 690 if (s->root_scalable && devfn > UINT8_MAX / 2) { 691 return re->hi & VTD_ROOT_ENTRY_P; 692 } 693 694 return re->lo & VTD_ROOT_ENTRY_P; 695 } 696 697 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 698 VTDRootEntry *re) 699 { 700 dma_addr_t addr; 701 702 addr = s->root + index * sizeof(*re); 703 if (dma_memory_read(&address_space_memory, addr, 704 re, sizeof(*re), MEMTXATTRS_UNSPECIFIED)) { 705 re->lo = 0; 706 return -VTD_FR_ROOT_TABLE_INV; 707 } 708 re->lo = le64_to_cpu(re->lo); 709 re->hi = le64_to_cpu(re->hi); 710 return 0; 711 } 712 713 static inline bool vtd_ce_present(VTDContextEntry *context) 714 { 715 return context->lo & VTD_CONTEXT_ENTRY_P; 716 } 717 718 static int vtd_get_context_entry_from_root(IntelIOMMUState *s, 719 VTDRootEntry *re, 720 uint8_t index, 721 VTDContextEntry *ce) 722 { 723 dma_addr_t addr, ce_size; 724 725 /* we have checked that root entry is present */ 726 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : 727 VTD_CTX_ENTRY_LEGACY_SIZE; 728 729 if (s->root_scalable && index > UINT8_MAX / 2) { 730 index = index & (~VTD_DEVFN_CHECK_MASK); 731 addr = re->hi & VTD_ROOT_ENTRY_CTP; 732 } else { 733 addr = re->lo & VTD_ROOT_ENTRY_CTP; 734 } 735 736 addr = addr + index * ce_size; 737 if (dma_memory_read(&address_space_memory, addr, 738 ce, ce_size, MEMTXATTRS_UNSPECIFIED)) { 739 return -VTD_FR_CONTEXT_TABLE_INV; 740 } 741 742 ce->lo = le64_to_cpu(ce->lo); 743 ce->hi = le64_to_cpu(ce->hi); 744 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { 745 ce->val[2] = le64_to_cpu(ce->val[2]); 746 ce->val[3] = le64_to_cpu(ce->val[3]); 747 } 748 return 0; 749 } 750 751 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 752 { 753 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 754 } 755 756 static inline uint64_t vtd_get_pte_addr(uint64_t pte, uint8_t aw) 757 { 758 return pte & VTD_PT_BASE_ADDR_MASK(aw); 759 } 760 761 /* Whether the pte indicates the address of the page frame */ 762 static inline bool vtd_is_last_pte(uint64_t pte, uint32_t level) 763 { 764 return level == VTD_PT_LEVEL || (pte & VTD_PT_PAGE_SIZE_MASK); 765 } 766 767 /* Get the content of a pte located in @base_addr[@index] */ 768 static uint64_t vtd_get_pte(dma_addr_t base_addr, uint32_t index) 769 { 770 uint64_t pte; 771 772 assert(index < VTD_PT_ENTRY_NR); 773 774 if (dma_memory_read(&address_space_memory, 775 base_addr + index * sizeof(pte), 776 &pte, sizeof(pte), MEMTXATTRS_UNSPECIFIED)) { 777 pte = (uint64_t)-1; 778 return pte; 779 } 780 pte = le64_to_cpu(pte); 781 return pte; 782 } 783 784 /* Given an iova and the level of paging structure, return the offset 785 * of current level. 786 */ 787 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 788 { 789 return (iova >> vtd_pt_level_shift(level)) & 790 ((1ULL << VTD_LEVEL_BITS) - 1); 791 } 792 793 /* Check Capability Register to see if the @level of page-table is supported */ 794 static inline bool vtd_is_sl_level_supported(IntelIOMMUState *s, uint32_t level) 795 { 796 return VTD_CAP_SAGAW_MASK & s->cap & 797 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 798 } 799 800 static inline bool vtd_is_fl_level_supported(IntelIOMMUState *s, uint32_t level) 801 { 802 return level == VTD_PML4_LEVEL; 803 } 804 805 /* Return true if check passed, otherwise false */ 806 static inline bool vtd_pe_type_check(IntelIOMMUState *s, VTDPASIDEntry *pe) 807 { 808 switch (VTD_PE_GET_TYPE(pe)) { 809 case VTD_SM_PASID_ENTRY_FLT: 810 return !!(s->ecap & VTD_ECAP_FLTS); 811 case VTD_SM_PASID_ENTRY_SLT: 812 return !!(s->ecap & VTD_ECAP_SLTS); 813 case VTD_SM_PASID_ENTRY_NESTED: 814 /* Not support NESTED page table type yet */ 815 return false; 816 case VTD_SM_PASID_ENTRY_PT: 817 return !!(s->ecap & VTD_ECAP_PT); 818 default: 819 /* Unknown type */ 820 return false; 821 } 822 } 823 824 static inline bool vtd_pdire_present(VTDPASIDDirEntry *pdire) 825 { 826 return pdire->val & 1; 827 } 828 829 /** 830 * Caller of this function should check present bit if wants 831 * to use pdir entry for further usage except for fpd bit check. 832 */ 833 static int vtd_get_pdire_from_pdir_table(dma_addr_t pasid_dir_base, 834 uint32_t pasid, 835 VTDPASIDDirEntry *pdire) 836 { 837 uint32_t index; 838 dma_addr_t addr, entry_size; 839 840 index = VTD_PASID_DIR_INDEX(pasid); 841 entry_size = VTD_PASID_DIR_ENTRY_SIZE; 842 addr = pasid_dir_base + index * entry_size; 843 if (dma_memory_read(&address_space_memory, addr, 844 pdire, entry_size, MEMTXATTRS_UNSPECIFIED)) { 845 return -VTD_FR_PASID_DIR_ACCESS_ERR; 846 } 847 848 pdire->val = le64_to_cpu(pdire->val); 849 850 return 0; 851 } 852 853 static inline bool vtd_pe_present(VTDPASIDEntry *pe) 854 { 855 return pe->val[0] & VTD_PASID_ENTRY_P; 856 } 857 858 static int vtd_get_pe_in_pasid_leaf_table(IntelIOMMUState *s, 859 uint32_t pasid, 860 dma_addr_t addr, 861 VTDPASIDEntry *pe) 862 { 863 uint8_t pgtt; 864 uint32_t index; 865 dma_addr_t entry_size; 866 867 index = VTD_PASID_TABLE_INDEX(pasid); 868 entry_size = VTD_PASID_ENTRY_SIZE; 869 addr = addr + index * entry_size; 870 if (dma_memory_read(&address_space_memory, addr, 871 pe, entry_size, MEMTXATTRS_UNSPECIFIED)) { 872 return -VTD_FR_PASID_TABLE_ACCESS_ERR; 873 } 874 for (size_t i = 0; i < ARRAY_SIZE(pe->val); i++) { 875 pe->val[i] = le64_to_cpu(pe->val[i]); 876 } 877 878 /* Do translation type check */ 879 if (!vtd_pe_type_check(s, pe)) { 880 return -VTD_FR_PASID_TABLE_ENTRY_INV; 881 } 882 883 pgtt = VTD_PE_GET_TYPE(pe); 884 if (pgtt == VTD_SM_PASID_ENTRY_SLT && 885 !vtd_is_sl_level_supported(s, VTD_PE_GET_SL_LEVEL(pe))) { 886 return -VTD_FR_PASID_TABLE_ENTRY_INV; 887 } 888 889 if (pgtt == VTD_SM_PASID_ENTRY_FLT && 890 !vtd_is_fl_level_supported(s, VTD_PE_GET_FL_LEVEL(pe))) { 891 return -VTD_FR_PASID_TABLE_ENTRY_INV; 892 } 893 894 return 0; 895 } 896 897 /** 898 * Caller of this function should check present bit if wants 899 * to use pasid entry for further usage except for fpd bit check. 900 */ 901 static int vtd_get_pe_from_pdire(IntelIOMMUState *s, 902 uint32_t pasid, 903 VTDPASIDDirEntry *pdire, 904 VTDPASIDEntry *pe) 905 { 906 dma_addr_t addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; 907 908 return vtd_get_pe_in_pasid_leaf_table(s, pasid, addr, pe); 909 } 910 911 /** 912 * This function gets a pasid entry from a specified pasid 913 * table (includes dir and leaf table) with a specified pasid. 914 * Sanity check should be done to ensure return a present 915 * pasid entry to caller. 916 */ 917 static int vtd_get_pe_from_pasid_table(IntelIOMMUState *s, 918 dma_addr_t pasid_dir_base, 919 uint32_t pasid, 920 VTDPASIDEntry *pe) 921 { 922 int ret; 923 VTDPASIDDirEntry pdire; 924 925 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, 926 pasid, &pdire); 927 if (ret) { 928 return ret; 929 } 930 931 if (!vtd_pdire_present(&pdire)) { 932 return -VTD_FR_PASID_DIR_ENTRY_P; 933 } 934 935 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, pe); 936 if (ret) { 937 return ret; 938 } 939 940 if (!vtd_pe_present(pe)) { 941 return -VTD_FR_PASID_ENTRY_P; 942 } 943 944 return 0; 945 } 946 947 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, 948 VTDContextEntry *ce, 949 VTDPASIDEntry *pe, 950 uint32_t pasid) 951 { 952 dma_addr_t pasid_dir_base; 953 int ret = 0; 954 955 if (pasid == PCI_NO_PASID) { 956 pasid = VTD_CE_GET_RID2PASID(ce); 957 } 958 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 959 ret = vtd_get_pe_from_pasid_table(s, pasid_dir_base, pasid, pe); 960 961 return ret; 962 } 963 964 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, 965 VTDContextEntry *ce, 966 bool *pe_fpd_set, 967 uint32_t pasid) 968 { 969 int ret; 970 dma_addr_t pasid_dir_base; 971 VTDPASIDDirEntry pdire; 972 VTDPASIDEntry pe; 973 974 if (pasid == PCI_NO_PASID) { 975 pasid = VTD_CE_GET_RID2PASID(ce); 976 } 977 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 978 979 /* 980 * No present bit check since fpd is meaningful even 981 * if the present bit is clear. 982 */ 983 ret = vtd_get_pdire_from_pdir_table(pasid_dir_base, pasid, &pdire); 984 if (ret) { 985 return ret; 986 } 987 988 if (pdire.val & VTD_PASID_DIR_FPD) { 989 *pe_fpd_set = true; 990 return 0; 991 } 992 993 if (!vtd_pdire_present(&pdire)) { 994 return -VTD_FR_PASID_DIR_ENTRY_P; 995 } 996 997 /* 998 * No present bit check since fpd is meaningful even 999 * if the present bit is clear. 1000 */ 1001 ret = vtd_get_pe_from_pdire(s, pasid, &pdire, &pe); 1002 if (ret) { 1003 return ret; 1004 } 1005 1006 if (pe.val[0] & VTD_PASID_ENTRY_FPD) { 1007 *pe_fpd_set = true; 1008 } 1009 1010 return 0; 1011 } 1012 1013 /* Get the page-table level that hardware should use for the second-level 1014 * page-table walk from the Address Width field of context-entry. 1015 */ 1016 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 1017 { 1018 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 1019 } 1020 1021 static uint32_t vtd_get_iova_level(IntelIOMMUState *s, 1022 VTDContextEntry *ce, 1023 uint32_t pasid) 1024 { 1025 VTDPASIDEntry pe; 1026 1027 if (s->root_scalable) { 1028 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1029 if (s->flts) { 1030 return VTD_PE_GET_FL_LEVEL(&pe); 1031 } else { 1032 return VTD_PE_GET_SL_LEVEL(&pe); 1033 } 1034 } 1035 1036 return vtd_ce_get_level(ce); 1037 } 1038 1039 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 1040 { 1041 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 1042 } 1043 1044 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, 1045 VTDContextEntry *ce, 1046 uint32_t pasid) 1047 { 1048 VTDPASIDEntry pe; 1049 1050 if (s->root_scalable) { 1051 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1052 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; 1053 } 1054 1055 return vtd_ce_get_agaw(ce); 1056 } 1057 1058 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 1059 { 1060 return ce->lo & VTD_CONTEXT_ENTRY_TT; 1061 } 1062 1063 /* Only for Legacy Mode. Return true if check passed, otherwise false */ 1064 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 1065 VTDContextEntry *ce) 1066 { 1067 switch (vtd_ce_get_type(ce)) { 1068 case VTD_CONTEXT_TT_MULTI_LEVEL: 1069 /* Always supported */ 1070 break; 1071 case VTD_CONTEXT_TT_DEV_IOTLB: 1072 if (!x86_iommu->dt_supported) { 1073 error_report_once("%s: DT specified but not supported", __func__); 1074 return false; 1075 } 1076 break; 1077 case VTD_CONTEXT_TT_PASS_THROUGH: 1078 if (!x86_iommu->pt_supported) { 1079 error_report_once("%s: PT specified but not supported", __func__); 1080 return false; 1081 } 1082 break; 1083 default: 1084 /* Unknown type */ 1085 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 1086 vtd_ce_get_type(ce)); 1087 return false; 1088 } 1089 return true; 1090 } 1091 1092 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, 1093 VTDContextEntry *ce, uint8_t aw, 1094 uint32_t pasid) 1095 { 1096 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce, pasid); 1097 return 1ULL << MIN(ce_agaw, aw); 1098 } 1099 1100 /* Return true if IOVA passes range check, otherwise false. */ 1101 static inline bool vtd_iova_sl_range_check(IntelIOMMUState *s, 1102 uint64_t iova, VTDContextEntry *ce, 1103 uint8_t aw, uint32_t pasid) 1104 { 1105 /* 1106 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 1107 * in CAP_REG and AW in context-entry. 1108 */ 1109 return !(iova & ~(vtd_iova_limit(s, ce, aw, pasid) - 1)); 1110 } 1111 1112 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, 1113 VTDContextEntry *ce, 1114 uint32_t pasid) 1115 { 1116 VTDPASIDEntry pe; 1117 1118 if (s->root_scalable) { 1119 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1120 if (s->flts) { 1121 return pe.val[2] & VTD_SM_PASID_ENTRY_FLPTPTR; 1122 } else { 1123 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; 1124 } 1125 } 1126 1127 return vtd_ce_get_slpt_base(ce); 1128 } 1129 1130 /* 1131 * Rsvd field masks for spte: 1132 * vtd_spte_rsvd 4k pages 1133 * vtd_spte_rsvd_large large pages 1134 * 1135 * We support only 3-level and 4-level page tables (see vtd_init() which 1136 * sets only VTD_CAP_SAGAW_39bit and maybe VTD_CAP_SAGAW_48bit bits in s->cap). 1137 */ 1138 #define VTD_SPTE_RSVD_LEN 5 1139 static uint64_t vtd_spte_rsvd[VTD_SPTE_RSVD_LEN]; 1140 static uint64_t vtd_spte_rsvd_large[VTD_SPTE_RSVD_LEN]; 1141 1142 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 1143 { 1144 uint64_t rsvd_mask; 1145 1146 /* 1147 * We should have caught a guest-mis-programmed level earlier, 1148 * via vtd_is_sl_level_supported. 1149 */ 1150 assert(level < VTD_SPTE_RSVD_LEN); 1151 /* 1152 * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and 1153 * checked by vtd_is_last_pte(). 1154 */ 1155 assert(level); 1156 1157 if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) && 1158 (slpte & VTD_PT_PAGE_SIZE_MASK)) { 1159 /* large page */ 1160 rsvd_mask = vtd_spte_rsvd_large[level]; 1161 } else { 1162 rsvd_mask = vtd_spte_rsvd[level]; 1163 } 1164 1165 return slpte & rsvd_mask; 1166 } 1167 1168 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 1169 * of the translation, can be used for deciding the size of large page. 1170 */ 1171 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, 1172 uint64_t iova, bool is_write, 1173 uint64_t *slptep, uint32_t *slpte_level, 1174 bool *reads, bool *writes, uint8_t aw_bits, 1175 uint32_t pasid) 1176 { 1177 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1178 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1179 uint32_t offset; 1180 uint64_t slpte; 1181 uint64_t access_right_check; 1182 1183 if (!vtd_iova_sl_range_check(s, iova, ce, aw_bits, pasid)) { 1184 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 "," 1185 "pasid=0x%" PRIx32 ")", __func__, iova, pasid); 1186 return -VTD_FR_ADDR_BEYOND_MGAW; 1187 } 1188 1189 /* FIXME: what is the Atomics request here? */ 1190 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 1191 1192 while (true) { 1193 offset = vtd_iova_level_offset(iova, level); 1194 slpte = vtd_get_pte(addr, offset); 1195 1196 if (slpte == (uint64_t)-1) { 1197 error_report_once("%s: detected read error on DMAR slpte " 1198 "(iova=0x%" PRIx64 ", pasid=0x%" PRIx32 ")", 1199 __func__, iova, pasid); 1200 if (level == vtd_get_iova_level(s, ce, pasid)) { 1201 /* Invalid programming of context-entry */ 1202 return -VTD_FR_CONTEXT_ENTRY_INV; 1203 } else { 1204 return -VTD_FR_PAGING_ENTRY_INV; 1205 } 1206 } 1207 *reads = (*reads) && (slpte & VTD_SL_R); 1208 *writes = (*writes) && (slpte & VTD_SL_W); 1209 if (!(slpte & access_right_check)) { 1210 error_report_once("%s: detected slpte permission error " 1211 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 1212 "slpte=0x%" PRIx64 ", write=%d, pasid=0x%" 1213 PRIx32 ")", __func__, iova, level, 1214 slpte, is_write, pasid); 1215 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 1216 } 1217 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1218 error_report_once("%s: detected splte reserve non-zero " 1219 "iova=0x%" PRIx64 ", level=0x%" PRIx32 1220 "slpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", 1221 __func__, iova, level, slpte, pasid); 1222 return -VTD_FR_PAGING_ENTRY_RSVD; 1223 } 1224 1225 if (vtd_is_last_pte(slpte, level)) { 1226 *slptep = slpte; 1227 *slpte_level = level; 1228 break; 1229 } 1230 addr = vtd_get_pte_addr(slpte, aw_bits); 1231 level--; 1232 } 1233 1234 return 0; 1235 } 1236 1237 typedef int (*vtd_page_walk_hook)(const IOMMUTLBEvent *event, void *private); 1238 1239 /** 1240 * Constant information used during page walking 1241 * 1242 * @hook_fn: hook func to be called when detected page 1243 * @private: private data to be passed into hook func 1244 * @notify_unmap: whether we should notify invalid entries 1245 * @as: VT-d address space of the device 1246 * @aw: maximum address width 1247 * @domain: domain ID of the page walk 1248 */ 1249 typedef struct { 1250 VTDAddressSpace *as; 1251 vtd_page_walk_hook hook_fn; 1252 void *private; 1253 bool notify_unmap; 1254 uint8_t aw; 1255 uint16_t domain_id; 1256 } vtd_page_walk_info; 1257 1258 static int vtd_page_walk_one(IOMMUTLBEvent *event, vtd_page_walk_info *info) 1259 { 1260 VTDAddressSpace *as = info->as; 1261 vtd_page_walk_hook hook_fn = info->hook_fn; 1262 void *private = info->private; 1263 IOMMUTLBEntry *entry = &event->entry; 1264 DMAMap target = { 1265 .iova = entry->iova, 1266 .size = entry->addr_mask, 1267 .translated_addr = entry->translated_addr, 1268 .perm = entry->perm, 1269 }; 1270 const DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 1271 1272 if (event->type == IOMMU_NOTIFIER_UNMAP && !info->notify_unmap) { 1273 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1274 return 0; 1275 } 1276 1277 assert(hook_fn); 1278 1279 /* Update local IOVA mapped ranges */ 1280 if (event->type == IOMMU_NOTIFIER_MAP) { 1281 if (mapped) { 1282 /* If it's exactly the same translation, skip */ 1283 if (!memcmp(mapped, &target, sizeof(target))) { 1284 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 1285 entry->translated_addr); 1286 return 0; 1287 } else { 1288 /* 1289 * Translation changed. Normally this should not 1290 * happen, but it can happen when with buggy guest 1291 * OSes. Note that there will be a small window that 1292 * we don't have map at all. But that's the best 1293 * effort we can do. The ideal way to emulate this is 1294 * atomically modify the PTE to follow what has 1295 * changed, but we can't. One example is that vfio 1296 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 1297 * interface to modify a mapping (meanwhile it seems 1298 * meaningless to even provide one). Anyway, let's 1299 * mark this as a TODO in case one day we'll have 1300 * a better solution. 1301 */ 1302 IOMMUAccessFlags cache_perm = entry->perm; 1303 int ret; 1304 1305 /* Emulate an UNMAP */ 1306 event->type = IOMMU_NOTIFIER_UNMAP; 1307 entry->perm = IOMMU_NONE; 1308 trace_vtd_page_walk_one(info->domain_id, 1309 entry->iova, 1310 entry->translated_addr, 1311 entry->addr_mask, 1312 entry->perm); 1313 ret = hook_fn(event, private); 1314 if (ret) { 1315 return ret; 1316 } 1317 /* Drop any existing mapping */ 1318 iova_tree_remove(as->iova_tree, target); 1319 /* Recover the correct type */ 1320 event->type = IOMMU_NOTIFIER_MAP; 1321 entry->perm = cache_perm; 1322 } 1323 } 1324 iova_tree_insert(as->iova_tree, &target); 1325 } else { 1326 if (!mapped) { 1327 /* Skip since we didn't map this range at all */ 1328 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1329 return 0; 1330 } 1331 iova_tree_remove(as->iova_tree, target); 1332 } 1333 1334 trace_vtd_page_walk_one(info->domain_id, entry->iova, 1335 entry->translated_addr, entry->addr_mask, 1336 entry->perm); 1337 return hook_fn(event, private); 1338 } 1339 1340 /** 1341 * vtd_page_walk_level - walk over specific level for IOVA range 1342 * 1343 * @addr: base GPA addr to start the walk 1344 * @start: IOVA range start address 1345 * @end: IOVA range end address (start <= addr < end) 1346 * @read: whether parent level has read permission 1347 * @write: whether parent level has write permission 1348 * @info: constant information for the page walk 1349 */ 1350 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 1351 uint64_t end, uint32_t level, bool read, 1352 bool write, vtd_page_walk_info *info) 1353 { 1354 bool read_cur, write_cur, entry_valid; 1355 uint32_t offset; 1356 uint64_t slpte; 1357 uint64_t subpage_size, subpage_mask; 1358 IOMMUTLBEvent event; 1359 uint64_t iova = start; 1360 uint64_t iova_next; 1361 int ret = 0; 1362 1363 trace_vtd_page_walk_level(addr, level, start, end); 1364 1365 subpage_size = 1ULL << vtd_pt_level_shift(level); 1366 subpage_mask = vtd_pt_level_page_mask(level); 1367 1368 while (iova < end) { 1369 iova_next = (iova & subpage_mask) + subpage_size; 1370 1371 offset = vtd_iova_level_offset(iova, level); 1372 slpte = vtd_get_pte(addr, offset); 1373 1374 if (slpte == (uint64_t)-1) { 1375 trace_vtd_page_walk_skip_read(iova, iova_next); 1376 goto next; 1377 } 1378 1379 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1380 trace_vtd_page_walk_skip_reserve(iova, iova_next); 1381 goto next; 1382 } 1383 1384 /* Permissions are stacked with parents' */ 1385 read_cur = read && (slpte & VTD_SL_R); 1386 write_cur = write && (slpte & VTD_SL_W); 1387 1388 /* 1389 * As long as we have either read/write permission, this is a 1390 * valid entry. The rule works for both page entries and page 1391 * table entries. 1392 */ 1393 entry_valid = read_cur | write_cur; 1394 1395 if (!vtd_is_last_pte(slpte, level) && entry_valid) { 1396 /* 1397 * This is a valid PDE (or even bigger than PDE). We need 1398 * to walk one further level. 1399 */ 1400 ret = vtd_page_walk_level(vtd_get_pte_addr(slpte, info->aw), 1401 iova, MIN(iova_next, end), level - 1, 1402 read_cur, write_cur, info); 1403 } else { 1404 /* 1405 * This means we are either: 1406 * 1407 * (1) the real page entry (either 4K page, or huge page) 1408 * (2) the whole range is invalid 1409 * 1410 * In either case, we send an IOTLB notification down. 1411 */ 1412 event.entry.target_as = &address_space_memory; 1413 event.entry.iova = iova & subpage_mask; 1414 event.entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 1415 event.entry.addr_mask = ~subpage_mask; 1416 /* NOTE: this is only meaningful if entry_valid == true */ 1417 event.entry.translated_addr = vtd_get_pte_addr(slpte, info->aw); 1418 event.type = event.entry.perm ? IOMMU_NOTIFIER_MAP : 1419 IOMMU_NOTIFIER_UNMAP; 1420 ret = vtd_page_walk_one(&event, info); 1421 } 1422 1423 if (ret < 0) { 1424 return ret; 1425 } 1426 1427 next: 1428 iova = iova_next; 1429 } 1430 1431 return 0; 1432 } 1433 1434 /** 1435 * vtd_page_walk - walk specific IOVA range, and call the hook 1436 * 1437 * @s: intel iommu state 1438 * @ce: context entry to walk upon 1439 * @start: IOVA address to start the walk 1440 * @end: IOVA range end address (start <= addr < end) 1441 * @info: page walking information struct 1442 */ 1443 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, 1444 uint64_t start, uint64_t end, 1445 vtd_page_walk_info *info, 1446 uint32_t pasid) 1447 { 1448 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1449 uint32_t level = vtd_get_iova_level(s, ce, pasid); 1450 1451 if (!vtd_iova_sl_range_check(s, start, ce, info->aw, pasid)) { 1452 return -VTD_FR_ADDR_BEYOND_MGAW; 1453 } 1454 1455 if (!vtd_iova_sl_range_check(s, end, ce, info->aw, pasid)) { 1456 /* Fix end so that it reaches the maximum */ 1457 end = vtd_iova_limit(s, ce, info->aw, pasid); 1458 } 1459 1460 return vtd_page_walk_level(addr, start, end, level, true, true, info); 1461 } 1462 1463 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, 1464 VTDRootEntry *re) 1465 { 1466 /* Legacy Mode reserved bits check */ 1467 if (!s->root_scalable && 1468 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1469 goto rsvd_err; 1470 1471 /* Scalable Mode reserved bits check */ 1472 if (s->root_scalable && 1473 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || 1474 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1475 goto rsvd_err; 1476 1477 return 0; 1478 1479 rsvd_err: 1480 error_report_once("%s: invalid root entry: hi=0x%"PRIx64 1481 ", lo=0x%"PRIx64, 1482 __func__, re->hi, re->lo); 1483 return -VTD_FR_ROOT_ENTRY_RSVD; 1484 } 1485 1486 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, 1487 VTDContextEntry *ce) 1488 { 1489 if (!s->root_scalable && 1490 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || 1491 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1492 error_report_once("%s: invalid context entry: hi=%"PRIx64 1493 ", lo=%"PRIx64" (reserved nonzero)", 1494 __func__, ce->hi, ce->lo); 1495 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1496 } 1497 1498 if (s->root_scalable && 1499 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || 1500 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || 1501 ce->val[2] || 1502 ce->val[3])) { 1503 error_report_once("%s: invalid context entry: val[3]=%"PRIx64 1504 ", val[2]=%"PRIx64 1505 ", val[1]=%"PRIx64 1506 ", val[0]=%"PRIx64" (reserved nonzero)", 1507 __func__, ce->val[3], ce->val[2], 1508 ce->val[1], ce->val[0]); 1509 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1510 } 1511 1512 return 0; 1513 } 1514 1515 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, 1516 VTDContextEntry *ce) 1517 { 1518 VTDPASIDEntry pe; 1519 1520 /* 1521 * Make sure in Scalable Mode, a present context entry 1522 * has valid rid2pasid setting, which includes valid 1523 * rid2pasid field and corresponding pasid entry setting 1524 */ 1525 return vtd_ce_get_rid2pasid_entry(s, ce, &pe, PCI_NO_PASID); 1526 } 1527 1528 /* Map a device to its corresponding domain (context-entry) */ 1529 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 1530 uint8_t devfn, VTDContextEntry *ce) 1531 { 1532 VTDRootEntry re; 1533 int ret_fr; 1534 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 1535 1536 ret_fr = vtd_get_root_entry(s, bus_num, &re); 1537 if (ret_fr) { 1538 return ret_fr; 1539 } 1540 1541 if (!vtd_root_entry_present(s, &re, devfn)) { 1542 /* Not error - it's okay we don't have root entry. */ 1543 trace_vtd_re_not_present(bus_num); 1544 return -VTD_FR_ROOT_ENTRY_P; 1545 } 1546 1547 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); 1548 if (ret_fr) { 1549 return ret_fr; 1550 } 1551 1552 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); 1553 if (ret_fr) { 1554 return ret_fr; 1555 } 1556 1557 if (!vtd_ce_present(ce)) { 1558 /* Not error - it's okay we don't have context entry. */ 1559 trace_vtd_ce_not_present(bus_num, devfn); 1560 return -VTD_FR_CONTEXT_ENTRY_P; 1561 } 1562 1563 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); 1564 if (ret_fr) { 1565 return ret_fr; 1566 } 1567 1568 /* Check if the programming of context-entry is valid */ 1569 if (!s->root_scalable && 1570 !vtd_is_sl_level_supported(s, vtd_ce_get_level(ce))) { 1571 error_report_once("%s: invalid context entry: hi=%"PRIx64 1572 ", lo=%"PRIx64" (level %d not supported)", 1573 __func__, ce->hi, ce->lo, 1574 vtd_ce_get_level(ce)); 1575 return -VTD_FR_CONTEXT_ENTRY_INV; 1576 } 1577 1578 if (!s->root_scalable) { 1579 /* Do translation type check */ 1580 if (!vtd_ce_type_check(x86_iommu, ce)) { 1581 /* Errors dumped in vtd_ce_type_check() */ 1582 return -VTD_FR_CONTEXT_ENTRY_INV; 1583 } 1584 } else { 1585 /* 1586 * Check if the programming of context-entry.rid2pasid 1587 * and corresponding pasid setting is valid, and thus 1588 * avoids to check pasid entry fetching result in future 1589 * helper function calling. 1590 */ 1591 ret_fr = vtd_ce_rid2pasid_check(s, ce); 1592 if (ret_fr) { 1593 return ret_fr; 1594 } 1595 } 1596 1597 return 0; 1598 } 1599 1600 static int vtd_sync_shadow_page_hook(const IOMMUTLBEvent *event, 1601 void *private) 1602 { 1603 memory_region_notify_iommu(private, 0, *event); 1604 return 0; 1605 } 1606 1607 static uint16_t vtd_get_domain_id(IntelIOMMUState *s, 1608 VTDContextEntry *ce, 1609 uint32_t pasid) 1610 { 1611 VTDPASIDEntry pe; 1612 1613 if (s->root_scalable) { 1614 vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1615 return VTD_SM_PASID_ENTRY_DID(pe.val[1]); 1616 } 1617 1618 return VTD_CONTEXT_ENTRY_DID(ce->hi); 1619 } 1620 1621 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1622 VTDContextEntry *ce, 1623 hwaddr addr, hwaddr size) 1624 { 1625 IntelIOMMUState *s = vtd_as->iommu_state; 1626 vtd_page_walk_info info = { 1627 .hook_fn = vtd_sync_shadow_page_hook, 1628 .private = (void *)&vtd_as->iommu, 1629 .notify_unmap = true, 1630 .aw = s->aw_bits, 1631 .as = vtd_as, 1632 .domain_id = vtd_get_domain_id(s, ce, vtd_as->pasid), 1633 }; 1634 1635 return vtd_page_walk(s, ce, addr, addr + size, &info, vtd_as->pasid); 1636 } 1637 1638 static int vtd_address_space_sync(VTDAddressSpace *vtd_as) 1639 { 1640 int ret; 1641 VTDContextEntry ce; 1642 IOMMUNotifier *n; 1643 1644 /* If no MAP notifier registered, we simply invalidate all the cache */ 1645 if (!vtd_as_has_map_notifier(vtd_as)) { 1646 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1647 memory_region_unmap_iommu_notifier_range(n); 1648 } 1649 return 0; 1650 } 1651 1652 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1653 pci_bus_num(vtd_as->bus), 1654 vtd_as->devfn, &ce); 1655 if (ret) { 1656 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1657 /* 1658 * It's a valid scenario to have a context entry that is 1659 * not present. For example, when a device is removed 1660 * from an existing domain then the context entry will be 1661 * zeroed by the guest before it was put into another 1662 * domain. When this happens, instead of synchronizing 1663 * the shadow pages we should invalidate all existing 1664 * mappings and notify the backends. 1665 */ 1666 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1667 vtd_address_space_unmap(vtd_as, n); 1668 } 1669 ret = 0; 1670 } 1671 return ret; 1672 } 1673 1674 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1675 } 1676 1677 /* 1678 * Check if specific device is configured to bypass address 1679 * translation for DMA requests. In Scalable Mode, bypass 1680 * 1st-level translation or 2nd-level translation, it depends 1681 * on PGTT setting. 1682 */ 1683 static bool vtd_dev_pt_enabled(IntelIOMMUState *s, VTDContextEntry *ce, 1684 uint32_t pasid) 1685 { 1686 VTDPASIDEntry pe; 1687 int ret; 1688 1689 if (s->root_scalable) { 1690 ret = vtd_ce_get_rid2pasid_entry(s, ce, &pe, pasid); 1691 if (ret) { 1692 /* 1693 * This error is guest triggerable. We should assumt PT 1694 * not enabled for safety. 1695 */ 1696 return false; 1697 } 1698 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); 1699 } 1700 1701 return (vtd_ce_get_type(ce) == VTD_CONTEXT_TT_PASS_THROUGH); 1702 1703 } 1704 1705 static bool vtd_as_pt_enabled(VTDAddressSpace *as) 1706 { 1707 IntelIOMMUState *s; 1708 VTDContextEntry ce; 1709 1710 assert(as); 1711 1712 s = as->iommu_state; 1713 if (vtd_dev_to_context_entry(s, pci_bus_num(as->bus), as->devfn, 1714 &ce)) { 1715 /* 1716 * Possibly failed to parse the context entry for some reason 1717 * (e.g., during init, or any guest configuration errors on 1718 * context entries). We should assume PT not enabled for 1719 * safety. 1720 */ 1721 return false; 1722 } 1723 1724 return vtd_dev_pt_enabled(s, &ce, as->pasid); 1725 } 1726 1727 /* Return whether the device is using IOMMU translation. */ 1728 static bool vtd_switch_address_space(VTDAddressSpace *as) 1729 { 1730 bool use_iommu, pt; 1731 1732 assert(as); 1733 1734 use_iommu = as->iommu_state->dmar_enabled && !vtd_as_pt_enabled(as); 1735 pt = as->iommu_state->dmar_enabled && vtd_as_pt_enabled(as); 1736 1737 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1738 VTD_PCI_SLOT(as->devfn), 1739 VTD_PCI_FUNC(as->devfn), 1740 use_iommu); 1741 1742 /* 1743 * It's possible that we reach here without BQL, e.g., when called 1744 * from vtd_pt_enable_fast_path(). However the memory APIs need 1745 * it. We'd better make sure we have had it already, or, take it. 1746 */ 1747 BQL_LOCK_GUARD(); 1748 1749 /* Turn off first then on the other */ 1750 if (use_iommu) { 1751 memory_region_set_enabled(&as->nodmar, false); 1752 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1753 /* 1754 * vt-d spec v3.4 3.14: 1755 * 1756 * """ 1757 * Requests-with-PASID with input address in range 0xFEEx_xxxx 1758 * are translated normally like any other request-with-PASID 1759 * through DMA-remapping hardware. 1760 * """ 1761 * 1762 * Need to disable ir for as with PASID. 1763 */ 1764 if (as->pasid != PCI_NO_PASID) { 1765 memory_region_set_enabled(&as->iommu_ir, false); 1766 } else { 1767 memory_region_set_enabled(&as->iommu_ir, true); 1768 } 1769 } else { 1770 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1771 memory_region_set_enabled(&as->nodmar, true); 1772 } 1773 1774 /* 1775 * vtd-spec v3.4 3.14: 1776 * 1777 * """ 1778 * Requests-with-PASID with input address in range 0xFEEx_xxxx are 1779 * translated normally like any other request-with-PASID through 1780 * DMA-remapping hardware. However, if such a request is processed 1781 * using pass-through translation, it will be blocked as described 1782 * in the paragraph below. 1783 * 1784 * Software must not program paging-structure entries to remap any 1785 * address to the interrupt address range. Untranslated requests 1786 * and translation requests that result in an address in the 1787 * interrupt range will be blocked with condition code LGN.4 or 1788 * SGN.8. 1789 * """ 1790 * 1791 * We enable per as memory region (iommu_ir_fault) for catching 1792 * the translation for interrupt range through PASID + PT. 1793 */ 1794 if (pt && as->pasid != PCI_NO_PASID) { 1795 memory_region_set_enabled(&as->iommu_ir_fault, true); 1796 } else { 1797 memory_region_set_enabled(&as->iommu_ir_fault, false); 1798 } 1799 1800 return use_iommu; 1801 } 1802 1803 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1804 { 1805 VTDAddressSpace *vtd_as; 1806 GHashTableIter iter; 1807 1808 g_hash_table_iter_init(&iter, s->vtd_address_spaces); 1809 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_as)) { 1810 vtd_switch_address_space(vtd_as); 1811 } 1812 } 1813 1814 static const bool vtd_qualified_faults[] = { 1815 [VTD_FR_RESERVED] = false, 1816 [VTD_FR_ROOT_ENTRY_P] = false, 1817 [VTD_FR_CONTEXT_ENTRY_P] = true, 1818 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1819 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1820 [VTD_FR_WRITE] = true, 1821 [VTD_FR_READ] = true, 1822 [VTD_FR_PAGING_ENTRY_INV] = true, 1823 [VTD_FR_ROOT_TABLE_INV] = false, 1824 [VTD_FR_CONTEXT_TABLE_INV] = false, 1825 [VTD_FR_INTERRUPT_ADDR] = true, 1826 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1827 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1828 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1829 [VTD_FR_PASID_DIR_ACCESS_ERR] = false, 1830 [VTD_FR_PASID_DIR_ENTRY_P] = true, 1831 [VTD_FR_PASID_TABLE_ACCESS_ERR] = false, 1832 [VTD_FR_PASID_ENTRY_P] = true, 1833 [VTD_FR_PASID_TABLE_ENTRY_INV] = true, 1834 [VTD_FR_FS_PAGING_ENTRY_INV] = true, 1835 [VTD_FR_FS_PAGING_ENTRY_P] = true, 1836 [VTD_FR_FS_PAGING_ENTRY_RSVD] = true, 1837 [VTD_FR_PASID_ENTRY_FSPTPTR_INV] = true, 1838 [VTD_FR_FS_NON_CANONICAL] = true, 1839 [VTD_FR_FS_PAGING_ENTRY_US] = true, 1840 [VTD_FR_SM_WRITE] = true, 1841 [VTD_FR_SM_INTERRUPT_ADDR] = true, 1842 [VTD_FR_FS_BIT_UPDATE_FAILED] = true, 1843 [VTD_FR_MAX] = false, 1844 }; 1845 1846 /* To see if a fault condition is "qualified", which is reported to software 1847 * only if the FPD field in the context-entry used to process the faulting 1848 * request is 0. 1849 */ 1850 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1851 { 1852 return vtd_qualified_faults[fault]; 1853 } 1854 1855 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1856 { 1857 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1858 } 1859 1860 static gboolean vtd_find_as_by_sid_and_pasid(gpointer key, gpointer value, 1861 gpointer user_data) 1862 { 1863 struct vtd_as_key *as_key = (struct vtd_as_key *)key; 1864 struct vtd_as_raw_key *target = (struct vtd_as_raw_key *)user_data; 1865 uint16_t sid = PCI_BUILD_BDF(pci_bus_num(as_key->bus), as_key->devfn); 1866 1867 return (as_key->pasid == target->pasid) && (sid == target->sid); 1868 } 1869 1870 static VTDAddressSpace *vtd_get_as_by_sid_and_pasid(IntelIOMMUState *s, 1871 uint16_t sid, 1872 uint32_t pasid) 1873 { 1874 struct vtd_as_raw_key key = { 1875 .sid = sid, 1876 .pasid = pasid 1877 }; 1878 1879 return g_hash_table_find(s->vtd_address_spaces, 1880 vtd_find_as_by_sid_and_pasid, &key); 1881 } 1882 1883 static VTDAddressSpace *vtd_get_as_by_sid(IntelIOMMUState *s, uint16_t sid) 1884 { 1885 return vtd_get_as_by_sid_and_pasid(s, sid, PCI_NO_PASID); 1886 } 1887 1888 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1889 { 1890 VTDAddressSpace *vtd_as; 1891 bool success = false; 1892 1893 vtd_as = vtd_get_as_by_sid(s, source_id); 1894 if (!vtd_as) { 1895 goto out; 1896 } 1897 1898 if (vtd_switch_address_space(vtd_as) == false) { 1899 /* We switched off IOMMU region successfully. */ 1900 success = true; 1901 } 1902 1903 out: 1904 trace_vtd_pt_enable_fast_path(source_id, success); 1905 } 1906 1907 /* 1908 * Rsvd field masks for fpte: 1909 * vtd_fpte_rsvd 4k pages 1910 * vtd_fpte_rsvd_large large pages 1911 * 1912 * We support only 4-level page tables. 1913 */ 1914 #define VTD_FPTE_RSVD_LEN 5 1915 static uint64_t vtd_fpte_rsvd[VTD_FPTE_RSVD_LEN]; 1916 static uint64_t vtd_fpte_rsvd_large[VTD_FPTE_RSVD_LEN]; 1917 1918 static bool vtd_flpte_nonzero_rsvd(uint64_t flpte, uint32_t level) 1919 { 1920 uint64_t rsvd_mask; 1921 1922 /* 1923 * We should have caught a guest-mis-programmed level earlier, 1924 * via vtd_is_fl_level_supported. 1925 */ 1926 assert(level < VTD_FPTE_RSVD_LEN); 1927 /* 1928 * Zero level doesn't exist. The smallest level is VTD_PT_LEVEL=1 and 1929 * checked by vtd_is_last_pte(). 1930 */ 1931 assert(level); 1932 1933 if ((level == VTD_PD_LEVEL || level == VTD_PDP_LEVEL) && 1934 (flpte & VTD_PT_PAGE_SIZE_MASK)) { 1935 /* large page */ 1936 rsvd_mask = vtd_fpte_rsvd_large[level]; 1937 } else { 1938 rsvd_mask = vtd_fpte_rsvd[level]; 1939 } 1940 1941 return flpte & rsvd_mask; 1942 } 1943 1944 static inline bool vtd_flpte_present(uint64_t flpte) 1945 { 1946 return !!(flpte & VTD_FL_P); 1947 } 1948 1949 /* Return true if IOVA is canonical, otherwise false. */ 1950 static bool vtd_iova_fl_check_canonical(IntelIOMMUState *s, uint64_t iova, 1951 VTDContextEntry *ce, uint32_t pasid) 1952 { 1953 uint64_t iova_limit = vtd_iova_limit(s, ce, s->aw_bits, pasid); 1954 uint64_t upper_bits_mask = ~(iova_limit - 1); 1955 uint64_t upper_bits = iova & upper_bits_mask; 1956 bool msb = ((iova & (iova_limit >> 1)) != 0); 1957 1958 if (msb) { 1959 return upper_bits == upper_bits_mask; 1960 } else { 1961 return !upper_bits; 1962 } 1963 } 1964 1965 static MemTxResult vtd_set_flag_in_pte(dma_addr_t base_addr, uint32_t index, 1966 uint64_t pte, uint64_t flag) 1967 { 1968 if (pte & flag) { 1969 return MEMTX_OK; 1970 } 1971 pte |= flag; 1972 pte = cpu_to_le64(pte); 1973 return dma_memory_write(&address_space_memory, 1974 base_addr + index * sizeof(pte), 1975 &pte, sizeof(pte), 1976 MEMTXATTRS_UNSPECIFIED); 1977 } 1978 1979 /* 1980 * Given the @iova, get relevant @flptep. @flpte_level will be the last level 1981 * of the translation, can be used for deciding the size of large page. 1982 */ 1983 static int vtd_iova_to_flpte(IntelIOMMUState *s, VTDContextEntry *ce, 1984 uint64_t iova, bool is_write, 1985 uint64_t *flptep, uint32_t *flpte_level, 1986 bool *reads, bool *writes, uint8_t aw_bits, 1987 uint32_t pasid) 1988 { 1989 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce, pasid); 1990 uint32_t offset; 1991 uint64_t flpte, flag_ad = VTD_FL_A; 1992 *flpte_level = vtd_get_iova_level(s, ce, pasid); 1993 1994 if (!vtd_iova_fl_check_canonical(s, iova, ce, pasid)) { 1995 error_report_once("%s: detected non canonical IOVA (iova=0x%" PRIx64 "," 1996 "pasid=0x%" PRIx32 ")", __func__, iova, pasid); 1997 return -VTD_FR_FS_NON_CANONICAL; 1998 } 1999 2000 while (true) { 2001 offset = vtd_iova_level_offset(iova, *flpte_level); 2002 flpte = vtd_get_pte(addr, offset); 2003 2004 if (flpte == (uint64_t)-1) { 2005 if (*flpte_level == vtd_get_iova_level(s, ce, pasid)) { 2006 /* Invalid programming of pasid-entry */ 2007 return -VTD_FR_PASID_ENTRY_FSPTPTR_INV; 2008 } else { 2009 return -VTD_FR_FS_PAGING_ENTRY_INV; 2010 } 2011 } 2012 2013 if (!vtd_flpte_present(flpte)) { 2014 *reads = false; 2015 *writes = false; 2016 return -VTD_FR_FS_PAGING_ENTRY_P; 2017 } 2018 2019 /* No emulated device supports supervisor privilege request yet */ 2020 if (!(flpte & VTD_FL_US)) { 2021 *reads = false; 2022 *writes = false; 2023 return -VTD_FR_FS_PAGING_ENTRY_US; 2024 } 2025 2026 *reads = true; 2027 *writes = (*writes) && (flpte & VTD_FL_RW); 2028 if (is_write && !(flpte & VTD_FL_RW)) { 2029 return -VTD_FR_SM_WRITE; 2030 } 2031 if (vtd_flpte_nonzero_rsvd(flpte, *flpte_level)) { 2032 error_report_once("%s: detected flpte reserved non-zero " 2033 "iova=0x%" PRIx64 ", level=0x%" PRIx32 2034 "flpte=0x%" PRIx64 ", pasid=0x%" PRIX32 ")", 2035 __func__, iova, *flpte_level, flpte, pasid); 2036 return -VTD_FR_FS_PAGING_ENTRY_RSVD; 2037 } 2038 2039 if (vtd_is_last_pte(flpte, *flpte_level) && is_write) { 2040 flag_ad |= VTD_FL_D; 2041 } 2042 2043 if (vtd_set_flag_in_pte(addr, offset, flpte, flag_ad) != MEMTX_OK) { 2044 return -VTD_FR_FS_BIT_UPDATE_FAILED; 2045 } 2046 2047 if (vtd_is_last_pte(flpte, *flpte_level)) { 2048 *flptep = flpte; 2049 return 0; 2050 } 2051 2052 addr = vtd_get_pte_addr(flpte, aw_bits); 2053 (*flpte_level)--; 2054 } 2055 } 2056 2057 static void vtd_report_fault(IntelIOMMUState *s, 2058 int err, bool is_fpd_set, 2059 uint16_t source_id, 2060 hwaddr addr, 2061 bool is_write, 2062 bool is_pasid, 2063 uint32_t pasid) 2064 { 2065 if (is_fpd_set && vtd_is_qualified_fault(err)) { 2066 trace_vtd_fault_disabled(); 2067 } else { 2068 vtd_report_dmar_fault(s, source_id, addr, err, is_write, 2069 is_pasid, pasid); 2070 } 2071 } 2072 2073 /* Map dev to context-entry then do a paging-structures walk to do a iommu 2074 * translation. 2075 * 2076 * Called from RCU critical section. 2077 * 2078 * @bus_num: The bus number 2079 * @devfn: The devfn, which is the combined of device and function number 2080 * @is_write: The access is a write operation 2081 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 2082 * 2083 * Returns true if translation is successful, otherwise false. 2084 */ 2085 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 2086 uint8_t devfn, hwaddr addr, bool is_write, 2087 IOMMUTLBEntry *entry) 2088 { 2089 IntelIOMMUState *s = vtd_as->iommu_state; 2090 VTDContextEntry ce; 2091 uint8_t bus_num = pci_bus_num(bus); 2092 VTDContextCacheEntry *cc_entry; 2093 uint64_t pte, page_mask; 2094 uint32_t level = UINT32_MAX; 2095 uint32_t pasid = vtd_as->pasid; 2096 uint16_t source_id = PCI_BUILD_BDF(bus_num, devfn); 2097 int ret_fr; 2098 bool is_fpd_set = false; 2099 bool reads = true; 2100 bool writes = true; 2101 uint8_t access_flags, pgtt; 2102 bool rid2pasid = (pasid == PCI_NO_PASID) && s->root_scalable; 2103 VTDIOTLBEntry *iotlb_entry; 2104 uint64_t xlat, size; 2105 2106 /* 2107 * We have standalone memory region for interrupt addresses, we 2108 * should never receive translation requests in this region. 2109 */ 2110 assert(!vtd_is_interrupt_addr(addr)); 2111 2112 vtd_iommu_lock(s); 2113 2114 cc_entry = &vtd_as->context_cache_entry; 2115 2116 /* Try to fetch pte from IOTLB, we don't need RID2PASID logic */ 2117 if (!rid2pasid) { 2118 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 2119 if (iotlb_entry) { 2120 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte, 2121 iotlb_entry->domain_id); 2122 pte = iotlb_entry->pte; 2123 access_flags = iotlb_entry->access_flags; 2124 page_mask = iotlb_entry->mask; 2125 goto out; 2126 } 2127 } 2128 2129 /* Try to fetch context-entry from cache first */ 2130 if (cc_entry->context_cache_gen == s->context_cache_gen) { 2131 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 2132 cc_entry->context_entry.lo, 2133 cc_entry->context_cache_gen); 2134 ce = cc_entry->context_entry; 2135 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 2136 if (!is_fpd_set && s->root_scalable) { 2137 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 2138 if (ret_fr) { 2139 vtd_report_fault(s, -ret_fr, is_fpd_set, 2140 source_id, addr, is_write, 2141 false, 0); 2142 goto error; 2143 } 2144 } 2145 } else { 2146 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 2147 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 2148 if (!ret_fr && !is_fpd_set && s->root_scalable) { 2149 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, pasid); 2150 } 2151 if (ret_fr) { 2152 vtd_report_fault(s, -ret_fr, is_fpd_set, 2153 source_id, addr, is_write, 2154 false, 0); 2155 goto error; 2156 } 2157 /* Update context-cache */ 2158 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 2159 cc_entry->context_cache_gen, 2160 s->context_cache_gen); 2161 cc_entry->context_entry = ce; 2162 cc_entry->context_cache_gen = s->context_cache_gen; 2163 } 2164 2165 if (rid2pasid) { 2166 pasid = VTD_CE_GET_RID2PASID(&ce); 2167 } 2168 2169 /* 2170 * We don't need to translate for pass-through context entries. 2171 * Also, let's ignore IOTLB caching as well for PT devices. 2172 */ 2173 if (vtd_dev_pt_enabled(s, &ce, pasid)) { 2174 entry->iova = addr & VTD_PAGE_MASK_4K; 2175 entry->translated_addr = entry->iova; 2176 entry->addr_mask = ~VTD_PAGE_MASK_4K; 2177 entry->perm = IOMMU_RW; 2178 trace_vtd_translate_pt(source_id, entry->iova); 2179 2180 /* 2181 * When this happens, it means firstly caching-mode is not 2182 * enabled, and this is the first passthrough translation for 2183 * the device. Let's enable the fast path for passthrough. 2184 * 2185 * When passthrough is disabled again for the device, we can 2186 * capture it via the context entry invalidation, then the 2187 * IOMMU region can be swapped back. 2188 */ 2189 vtd_pt_enable_fast_path(s, source_id); 2190 vtd_iommu_unlock(s); 2191 return true; 2192 } 2193 2194 /* Try to fetch pte from IOTLB for RID2PASID slow path */ 2195 if (rid2pasid) { 2196 iotlb_entry = vtd_lookup_iotlb(s, source_id, pasid, addr); 2197 if (iotlb_entry) { 2198 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->pte, 2199 iotlb_entry->domain_id); 2200 pte = iotlb_entry->pte; 2201 access_flags = iotlb_entry->access_flags; 2202 page_mask = iotlb_entry->mask; 2203 goto out; 2204 } 2205 } 2206 2207 if (s->flts && s->root_scalable) { 2208 ret_fr = vtd_iova_to_flpte(s, &ce, addr, is_write, &pte, &level, 2209 &reads, &writes, s->aw_bits, pasid); 2210 pgtt = VTD_SM_PASID_ENTRY_FLT; 2211 } else { 2212 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &pte, &level, 2213 &reads, &writes, s->aw_bits, pasid); 2214 pgtt = VTD_SM_PASID_ENTRY_SLT; 2215 } 2216 if (!ret_fr) { 2217 xlat = vtd_get_pte_addr(pte, s->aw_bits); 2218 size = ~vtd_pt_level_page_mask(level) + 1; 2219 2220 /* 2221 * Per VT-d spec 4.1 section 3.15: Untranslated requests and translation 2222 * requests that result in an address in the interrupt range will be 2223 * blocked with condition code LGN.4 or SGN.8. 2224 */ 2225 if ((xlat <= VTD_INTERRUPT_ADDR_LAST && 2226 xlat + size - 1 >= VTD_INTERRUPT_ADDR_FIRST)) { 2227 error_report_once("%s: xlat address is in interrupt range " 2228 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 2229 "pte=0x%" PRIx64 ", write=%d, " 2230 "xlat=0x%" PRIx64 ", size=0x%" PRIx64 ", " 2231 "pasid=0x%" PRIx32 ")", 2232 __func__, addr, level, pte, is_write, 2233 xlat, size, pasid); 2234 ret_fr = s->scalable_mode ? -VTD_FR_SM_INTERRUPT_ADDR : 2235 -VTD_FR_INTERRUPT_ADDR; 2236 } 2237 } 2238 2239 if (ret_fr) { 2240 vtd_report_fault(s, -ret_fr, is_fpd_set, source_id, 2241 addr, is_write, pasid != PCI_NO_PASID, pasid); 2242 goto error; 2243 } 2244 2245 page_mask = vtd_pt_level_page_mask(level); 2246 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 2247 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce, pasid), 2248 addr, pte, access_flags, level, pasid, pgtt); 2249 out: 2250 vtd_iommu_unlock(s); 2251 entry->iova = addr & page_mask; 2252 entry->translated_addr = vtd_get_pte_addr(pte, s->aw_bits) & page_mask; 2253 entry->addr_mask = ~page_mask; 2254 entry->perm = (is_write ? access_flags : (access_flags & (~IOMMU_WO))); 2255 return true; 2256 2257 error: 2258 vtd_iommu_unlock(s); 2259 entry->iova = 0; 2260 entry->translated_addr = 0; 2261 /* 2262 * Set the mask for ATS (the range must be present even when the 2263 * translation fails : PCIe rev 5 10.2.3.5) 2264 */ 2265 entry->addr_mask = (level != UINT32_MAX) ? 2266 (~vtd_pt_level_page_mask(level)) : (~VTD_PAGE_MASK_4K); 2267 entry->perm = IOMMU_NONE; 2268 return false; 2269 } 2270 2271 static void vtd_root_table_setup(IntelIOMMUState *s) 2272 { 2273 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 2274 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 2275 2276 vtd_update_scalable_state(s); 2277 2278 trace_vtd_reg_dmar_root(s->root, s->root_scalable); 2279 } 2280 2281 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 2282 uint32_t index, uint32_t mask) 2283 { 2284 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 2285 } 2286 2287 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 2288 { 2289 uint64_t value = 0; 2290 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 2291 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 2292 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 2293 s->intr_eime = value & VTD_IRTA_EIME; 2294 2295 /* Notify global invalidation */ 2296 vtd_iec_notify_all(s, true, 0, 0); 2297 2298 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 2299 } 2300 2301 static void vtd_iommu_replay_all(IntelIOMMUState *s) 2302 { 2303 VTDAddressSpace *vtd_as; 2304 2305 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2306 vtd_address_space_sync(vtd_as); 2307 } 2308 } 2309 2310 static void vtd_context_global_invalidate(IntelIOMMUState *s) 2311 { 2312 trace_vtd_inv_desc_cc_global(); 2313 /* Protects context cache */ 2314 vtd_iommu_lock(s); 2315 s->context_cache_gen++; 2316 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 2317 vtd_reset_context_cache_locked(s); 2318 } 2319 vtd_iommu_unlock(s); 2320 vtd_address_space_refresh_all(s); 2321 /* 2322 * From VT-d spec 6.5.2.1, a global context entry invalidation 2323 * should be followed by a IOTLB global invalidation, so we should 2324 * be safe even without this. Hoewever, let's replay the region as 2325 * well to be safer, and go back here when we need finer tunes for 2326 * VT-d emulation codes. 2327 */ 2328 vtd_iommu_replay_all(s); 2329 } 2330 2331 /* Do a context-cache device-selective invalidation. 2332 * @func_mask: FM field after shifting 2333 */ 2334 static void vtd_context_device_invalidate(IntelIOMMUState *s, 2335 uint16_t source_id, 2336 uint16_t func_mask) 2337 { 2338 GHashTableIter as_it; 2339 uint16_t mask; 2340 VTDAddressSpace *vtd_as; 2341 uint8_t bus_n, devfn; 2342 2343 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 2344 2345 switch (func_mask & 3) { 2346 case 0: 2347 mask = 0; /* No bits in the SID field masked */ 2348 break; 2349 case 1: 2350 mask = 4; /* Mask bit 2 in the SID field */ 2351 break; 2352 case 2: 2353 mask = 6; /* Mask bit 2:1 in the SID field */ 2354 break; 2355 case 3: 2356 mask = 7; /* Mask bit 2:0 in the SID field */ 2357 break; 2358 default: 2359 g_assert_not_reached(); 2360 } 2361 mask = ~mask; 2362 2363 bus_n = VTD_SID_TO_BUS(source_id); 2364 devfn = VTD_SID_TO_DEVFN(source_id); 2365 2366 g_hash_table_iter_init(&as_it, s->vtd_address_spaces); 2367 while (g_hash_table_iter_next(&as_it, NULL, (void **)&vtd_as)) { 2368 if ((pci_bus_num(vtd_as->bus) == bus_n) && 2369 (vtd_as->devfn & mask) == (devfn & mask)) { 2370 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(vtd_as->devfn), 2371 VTD_PCI_FUNC(vtd_as->devfn)); 2372 vtd_iommu_lock(s); 2373 vtd_as->context_cache_entry.context_cache_gen = 0; 2374 vtd_iommu_unlock(s); 2375 /* 2376 * Do switch address space when needed, in case if the 2377 * device passthrough bit is switched. 2378 */ 2379 vtd_switch_address_space(vtd_as); 2380 /* 2381 * So a device is moving out of (or moving into) a 2382 * domain, resync the shadow page table. 2383 * This won't bring bad even if we have no such 2384 * notifier registered - the IOMMU notification 2385 * framework will skip MAP notifications if that 2386 * happened. 2387 */ 2388 vtd_address_space_sync(vtd_as); 2389 } 2390 } 2391 } 2392 2393 /* Context-cache invalidation 2394 * Returns the Context Actual Invalidation Granularity. 2395 * @val: the content of the CCMD_REG 2396 */ 2397 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 2398 { 2399 uint64_t caig; 2400 uint64_t type = val & VTD_CCMD_CIRG_MASK; 2401 2402 switch (type) { 2403 case VTD_CCMD_DOMAIN_INVL: 2404 /* Fall through */ 2405 case VTD_CCMD_GLOBAL_INVL: 2406 caig = VTD_CCMD_GLOBAL_INVL_A; 2407 vtd_context_global_invalidate(s); 2408 break; 2409 2410 case VTD_CCMD_DEVICE_INVL: 2411 caig = VTD_CCMD_DEVICE_INVL_A; 2412 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 2413 break; 2414 2415 default: 2416 error_report_once("%s: invalid context: 0x%" PRIx64, 2417 __func__, val); 2418 caig = 0; 2419 } 2420 return caig; 2421 } 2422 2423 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 2424 { 2425 trace_vtd_inv_desc_iotlb_global(); 2426 vtd_reset_iotlb(s); 2427 vtd_iommu_replay_all(s); 2428 } 2429 2430 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 2431 { 2432 VTDContextEntry ce; 2433 VTDAddressSpace *vtd_as; 2434 2435 trace_vtd_inv_desc_iotlb_domain(domain_id); 2436 2437 vtd_iommu_lock(s); 2438 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 2439 &domain_id); 2440 vtd_iommu_unlock(s); 2441 2442 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2443 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2444 vtd_as->devfn, &ce) && 2445 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2446 vtd_address_space_sync(vtd_as); 2447 } 2448 } 2449 } 2450 2451 /* 2452 * There is no pasid field in iotlb invalidation descriptor, so PCI_NO_PASID 2453 * is passed as parameter. Piotlb invalidation supports pasid, pasid in its 2454 * descriptor is passed which should not be PCI_NO_PASID. 2455 */ 2456 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 2457 uint16_t domain_id, hwaddr addr, 2458 uint8_t am, uint32_t pasid) 2459 { 2460 VTDAddressSpace *vtd_as; 2461 VTDContextEntry ce; 2462 int ret; 2463 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 2464 2465 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 2466 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2467 vtd_as->devfn, &ce); 2468 if (!ret && domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2469 uint32_t rid2pasid = PCI_NO_PASID; 2470 2471 if (s->root_scalable) { 2472 rid2pasid = VTD_CE_GET_RID2PASID(&ce); 2473 } 2474 2475 /* 2476 * In legacy mode, vtd_as->pasid == pasid is always true. 2477 * In scalable mode, for vtd address space backing a PCI 2478 * device without pasid, needs to compare pasid with 2479 * rid2pasid of this device. 2480 */ 2481 if (!(vtd_as->pasid == pasid || 2482 (vtd_as->pasid == PCI_NO_PASID && pasid == rid2pasid))) { 2483 continue; 2484 } 2485 2486 if (vtd_as_has_map_notifier(vtd_as)) { 2487 /* 2488 * When stage-1 translation is off, as long as we have MAP 2489 * notifications registered in any of our IOMMU notifiers, 2490 * we need to sync the shadow page table. Otherwise VFIO 2491 * device attaches to nested page table instead of shadow 2492 * page table, so no need to sync. 2493 */ 2494 if (!s->flts || !s->root_scalable) { 2495 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 2496 } 2497 } else { 2498 /* 2499 * For UNMAP-only notifiers, we don't need to walk the 2500 * page tables. We just deliver the PSI down to 2501 * invalidate caches. 2502 */ 2503 const IOMMUTLBEvent event = { 2504 .type = IOMMU_NOTIFIER_UNMAP, 2505 .entry = { 2506 .target_as = &address_space_memory, 2507 .iova = addr, 2508 .translated_addr = 0, 2509 .addr_mask = size - 1, 2510 .perm = IOMMU_NONE, 2511 .pasid = vtd_as->pasid, 2512 }, 2513 }; 2514 memory_region_notify_iommu(&vtd_as->iommu, 0, event); 2515 } 2516 } 2517 } 2518 } 2519 2520 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 2521 hwaddr addr, uint8_t am) 2522 { 2523 VTDIOTLBPageInvInfo info; 2524 2525 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 2526 2527 assert(am <= VTD_MAMV); 2528 info.domain_id = domain_id; 2529 info.addr = addr; 2530 info.mask = ~((1 << am) - 1); 2531 vtd_iommu_lock(s); 2532 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 2533 vtd_iommu_unlock(s); 2534 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, PCI_NO_PASID); 2535 } 2536 2537 /* Flush IOTLB 2538 * Returns the IOTLB Actual Invalidation Granularity. 2539 * @val: the content of the IOTLB_REG 2540 */ 2541 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 2542 { 2543 uint64_t iaig; 2544 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 2545 uint16_t domain_id; 2546 hwaddr addr; 2547 uint8_t am; 2548 2549 switch (type) { 2550 case VTD_TLB_GLOBAL_FLUSH: 2551 iaig = VTD_TLB_GLOBAL_FLUSH_A; 2552 vtd_iotlb_global_invalidate(s); 2553 break; 2554 2555 case VTD_TLB_DSI_FLUSH: 2556 domain_id = VTD_TLB_DID(val); 2557 iaig = VTD_TLB_DSI_FLUSH_A; 2558 vtd_iotlb_domain_invalidate(s, domain_id); 2559 break; 2560 2561 case VTD_TLB_PSI_FLUSH: 2562 domain_id = VTD_TLB_DID(val); 2563 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 2564 am = VTD_IVA_AM(addr); 2565 addr = VTD_IVA_ADDR(addr); 2566 if (am > VTD_MAMV) { 2567 error_report_once("%s: address mask overflow: 0x%" PRIx64, 2568 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 2569 iaig = 0; 2570 break; 2571 } 2572 iaig = VTD_TLB_PSI_FLUSH_A; 2573 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2574 break; 2575 2576 default: 2577 error_report_once("%s: invalid granularity: 0x%" PRIx64, 2578 __func__, val); 2579 iaig = 0; 2580 } 2581 return iaig; 2582 } 2583 2584 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 2585 2586 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 2587 { 2588 return s->qi_enabled && (s->iq_tail == s->iq_head) && 2589 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 2590 } 2591 2592 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 2593 { 2594 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 2595 2596 trace_vtd_inv_qi_enable(en); 2597 2598 if (en) { 2599 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 2600 /* 2^(x+8) entries */ 2601 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); 2602 s->qi_enabled = true; 2603 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 2604 /* Ok - report back to driver */ 2605 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 2606 2607 if (s->iq_tail != 0) { 2608 /* 2609 * This is a spec violation but Windows guests are known to set up 2610 * Queued Invalidation this way so we allow the write and process 2611 * Invalidation Descriptors right away. 2612 */ 2613 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 2614 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2615 vtd_fetch_inv_desc(s); 2616 } 2617 } 2618 } else { 2619 if (vtd_queued_inv_disable_check(s)) { 2620 /* disable Queued Invalidation */ 2621 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 2622 s->iq_head = 0; 2623 s->qi_enabled = false; 2624 /* Ok - report back to driver */ 2625 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 2626 } else { 2627 error_report_once("%s: detected improper state when disable QI " 2628 "(head=0x%x, tail=0x%x, last_type=%d)", 2629 __func__, 2630 s->iq_head, s->iq_tail, s->iq_last_desc_type); 2631 } 2632 } 2633 } 2634 2635 /* Set Root Table Pointer */ 2636 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 2637 { 2638 vtd_root_table_setup(s); 2639 /* Ok - report back to driver */ 2640 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 2641 vtd_reset_caches(s); 2642 vtd_address_space_refresh_all(s); 2643 } 2644 2645 /* Set Interrupt Remap Table Pointer */ 2646 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 2647 { 2648 vtd_interrupt_remap_table_setup(s); 2649 /* Ok - report back to driver */ 2650 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 2651 } 2652 2653 /* Handle Translation Enable/Disable */ 2654 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 2655 { 2656 if (s->dmar_enabled == en) { 2657 return; 2658 } 2659 2660 trace_vtd_dmar_enable(en); 2661 2662 if (en) { 2663 s->dmar_enabled = true; 2664 /* Ok - report back to driver */ 2665 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 2666 } else { 2667 s->dmar_enabled = false; 2668 2669 /* Clear the index of Fault Recording Register */ 2670 s->next_frcd_reg = 0; 2671 /* Ok - report back to driver */ 2672 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 2673 } 2674 2675 vtd_reset_caches(s); 2676 vtd_address_space_refresh_all(s); 2677 } 2678 2679 /* Handle Interrupt Remap Enable/Disable */ 2680 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 2681 { 2682 trace_vtd_ir_enable(en); 2683 2684 if (en) { 2685 s->intr_enabled = true; 2686 /* Ok - report back to driver */ 2687 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 2688 } else { 2689 s->intr_enabled = false; 2690 /* Ok - report back to driver */ 2691 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 2692 } 2693 } 2694 2695 /* Handle write to Global Command Register */ 2696 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 2697 { 2698 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 2699 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 2700 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 2701 uint32_t changed = status ^ val; 2702 2703 trace_vtd_reg_write_gcmd(status, val); 2704 if ((changed & VTD_GCMD_TE) && s->dma_translation) { 2705 /* Translation enable/disable */ 2706 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 2707 } 2708 if (val & VTD_GCMD_SRTP) { 2709 /* Set/update the root-table pointer */ 2710 vtd_handle_gcmd_srtp(s); 2711 } 2712 if (changed & VTD_GCMD_QIE) { 2713 /* Queued Invalidation Enable */ 2714 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 2715 } 2716 if (val & VTD_GCMD_SIRTP) { 2717 /* Set/update the interrupt remapping root-table pointer */ 2718 vtd_handle_gcmd_sirtp(s); 2719 } 2720 if ((changed & VTD_GCMD_IRE) && 2721 x86_iommu_ir_supported(x86_iommu)) { 2722 /* Interrupt remap enable/disable */ 2723 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 2724 } 2725 } 2726 2727 /* Handle write to Context Command Register */ 2728 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 2729 { 2730 uint64_t ret; 2731 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 2732 2733 /* Context-cache invalidation request */ 2734 if (val & VTD_CCMD_ICC) { 2735 if (s->qi_enabled) { 2736 error_report_once("Queued Invalidation enabled, " 2737 "should not use register-based invalidation"); 2738 return; 2739 } 2740 ret = vtd_context_cache_invalidate(s, val); 2741 /* Invalidation completed. Change something to show */ 2742 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 2743 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 2744 ret); 2745 } 2746 } 2747 2748 /* Handle write to IOTLB Invalidation Register */ 2749 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 2750 { 2751 uint64_t ret; 2752 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 2753 2754 /* IOTLB invalidation request */ 2755 if (val & VTD_TLB_IVT) { 2756 if (s->qi_enabled) { 2757 error_report_once("Queued Invalidation enabled, " 2758 "should not use register-based invalidation"); 2759 return; 2760 } 2761 ret = vtd_iotlb_flush(s, val); 2762 /* Invalidation completed. Change something to show */ 2763 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 2764 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 2765 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 2766 } 2767 } 2768 2769 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 2770 static bool vtd_get_inv_desc(IntelIOMMUState *s, 2771 VTDInvDesc *inv_desc) 2772 { 2773 dma_addr_t base_addr = s->iq; 2774 uint32_t offset = s->iq_head; 2775 uint32_t dw = s->iq_dw ? 32 : 16; 2776 dma_addr_t addr = base_addr + offset * dw; 2777 2778 if (dma_memory_read(&address_space_memory, addr, 2779 inv_desc, dw, MEMTXATTRS_UNSPECIFIED)) { 2780 error_report_once("Read INV DESC failed."); 2781 return false; 2782 } 2783 inv_desc->lo = le64_to_cpu(inv_desc->lo); 2784 inv_desc->hi = le64_to_cpu(inv_desc->hi); 2785 if (dw == 32) { 2786 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); 2787 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); 2788 } 2789 return true; 2790 } 2791 2792 static bool vtd_inv_desc_reserved_check(IntelIOMMUState *s, 2793 VTDInvDesc *inv_desc, 2794 uint64_t mask[4], bool dw, 2795 const char *func_name, 2796 const char *desc_type) 2797 { 2798 if (s->iq_dw) { 2799 if (inv_desc->val[0] & mask[0] || inv_desc->val[1] & mask[1] || 2800 inv_desc->val[2] & mask[2] || inv_desc->val[3] & mask[3]) { 2801 error_report("%s: invalid %s desc val[3]: 0x%"PRIx64 2802 " val[2]: 0x%"PRIx64" val[1]=0x%"PRIx64 2803 " val[0]=0x%"PRIx64" (reserved nonzero)", 2804 func_name, desc_type, inv_desc->val[3], 2805 inv_desc->val[2], inv_desc->val[1], 2806 inv_desc->val[0]); 2807 return false; 2808 } 2809 } else { 2810 if (dw) { 2811 error_report("%s: 256-bit %s desc in 128-bit invalidation queue", 2812 func_name, desc_type); 2813 return false; 2814 } 2815 2816 if (inv_desc->lo & mask[0] || inv_desc->hi & mask[1]) { 2817 error_report("%s: invalid %s desc: hi=%"PRIx64", lo=%"PRIx64 2818 " (reserved nonzero)", func_name, desc_type, 2819 inv_desc->hi, inv_desc->lo); 2820 return false; 2821 } 2822 } 2823 2824 return true; 2825 } 2826 2827 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2828 { 2829 uint64_t mask[4] = {VTD_INV_DESC_WAIT_RSVD_LO, VTD_INV_DESC_WAIT_RSVD_HI, 2830 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 2831 2832 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, 2833 __func__, "wait")) { 2834 return false; 2835 } 2836 2837 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 2838 /* Status Write */ 2839 uint32_t status_data = (uint32_t)(inv_desc->lo >> 2840 VTD_INV_DESC_WAIT_DATA_SHIFT); 2841 2842 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 2843 2844 /* FIXME: need to be masked with HAW? */ 2845 dma_addr_t status_addr = inv_desc->hi; 2846 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 2847 status_data = cpu_to_le32(status_data); 2848 if (dma_memory_write(&address_space_memory, status_addr, 2849 &status_data, sizeof(status_data), 2850 MEMTXATTRS_UNSPECIFIED)) { 2851 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 2852 return false; 2853 } 2854 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 2855 /* Interrupt flag */ 2856 vtd_generate_completion_event(s); 2857 } else { 2858 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2859 " (unknown type)", __func__, inv_desc->hi, 2860 inv_desc->lo); 2861 return false; 2862 } 2863 return true; 2864 } 2865 2866 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 2867 VTDInvDesc *inv_desc) 2868 { 2869 uint16_t sid, fmask; 2870 uint64_t mask[4] = {VTD_INV_DESC_CC_RSVD, VTD_INV_DESC_ALL_ONE, 2871 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 2872 2873 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, 2874 __func__, "cc inv")) { 2875 return false; 2876 } 2877 2878 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 2879 case VTD_INV_DESC_CC_DOMAIN: 2880 trace_vtd_inv_desc_cc_domain( 2881 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 2882 /* Fall through */ 2883 case VTD_INV_DESC_CC_GLOBAL: 2884 vtd_context_global_invalidate(s); 2885 break; 2886 2887 case VTD_INV_DESC_CC_DEVICE: 2888 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 2889 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 2890 vtd_context_device_invalidate(s, sid, fmask); 2891 break; 2892 2893 default: 2894 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2895 " (invalid type)", __func__, inv_desc->hi, 2896 inv_desc->lo); 2897 return false; 2898 } 2899 return true; 2900 } 2901 2902 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2903 { 2904 uint16_t domain_id; 2905 uint8_t am; 2906 hwaddr addr; 2907 uint64_t mask[4] = {VTD_INV_DESC_IOTLB_RSVD_LO, VTD_INV_DESC_IOTLB_RSVD_HI, 2908 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 2909 2910 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, 2911 __func__, "iotlb inv")) { 2912 return false; 2913 } 2914 2915 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 2916 case VTD_INV_DESC_IOTLB_GLOBAL: 2917 vtd_iotlb_global_invalidate(s); 2918 break; 2919 2920 case VTD_INV_DESC_IOTLB_DOMAIN: 2921 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2922 vtd_iotlb_domain_invalidate(s, domain_id); 2923 break; 2924 2925 case VTD_INV_DESC_IOTLB_PAGE: 2926 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2927 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 2928 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 2929 if (am > VTD_MAMV) { 2930 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2931 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)", 2932 __func__, inv_desc->hi, inv_desc->lo, 2933 am, (unsigned)VTD_MAMV); 2934 return false; 2935 } 2936 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2937 break; 2938 2939 default: 2940 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2941 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", 2942 __func__, inv_desc->hi, inv_desc->lo, 2943 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2944 return false; 2945 } 2946 return true; 2947 } 2948 2949 static gboolean vtd_hash_remove_by_pasid(gpointer key, gpointer value, 2950 gpointer user_data) 2951 { 2952 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 2953 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 2954 2955 return ((entry->domain_id == info->domain_id) && 2956 (entry->pasid == info->pasid)); 2957 } 2958 2959 static void vtd_piotlb_pasid_invalidate(IntelIOMMUState *s, 2960 uint16_t domain_id, uint32_t pasid) 2961 { 2962 VTDIOTLBPageInvInfo info; 2963 VTDAddressSpace *vtd_as; 2964 VTDContextEntry ce; 2965 2966 info.domain_id = domain_id; 2967 info.pasid = pasid; 2968 2969 vtd_iommu_lock(s); 2970 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_pasid, 2971 &info); 2972 vtd_iommu_unlock(s); 2973 2974 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 2975 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 2976 vtd_as->devfn, &ce) && 2977 domain_id == vtd_get_domain_id(s, &ce, vtd_as->pasid)) { 2978 uint32_t rid2pasid = VTD_CE_GET_RID2PASID(&ce); 2979 2980 if ((vtd_as->pasid != PCI_NO_PASID || pasid != rid2pasid) && 2981 vtd_as->pasid != pasid) { 2982 continue; 2983 } 2984 2985 if (!s->flts || !vtd_as_has_map_notifier(vtd_as)) { 2986 vtd_address_space_sync(vtd_as); 2987 } 2988 } 2989 } 2990 } 2991 2992 static void vtd_piotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 2993 uint32_t pasid, hwaddr addr, uint8_t am) 2994 { 2995 VTDIOTLBPageInvInfo info; 2996 2997 info.domain_id = domain_id; 2998 info.pasid = pasid; 2999 info.addr = addr; 3000 info.mask = ~((1 << am) - 1); 3001 3002 vtd_iommu_lock(s); 3003 g_hash_table_foreach_remove(s->iotlb, 3004 vtd_hash_remove_by_page_piotlb, &info); 3005 vtd_iommu_unlock(s); 3006 3007 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am, pasid); 3008 } 3009 3010 static bool vtd_process_piotlb_desc(IntelIOMMUState *s, 3011 VTDInvDesc *inv_desc) 3012 { 3013 uint16_t domain_id; 3014 uint32_t pasid; 3015 hwaddr addr; 3016 uint8_t am; 3017 uint64_t mask[4] = {VTD_INV_DESC_PIOTLB_RSVD_VAL0, 3018 VTD_INV_DESC_PIOTLB_RSVD_VAL1, 3019 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 3020 3021 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true, 3022 __func__, "piotlb inv")) { 3023 return false; 3024 } 3025 3026 domain_id = VTD_INV_DESC_PIOTLB_DID(inv_desc->val[0]); 3027 pasid = VTD_INV_DESC_PIOTLB_PASID(inv_desc->val[0]); 3028 switch (inv_desc->val[0] & VTD_INV_DESC_PIOTLB_G) { 3029 case VTD_INV_DESC_PIOTLB_ALL_IN_PASID: 3030 vtd_piotlb_pasid_invalidate(s, domain_id, pasid); 3031 break; 3032 3033 case VTD_INV_DESC_PIOTLB_PSI_IN_PASID: 3034 am = VTD_INV_DESC_PIOTLB_AM(inv_desc->val[1]); 3035 addr = (hwaddr) VTD_INV_DESC_PIOTLB_ADDR(inv_desc->val[1]); 3036 vtd_piotlb_page_invalidate(s, domain_id, pasid, addr, am); 3037 break; 3038 3039 default: 3040 error_report_once("%s: invalid piotlb inv desc: hi=0x%"PRIx64 3041 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)", 3042 __func__, inv_desc->val[1], inv_desc->val[0], 3043 inv_desc->val[0] & VTD_INV_DESC_IOTLB_G); 3044 return false; 3045 } 3046 return true; 3047 } 3048 3049 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 3050 VTDInvDesc *inv_desc) 3051 { 3052 uint64_t mask[4] = {VTD_INV_DESC_IEC_RSVD, VTD_INV_DESC_ALL_ONE, 3053 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 3054 3055 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, 3056 __func__, "iec inv")) { 3057 return false; 3058 } 3059 3060 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 3061 inv_desc->iec.index, 3062 inv_desc->iec.index_mask); 3063 3064 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 3065 inv_desc->iec.index, 3066 inv_desc->iec.index_mask); 3067 return true; 3068 } 3069 3070 static void do_invalidate_device_tlb(VTDAddressSpace *vtd_dev_as, 3071 bool size, hwaddr addr) 3072 { 3073 /* 3074 * According to ATS spec table 2.4: 3075 * S = 0, bits 15:12 = xxxx range size: 4K 3076 * S = 1, bits 15:12 = xxx0 range size: 8K 3077 * S = 1, bits 15:12 = xx01 range size: 16K 3078 * S = 1, bits 15:12 = x011 range size: 32K 3079 * S = 1, bits 15:12 = 0111 range size: 64K 3080 * ... 3081 */ 3082 3083 IOMMUTLBEvent event; 3084 uint64_t sz; 3085 3086 if (size) { 3087 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 3088 addr &= ~(sz - 1); 3089 } else { 3090 sz = VTD_PAGE_SIZE; 3091 } 3092 3093 event.type = IOMMU_NOTIFIER_DEVIOTLB_UNMAP; 3094 event.entry.target_as = &vtd_dev_as->as; 3095 event.entry.addr_mask = sz - 1; 3096 event.entry.iova = addr; 3097 event.entry.perm = IOMMU_NONE; 3098 event.entry.translated_addr = 0; 3099 event.entry.pasid = vtd_dev_as->pasid; 3100 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, event); 3101 } 3102 3103 static bool vtd_process_device_piotlb_desc(IntelIOMMUState *s, 3104 VTDInvDesc *inv_desc) 3105 { 3106 uint16_t sid; 3107 VTDAddressSpace *vtd_dev_as; 3108 bool size; 3109 bool global; 3110 hwaddr addr; 3111 uint32_t pasid; 3112 uint64_t mask[4] = {VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL0, 3113 VTD_INV_DESC_PASID_DEVICE_IOTLB_RSVD_VAL1, 3114 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 3115 3116 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, true, 3117 __func__, "device piotlb inv")) { 3118 return false; 3119 } 3120 3121 global = VTD_INV_DESC_PASID_DEVICE_IOTLB_GLOBAL(inv_desc->hi); 3122 size = VTD_INV_DESC_PASID_DEVICE_IOTLB_SIZE(inv_desc->hi); 3123 addr = VTD_INV_DESC_PASID_DEVICE_IOTLB_ADDR(inv_desc->hi); 3124 sid = VTD_INV_DESC_PASID_DEVICE_IOTLB_SID(inv_desc->lo); 3125 if (global) { 3126 QLIST_FOREACH(vtd_dev_as, &s->vtd_as_with_notifiers, next) { 3127 if ((vtd_dev_as->pasid != PCI_NO_PASID) && 3128 (PCI_BUILD_BDF(pci_bus_num(vtd_dev_as->bus), 3129 vtd_dev_as->devfn) == sid)) { 3130 do_invalidate_device_tlb(vtd_dev_as, size, addr); 3131 } 3132 } 3133 } else { 3134 pasid = VTD_INV_DESC_PASID_DEVICE_IOTLB_PASID(inv_desc->lo); 3135 vtd_dev_as = vtd_get_as_by_sid_and_pasid(s, sid, pasid); 3136 if (!vtd_dev_as) { 3137 return true; 3138 } 3139 3140 do_invalidate_device_tlb(vtd_dev_as, size, addr); 3141 } 3142 3143 return true; 3144 } 3145 3146 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 3147 VTDInvDesc *inv_desc) 3148 { 3149 VTDAddressSpace *vtd_dev_as; 3150 hwaddr addr; 3151 uint16_t sid; 3152 bool size; 3153 uint64_t mask[4] = {VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO, 3154 VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI, 3155 VTD_INV_DESC_ALL_ONE, VTD_INV_DESC_ALL_ONE}; 3156 3157 if (!vtd_inv_desc_reserved_check(s, inv_desc, mask, false, 3158 __func__, "dev-iotlb inv")) { 3159 return false; 3160 } 3161 3162 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 3163 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 3164 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 3165 3166 /* 3167 * Using sid is OK since the guest should have finished the 3168 * initialization of both the bus and device. 3169 */ 3170 vtd_dev_as = vtd_get_as_by_sid(s, sid); 3171 if (!vtd_dev_as) { 3172 goto done; 3173 } 3174 3175 do_invalidate_device_tlb(vtd_dev_as, size, addr); 3176 3177 done: 3178 return true; 3179 } 3180 3181 static bool vtd_process_inv_desc(IntelIOMMUState *s) 3182 { 3183 VTDInvDesc inv_desc; 3184 uint8_t desc_type; 3185 3186 trace_vtd_inv_qi_head(s->iq_head); 3187 if (!vtd_get_inv_desc(s, &inv_desc)) { 3188 s->iq_last_desc_type = VTD_INV_DESC_NONE; 3189 return false; 3190 } 3191 3192 desc_type = VTD_INV_DESC_TYPE(inv_desc.lo); 3193 /* FIXME: should update at first or at last? */ 3194 s->iq_last_desc_type = desc_type; 3195 3196 switch (desc_type) { 3197 case VTD_INV_DESC_CC: 3198 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 3199 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 3200 return false; 3201 } 3202 break; 3203 3204 case VTD_INV_DESC_IOTLB: 3205 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 3206 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 3207 return false; 3208 } 3209 break; 3210 3211 case VTD_INV_DESC_PIOTLB: 3212 trace_vtd_inv_desc("p-iotlb", inv_desc.val[1], inv_desc.val[0]); 3213 if (!vtd_process_piotlb_desc(s, &inv_desc)) { 3214 return false; 3215 } 3216 break; 3217 3218 case VTD_INV_DESC_WAIT: 3219 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 3220 if (!vtd_process_wait_desc(s, &inv_desc)) { 3221 return false; 3222 } 3223 break; 3224 3225 case VTD_INV_DESC_IEC: 3226 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 3227 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 3228 return false; 3229 } 3230 break; 3231 3232 case VTD_INV_DESC_DEV_PIOTLB: 3233 trace_vtd_inv_desc("device-piotlb", inv_desc.hi, inv_desc.lo); 3234 if (!vtd_process_device_piotlb_desc(s, &inv_desc)) { 3235 return false; 3236 } 3237 break; 3238 3239 case VTD_INV_DESC_DEVICE: 3240 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 3241 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 3242 return false; 3243 } 3244 break; 3245 3246 /* 3247 * TODO: the entity of below two cases will be implemented in future series. 3248 * To make guest (which integrates scalable mode support patch set in 3249 * iommu driver) work, just return true is enough so far. 3250 */ 3251 case VTD_INV_DESC_PC: 3252 if (s->scalable_mode) { 3253 break; 3254 } 3255 /* fallthrough */ 3256 default: 3257 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 3258 " (unknown type)", __func__, inv_desc.hi, 3259 inv_desc.lo); 3260 return false; 3261 } 3262 s->iq_head++; 3263 if (s->iq_head == s->iq_size) { 3264 s->iq_head = 0; 3265 } 3266 return true; 3267 } 3268 3269 /* Try to fetch and process more Invalidation Descriptors */ 3270 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 3271 { 3272 int qi_shift; 3273 3274 /* Refer to 10.4.23 of VT-d spec 3.0 */ 3275 qi_shift = s->iq_dw ? VTD_IQH_QH_SHIFT_5 : VTD_IQH_QH_SHIFT_4; 3276 3277 trace_vtd_inv_qi_fetch(); 3278 3279 if (s->iq_tail >= s->iq_size) { 3280 /* Detects an invalid Tail pointer */ 3281 error_report_once("%s: detected invalid QI tail " 3282 "(tail=0x%x, size=0x%x)", 3283 __func__, s->iq_tail, s->iq_size); 3284 vtd_handle_inv_queue_error(s); 3285 return; 3286 } 3287 while (s->iq_head != s->iq_tail) { 3288 if (!vtd_process_inv_desc(s)) { 3289 /* Invalidation Queue Errors */ 3290 vtd_handle_inv_queue_error(s); 3291 break; 3292 } 3293 /* Must update the IQH_REG in time */ 3294 vtd_set_quad_raw(s, DMAR_IQH_REG, 3295 (((uint64_t)(s->iq_head)) << qi_shift) & 3296 VTD_IQH_QH_MASK); 3297 } 3298 } 3299 3300 /* Handle write to Invalidation Queue Tail Register */ 3301 static void vtd_handle_iqt_write(IntelIOMMUState *s) 3302 { 3303 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 3304 3305 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { 3306 error_report_once("%s: RSV bit is set: val=0x%"PRIx64, 3307 __func__, val); 3308 vtd_handle_inv_queue_error(s); 3309 return; 3310 } 3311 s->iq_tail = VTD_IQT_QT(s->iq_dw, val); 3312 trace_vtd_inv_qi_tail(s->iq_tail); 3313 3314 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 3315 /* Process Invalidation Queue here */ 3316 vtd_fetch_inv_desc(s); 3317 } 3318 } 3319 3320 static void vtd_handle_fsts_write(IntelIOMMUState *s) 3321 { 3322 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 3323 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 3324 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 3325 3326 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 3327 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 3328 trace_vtd_fsts_clear_ip(); 3329 } 3330 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 3331 * Descriptors if there are any when Queued Invalidation is enabled? 3332 */ 3333 } 3334 3335 static void vtd_handle_fectl_write(IntelIOMMUState *s) 3336 { 3337 uint32_t fectl_reg; 3338 /* FIXME: when software clears the IM field, check the IP field. But do we 3339 * need to compare the old value and the new value to conclude that 3340 * software clears the IM field? Or just check if the IM field is zero? 3341 */ 3342 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 3343 3344 trace_vtd_reg_write_fectl(fectl_reg); 3345 3346 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 3347 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 3348 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 3349 } 3350 } 3351 3352 static void vtd_handle_ics_write(IntelIOMMUState *s) 3353 { 3354 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 3355 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 3356 3357 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 3358 trace_vtd_reg_ics_clear_ip(); 3359 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 3360 } 3361 } 3362 3363 static void vtd_handle_iectl_write(IntelIOMMUState *s) 3364 { 3365 uint32_t iectl_reg; 3366 /* FIXME: when software clears the IM field, check the IP field. But do we 3367 * need to compare the old value and the new value to conclude that 3368 * software clears the IM field? Or just check if the IM field is zero? 3369 */ 3370 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 3371 3372 trace_vtd_reg_write_iectl(iectl_reg); 3373 3374 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 3375 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 3376 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 3377 } 3378 } 3379 3380 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 3381 { 3382 IntelIOMMUState *s = opaque; 3383 uint64_t val; 3384 3385 trace_vtd_reg_read(addr, size); 3386 3387 if (addr + size > DMAR_REG_SIZE) { 3388 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 3389 " size=0x%x", __func__, addr, size); 3390 return (uint64_t)-1; 3391 } 3392 3393 switch (addr) { 3394 /* Root Table Address Register, 64-bit */ 3395 case DMAR_RTADDR_REG: 3396 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 3397 if (size == 4) { 3398 val = val & ((1ULL << 32) - 1); 3399 } 3400 break; 3401 3402 case DMAR_RTADDR_REG_HI: 3403 assert(size == 4); 3404 val = vtd_get_quad_raw(s, DMAR_RTADDR_REG) >> 32; 3405 break; 3406 3407 /* Invalidation Queue Address Register, 64-bit */ 3408 case DMAR_IQA_REG: 3409 val = s->iq | 3410 (vtd_get_quad(s, DMAR_IQA_REG) & 3411 (VTD_IQA_QS | VTD_IQA_DW_MASK)); 3412 if (size == 4) { 3413 val = val & ((1ULL << 32) - 1); 3414 } 3415 break; 3416 3417 case DMAR_IQA_REG_HI: 3418 assert(size == 4); 3419 val = s->iq >> 32; 3420 break; 3421 3422 default: 3423 if (size == 4) { 3424 val = vtd_get_long(s, addr); 3425 } else { 3426 val = vtd_get_quad(s, addr); 3427 } 3428 } 3429 3430 return val; 3431 } 3432 3433 static void vtd_mem_write(void *opaque, hwaddr addr, 3434 uint64_t val, unsigned size) 3435 { 3436 IntelIOMMUState *s = opaque; 3437 3438 trace_vtd_reg_write(addr, size, val); 3439 3440 if (addr + size > DMAR_REG_SIZE) { 3441 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 3442 " size=0x%x", __func__, addr, size); 3443 return; 3444 } 3445 3446 switch (addr) { 3447 /* Global Command Register, 32-bit */ 3448 case DMAR_GCMD_REG: 3449 vtd_set_long(s, addr, val); 3450 vtd_handle_gcmd_write(s); 3451 break; 3452 3453 /* Context Command Register, 64-bit */ 3454 case DMAR_CCMD_REG: 3455 if (size == 4) { 3456 vtd_set_long(s, addr, val); 3457 } else { 3458 vtd_set_quad(s, addr, val); 3459 vtd_handle_ccmd_write(s); 3460 } 3461 break; 3462 3463 case DMAR_CCMD_REG_HI: 3464 assert(size == 4); 3465 vtd_set_long(s, addr, val); 3466 vtd_handle_ccmd_write(s); 3467 break; 3468 3469 /* IOTLB Invalidation Register, 64-bit */ 3470 case DMAR_IOTLB_REG: 3471 if (size == 4) { 3472 vtd_set_long(s, addr, val); 3473 } else { 3474 vtd_set_quad(s, addr, val); 3475 vtd_handle_iotlb_write(s); 3476 } 3477 break; 3478 3479 case DMAR_IOTLB_REG_HI: 3480 assert(size == 4); 3481 vtd_set_long(s, addr, val); 3482 vtd_handle_iotlb_write(s); 3483 break; 3484 3485 /* Invalidate Address Register, 64-bit */ 3486 case DMAR_IVA_REG: 3487 if (size == 4) { 3488 vtd_set_long(s, addr, val); 3489 } else { 3490 vtd_set_quad(s, addr, val); 3491 } 3492 break; 3493 3494 case DMAR_IVA_REG_HI: 3495 assert(size == 4); 3496 vtd_set_long(s, addr, val); 3497 break; 3498 3499 /* Fault Status Register, 32-bit */ 3500 case DMAR_FSTS_REG: 3501 assert(size == 4); 3502 vtd_set_long(s, addr, val); 3503 vtd_handle_fsts_write(s); 3504 break; 3505 3506 /* Fault Event Control Register, 32-bit */ 3507 case DMAR_FECTL_REG: 3508 assert(size == 4); 3509 vtd_set_long(s, addr, val); 3510 vtd_handle_fectl_write(s); 3511 break; 3512 3513 /* Fault Event Data Register, 32-bit */ 3514 case DMAR_FEDATA_REG: 3515 assert(size == 4); 3516 vtd_set_long(s, addr, val); 3517 break; 3518 3519 /* Fault Event Address Register, 32-bit */ 3520 case DMAR_FEADDR_REG: 3521 if (size == 4) { 3522 vtd_set_long(s, addr, val); 3523 } else { 3524 /* 3525 * While the register is 32-bit only, some guests (Xen...) write to 3526 * it with 64-bit. 3527 */ 3528 vtd_set_quad(s, addr, val); 3529 } 3530 break; 3531 3532 /* Fault Event Upper Address Register, 32-bit */ 3533 case DMAR_FEUADDR_REG: 3534 assert(size == 4); 3535 vtd_set_long(s, addr, val); 3536 break; 3537 3538 /* Protected Memory Enable Register, 32-bit */ 3539 case DMAR_PMEN_REG: 3540 assert(size == 4); 3541 vtd_set_long(s, addr, val); 3542 break; 3543 3544 /* Root Table Address Register, 64-bit */ 3545 case DMAR_RTADDR_REG: 3546 if (size == 4) { 3547 vtd_set_long(s, addr, val); 3548 } else { 3549 vtd_set_quad(s, addr, val); 3550 } 3551 break; 3552 3553 case DMAR_RTADDR_REG_HI: 3554 assert(size == 4); 3555 vtd_set_long(s, addr, val); 3556 break; 3557 3558 /* Invalidation Queue Tail Register, 64-bit */ 3559 case DMAR_IQT_REG: 3560 if (size == 4) { 3561 vtd_set_long(s, addr, val); 3562 } else { 3563 vtd_set_quad(s, addr, val); 3564 } 3565 vtd_handle_iqt_write(s); 3566 break; 3567 3568 case DMAR_IQT_REG_HI: 3569 assert(size == 4); 3570 vtd_set_long(s, addr, val); 3571 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 3572 break; 3573 3574 /* Invalidation Queue Address Register, 64-bit */ 3575 case DMAR_IQA_REG: 3576 if (size == 4) { 3577 vtd_set_long(s, addr, val); 3578 } else { 3579 vtd_set_quad(s, addr, val); 3580 } 3581 vtd_update_iq_dw(s); 3582 break; 3583 3584 case DMAR_IQA_REG_HI: 3585 assert(size == 4); 3586 vtd_set_long(s, addr, val); 3587 break; 3588 3589 /* Invalidation Completion Status Register, 32-bit */ 3590 case DMAR_ICS_REG: 3591 assert(size == 4); 3592 vtd_set_long(s, addr, val); 3593 vtd_handle_ics_write(s); 3594 break; 3595 3596 /* Invalidation Event Control Register, 32-bit */ 3597 case DMAR_IECTL_REG: 3598 assert(size == 4); 3599 vtd_set_long(s, addr, val); 3600 vtd_handle_iectl_write(s); 3601 break; 3602 3603 /* Invalidation Event Data Register, 32-bit */ 3604 case DMAR_IEDATA_REG: 3605 assert(size == 4); 3606 vtd_set_long(s, addr, val); 3607 break; 3608 3609 /* Invalidation Event Address Register, 32-bit */ 3610 case DMAR_IEADDR_REG: 3611 assert(size == 4); 3612 vtd_set_long(s, addr, val); 3613 break; 3614 3615 /* Invalidation Event Upper Address Register, 32-bit */ 3616 case DMAR_IEUADDR_REG: 3617 assert(size == 4); 3618 vtd_set_long(s, addr, val); 3619 break; 3620 3621 /* Fault Recording Registers, 128-bit */ 3622 case DMAR_FRCD_REG_0_0: 3623 if (size == 4) { 3624 vtd_set_long(s, addr, val); 3625 } else { 3626 vtd_set_quad(s, addr, val); 3627 } 3628 break; 3629 3630 case DMAR_FRCD_REG_0_1: 3631 assert(size == 4); 3632 vtd_set_long(s, addr, val); 3633 break; 3634 3635 case DMAR_FRCD_REG_0_2: 3636 if (size == 4) { 3637 vtd_set_long(s, addr, val); 3638 } else { 3639 vtd_set_quad(s, addr, val); 3640 /* May clear bit 127 (Fault), update PPF */ 3641 vtd_update_fsts_ppf(s); 3642 } 3643 break; 3644 3645 case DMAR_FRCD_REG_0_3: 3646 assert(size == 4); 3647 vtd_set_long(s, addr, val); 3648 /* May clear bit 127 (Fault), update PPF */ 3649 vtd_update_fsts_ppf(s); 3650 break; 3651 3652 case DMAR_IRTA_REG: 3653 if (size == 4) { 3654 vtd_set_long(s, addr, val); 3655 } else { 3656 vtd_set_quad(s, addr, val); 3657 } 3658 break; 3659 3660 case DMAR_IRTA_REG_HI: 3661 assert(size == 4); 3662 vtd_set_long(s, addr, val); 3663 break; 3664 3665 default: 3666 if (size == 4) { 3667 vtd_set_long(s, addr, val); 3668 } else { 3669 vtd_set_quad(s, addr, val); 3670 } 3671 } 3672 } 3673 3674 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 3675 IOMMUAccessFlags flag, int iommu_idx) 3676 { 3677 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3678 IntelIOMMUState *s = vtd_as->iommu_state; 3679 IOMMUTLBEntry iotlb = { 3680 /* We'll fill in the rest later. */ 3681 .target_as = &address_space_memory, 3682 .pasid = vtd_as->pasid, 3683 }; 3684 bool success; 3685 3686 if (likely(s->dmar_enabled)) { 3687 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 3688 addr, flag & IOMMU_WO, &iotlb); 3689 } else { 3690 /* DMAR disabled, passthrough, use 4k-page*/ 3691 iotlb.iova = addr & VTD_PAGE_MASK_4K; 3692 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 3693 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 3694 iotlb.perm = IOMMU_RW; 3695 success = true; 3696 } 3697 3698 if (likely(success)) { 3699 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 3700 VTD_PCI_SLOT(vtd_as->devfn), 3701 VTD_PCI_FUNC(vtd_as->devfn), 3702 iotlb.iova, iotlb.translated_addr, 3703 iotlb.addr_mask); 3704 } else { 3705 error_report_once("%s: detected translation failure " 3706 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 3707 __func__, pci_bus_num(vtd_as->bus), 3708 VTD_PCI_SLOT(vtd_as->devfn), 3709 VTD_PCI_FUNC(vtd_as->devfn), 3710 addr); 3711 } 3712 3713 return iotlb; 3714 } 3715 3716 static int vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 3717 IOMMUNotifierFlag old, 3718 IOMMUNotifierFlag new, 3719 Error **errp) 3720 { 3721 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 3722 IntelIOMMUState *s = vtd_as->iommu_state; 3723 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3724 3725 /* TODO: add support for VFIO and vhost users */ 3726 if (s->snoop_control) { 3727 error_setg_errno(errp, ENOTSUP, 3728 "Snoop Control with vhost or VFIO is not supported"); 3729 return -ENOTSUP; 3730 } 3731 if (!s->caching_mode && (new & IOMMU_NOTIFIER_MAP)) { 3732 error_setg_errno(errp, ENOTSUP, 3733 "device %02x.%02x.%x requires caching mode", 3734 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3735 PCI_FUNC(vtd_as->devfn)); 3736 return -ENOTSUP; 3737 } 3738 if (!x86_iommu->dt_supported && (new & IOMMU_NOTIFIER_DEVIOTLB_UNMAP)) { 3739 error_setg_errno(errp, ENOTSUP, 3740 "device %02x.%02x.%x requires device IOTLB mode", 3741 pci_bus_num(vtd_as->bus), PCI_SLOT(vtd_as->devfn), 3742 PCI_FUNC(vtd_as->devfn)); 3743 return -ENOTSUP; 3744 } 3745 3746 /* Update per-address-space notifier flags */ 3747 vtd_as->notifier_flags = new; 3748 3749 if (old == IOMMU_NOTIFIER_NONE) { 3750 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 3751 } else if (new == IOMMU_NOTIFIER_NONE) { 3752 QLIST_REMOVE(vtd_as, next); 3753 } 3754 return 0; 3755 } 3756 3757 static int vtd_post_load(void *opaque, int version_id) 3758 { 3759 IntelIOMMUState *iommu = opaque; 3760 3761 /* 3762 * We don't need to migrate the root_scalable because we can 3763 * simply do the calculation after the loading is complete. We 3764 * can actually do similar things with root, dmar_enabled, etc. 3765 * however since we've had them already so we'd better keep them 3766 * for compatibility of migration. 3767 */ 3768 vtd_update_scalable_state(iommu); 3769 3770 vtd_update_iq_dw(iommu); 3771 3772 /* 3773 * Memory regions are dynamically turned on/off depending on 3774 * context entry configurations from the guest. After migration, 3775 * we need to make sure the memory regions are still correct. 3776 */ 3777 vtd_switch_address_space_all(iommu); 3778 3779 return 0; 3780 } 3781 3782 static const VMStateDescription vtd_vmstate = { 3783 .name = "iommu-intel", 3784 .version_id = 1, 3785 .minimum_version_id = 1, 3786 .priority = MIG_PRI_IOMMU, 3787 .post_load = vtd_post_load, 3788 .fields = (const VMStateField[]) { 3789 VMSTATE_UINT64(root, IntelIOMMUState), 3790 VMSTATE_UINT64(intr_root, IntelIOMMUState), 3791 VMSTATE_UINT64(iq, IntelIOMMUState), 3792 VMSTATE_UINT32(intr_size, IntelIOMMUState), 3793 VMSTATE_UINT16(iq_head, IntelIOMMUState), 3794 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 3795 VMSTATE_UINT16(iq_size, IntelIOMMUState), 3796 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 3797 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 3798 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 3799 VMSTATE_UNUSED(1), /* bool root_extended is obsolete by VT-d */ 3800 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 3801 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 3802 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 3803 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 3804 VMSTATE_END_OF_LIST() 3805 } 3806 }; 3807 3808 static const MemoryRegionOps vtd_mem_ops = { 3809 .read = vtd_mem_read, 3810 .write = vtd_mem_write, 3811 .endianness = DEVICE_LITTLE_ENDIAN, 3812 .impl = { 3813 .min_access_size = 4, 3814 .max_access_size = 8, 3815 }, 3816 .valid = { 3817 .min_access_size = 4, 3818 .max_access_size = 8, 3819 }, 3820 }; 3821 3822 static const Property vtd_properties[] = { 3823 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 3824 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 3825 ON_OFF_AUTO_AUTO), 3826 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 3827 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 3828 VTD_HOST_ADDRESS_WIDTH), 3829 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 3830 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), 3831 DEFINE_PROP_BOOL("x-flts", IntelIOMMUState, flts, FALSE), 3832 DEFINE_PROP_BOOL("snoop-control", IntelIOMMUState, snoop_control, false), 3833 DEFINE_PROP_BOOL("x-pasid-mode", IntelIOMMUState, pasid, false), 3834 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 3835 DEFINE_PROP_BOOL("dma-translation", IntelIOMMUState, dma_translation, true), 3836 DEFINE_PROP_BOOL("stale-tm", IntelIOMMUState, stale_tm, false), 3837 DEFINE_PROP_BOOL("fs1gp", IntelIOMMUState, fs1gp, true), 3838 }; 3839 3840 /* Read IRTE entry with specific index */ 3841 static bool vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 3842 VTD_IR_TableEntry *entry, uint16_t sid, 3843 bool do_fault) 3844 { 3845 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 3846 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 3847 dma_addr_t addr = 0x00; 3848 uint16_t mask, source_id; 3849 uint8_t bus, bus_max, bus_min; 3850 3851 if (index >= iommu->intr_size) { 3852 error_report_once("%s: index too large: ind=0x%x", 3853 __func__, index); 3854 if (do_fault) { 3855 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_INDEX_OVER, index); 3856 } 3857 return false; 3858 } 3859 3860 addr = iommu->intr_root + index * sizeof(*entry); 3861 if (dma_memory_read(&address_space_memory, addr, 3862 entry, sizeof(*entry), MEMTXATTRS_UNSPECIFIED)) { 3863 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 3864 __func__, index, addr); 3865 if (do_fault) { 3866 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ROOT_INVAL, index); 3867 } 3868 return false; 3869 } 3870 3871 entry->data[0] = le64_to_cpu(entry->data[0]); 3872 entry->data[1] = le64_to_cpu(entry->data[1]); 3873 3874 trace_vtd_ir_irte_get(index, entry->data[1], entry->data[0]); 3875 3876 /* 3877 * The remaining potential fault conditions are "qualified" by the 3878 * Fault Processing Disable bit in the IRTE. Even "not present". 3879 * So just clear the do_fault flag if PFD is set, which will 3880 * prevent faults being raised. 3881 */ 3882 if (entry->irte.fault_disable) { 3883 do_fault = false; 3884 } 3885 3886 if (!entry->irte.present) { 3887 error_report_once("%s: detected non-present IRTE " 3888 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3889 __func__, index, entry->data[1], entry->data[0]); 3890 if (do_fault) { 3891 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_ENTRY_P, index); 3892 } 3893 return false; 3894 } 3895 3896 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 3897 entry->irte.__reserved_2) { 3898 error_report_once("%s: detected non-zero reserved IRTE " 3899 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3900 __func__, index, entry->data[1], entry->data[0]); 3901 if (do_fault) { 3902 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_IRTE_RSVD, index); 3903 } 3904 return false; 3905 } 3906 3907 if (sid != X86_IOMMU_SID_INVALID) { 3908 /* Validate IRTE SID */ 3909 source_id = entry->irte.source_id; 3910 switch (entry->irte.sid_vtype) { 3911 case VTD_SVT_NONE: 3912 break; 3913 3914 case VTD_SVT_ALL: 3915 mask = vtd_svt_mask[entry->irte.sid_q]; 3916 if ((source_id & mask) != (sid & mask)) { 3917 error_report_once("%s: invalid IRTE SID " 3918 "(index=%u, sid=%u, source_id=%u)", 3919 __func__, index, sid, source_id); 3920 if (do_fault) { 3921 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); 3922 } 3923 return false; 3924 } 3925 break; 3926 3927 case VTD_SVT_BUS: 3928 bus_max = source_id >> 8; 3929 bus_min = source_id & 0xff; 3930 bus = sid >> 8; 3931 if (bus > bus_max || bus < bus_min) { 3932 error_report_once("%s: invalid SVT_BUS " 3933 "(index=%u, bus=%u, min=%u, max=%u)", 3934 __func__, index, bus, bus_min, bus_max); 3935 if (do_fault) { 3936 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); 3937 } 3938 return false; 3939 } 3940 break; 3941 3942 default: 3943 error_report_once("%s: detected invalid IRTE SVT " 3944 "(index=%u, type=%d)", __func__, 3945 index, entry->irte.sid_vtype); 3946 /* Take this as verification failure. */ 3947 if (do_fault) { 3948 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_SID_ERR, index); 3949 } 3950 return false; 3951 } 3952 } 3953 3954 return true; 3955 } 3956 3957 /* Fetch IRQ information of specific IR index */ 3958 static bool vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 3959 X86IOMMUIrq *irq, uint16_t sid, bool do_fault) 3960 { 3961 VTD_IR_TableEntry irte = {}; 3962 3963 if (!vtd_irte_get(iommu, index, &irte, sid, do_fault)) { 3964 return false; 3965 } 3966 3967 irq->trigger_mode = irte.irte.trigger_mode; 3968 irq->vector = irte.irte.vector; 3969 irq->delivery_mode = irte.irte.delivery_mode; 3970 irq->dest = irte.irte.dest_id; 3971 if (!iommu->intr_eime) { 3972 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 3973 #define VTD_IR_APIC_DEST_SHIFT (8) 3974 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 3975 VTD_IR_APIC_DEST_SHIFT; 3976 } 3977 irq->dest_mode = irte.irte.dest_mode; 3978 irq->redir_hint = irte.irte.redir_hint; 3979 3980 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 3981 irq->delivery_mode, irq->dest, irq->dest_mode); 3982 3983 return true; 3984 } 3985 3986 /* Interrupt remapping for MSI/MSI-X entry */ 3987 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 3988 MSIMessage *origin, 3989 MSIMessage *translated, 3990 uint16_t sid, bool do_fault) 3991 { 3992 VTD_IR_MSIAddress addr; 3993 uint16_t index; 3994 X86IOMMUIrq irq = {}; 3995 3996 assert(origin && translated); 3997 3998 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 3999 4000 if (!iommu || !iommu->intr_enabled) { 4001 memcpy(translated, origin, sizeof(*origin)); 4002 goto out; 4003 } 4004 4005 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 4006 error_report_once("%s: MSI address high 32 bits non-zero detected: " 4007 "address=0x%" PRIx64, __func__, origin->address); 4008 if (do_fault) { 4009 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); 4010 } 4011 return -EINVAL; 4012 } 4013 4014 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 4015 if (addr.addr.__head != 0xfee) { 4016 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 4017 __func__, addr.data); 4018 if (do_fault) { 4019 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); 4020 } 4021 return -EINVAL; 4022 } 4023 4024 /* This is compatible mode. */ 4025 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 4026 memcpy(translated, origin, sizeof(*origin)); 4027 goto out; 4028 } 4029 4030 index = addr.addr.index_h << 15 | addr.addr.index_l; 4031 4032 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 4033 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 4034 4035 if (addr.addr.sub_valid) { 4036 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 4037 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 4038 } 4039 4040 if (!vtd_remap_irq_get(iommu, index, &irq, sid, do_fault)) { 4041 return -EINVAL; 4042 } 4043 4044 if (addr.addr.sub_valid) { 4045 trace_vtd_ir_remap_type("MSI"); 4046 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 4047 error_report_once("%s: invalid IR MSI " 4048 "(sid=%u, address=0x%" PRIx64 4049 ", data=0x%" PRIx32 ")", 4050 __func__, sid, origin->address, origin->data); 4051 if (do_fault) { 4052 vtd_report_ir_fault(iommu, sid, VTD_FR_IR_REQ_RSVD, 0); 4053 } 4054 return -EINVAL; 4055 } 4056 } else { 4057 uint8_t vector = origin->data & 0xff; 4058 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 4059 4060 trace_vtd_ir_remap_type("IOAPIC"); 4061 /* IOAPIC entry vector should be aligned with IRTE vector 4062 * (see vt-d spec 5.1.5.1). */ 4063 if (vector != irq.vector) { 4064 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 4065 } 4066 4067 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 4068 * (see vt-d spec 5.1.5.1). */ 4069 if (trigger_mode != irq.trigger_mode) { 4070 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 4071 irq.trigger_mode); 4072 } 4073 } 4074 4075 /* 4076 * We'd better keep the last two bits, assuming that guest OS 4077 * might modify it. Keep it does not hurt after all. 4078 */ 4079 irq.msi_addr_last_bits = addr.addr.__not_care; 4080 4081 /* Translate X86IOMMUIrq to MSI message */ 4082 x86_iommu_irq_to_msi_message(&irq, translated); 4083 4084 out: 4085 trace_vtd_ir_remap_msi(origin->address, origin->data, 4086 translated->address, translated->data); 4087 return 0; 4088 } 4089 4090 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 4091 MSIMessage *dst, uint16_t sid) 4092 { 4093 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 4094 src, dst, sid, false); 4095 } 4096 4097 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 4098 uint64_t *data, unsigned size, 4099 MemTxAttrs attrs) 4100 { 4101 return MEMTX_OK; 4102 } 4103 4104 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 4105 uint64_t value, unsigned size, 4106 MemTxAttrs attrs) 4107 { 4108 int ret = 0; 4109 MSIMessage from = {}, to = {}; 4110 uint16_t sid = X86_IOMMU_SID_INVALID; 4111 4112 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 4113 from.data = (uint32_t) value; 4114 4115 if (!attrs.unspecified) { 4116 /* We have explicit Source ID */ 4117 sid = attrs.requester_id; 4118 } 4119 4120 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid, true); 4121 if (ret) { 4122 /* Drop this interrupt */ 4123 return MEMTX_ERROR; 4124 } 4125 4126 apic_get_class(NULL)->send_msi(&to); 4127 4128 return MEMTX_OK; 4129 } 4130 4131 static const MemoryRegionOps vtd_mem_ir_ops = { 4132 .read_with_attrs = vtd_mem_ir_read, 4133 .write_with_attrs = vtd_mem_ir_write, 4134 .endianness = DEVICE_LITTLE_ENDIAN, 4135 .impl = { 4136 .min_access_size = 4, 4137 .max_access_size = 4, 4138 }, 4139 .valid = { 4140 .min_access_size = 4, 4141 .max_access_size = 4, 4142 }, 4143 }; 4144 4145 static void vtd_report_ir_illegal_access(VTDAddressSpace *vtd_as, 4146 hwaddr addr, bool is_write) 4147 { 4148 IntelIOMMUState *s = vtd_as->iommu_state; 4149 uint8_t bus_n = pci_bus_num(vtd_as->bus); 4150 uint16_t sid = PCI_BUILD_BDF(bus_n, vtd_as->devfn); 4151 bool is_fpd_set = false; 4152 VTDContextEntry ce; 4153 4154 assert(vtd_as->pasid != PCI_NO_PASID); 4155 4156 /* Try out best to fetch FPD, we can't do anything more */ 4157 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 4158 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 4159 if (!is_fpd_set && s->root_scalable) { 4160 vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set, vtd_as->pasid); 4161 } 4162 } 4163 4164 vtd_report_fault(s, VTD_FR_SM_INTERRUPT_ADDR, 4165 is_fpd_set, sid, addr, is_write, 4166 true, vtd_as->pasid); 4167 } 4168 4169 static MemTxResult vtd_mem_ir_fault_read(void *opaque, hwaddr addr, 4170 uint64_t *data, unsigned size, 4171 MemTxAttrs attrs) 4172 { 4173 vtd_report_ir_illegal_access(opaque, addr, false); 4174 4175 return MEMTX_ERROR; 4176 } 4177 4178 static MemTxResult vtd_mem_ir_fault_write(void *opaque, hwaddr addr, 4179 uint64_t value, unsigned size, 4180 MemTxAttrs attrs) 4181 { 4182 vtd_report_ir_illegal_access(opaque, addr, true); 4183 4184 return MEMTX_ERROR; 4185 } 4186 4187 static const MemoryRegionOps vtd_mem_ir_fault_ops = { 4188 .read_with_attrs = vtd_mem_ir_fault_read, 4189 .write_with_attrs = vtd_mem_ir_fault_write, 4190 .endianness = DEVICE_LITTLE_ENDIAN, 4191 .impl = { 4192 .min_access_size = 1, 4193 .max_access_size = 8, 4194 }, 4195 .valid = { 4196 .min_access_size = 1, 4197 .max_access_size = 8, 4198 }, 4199 }; 4200 4201 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, 4202 int devfn, unsigned int pasid) 4203 { 4204 /* 4205 * We can't simply use sid here since the bus number might not be 4206 * initialized by the guest. 4207 */ 4208 struct vtd_as_key key = { 4209 .bus = bus, 4210 .devfn = devfn, 4211 .pasid = pasid, 4212 }; 4213 VTDAddressSpace *vtd_dev_as; 4214 char name[128]; 4215 4216 vtd_iommu_lock(s); 4217 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); 4218 vtd_iommu_unlock(s); 4219 4220 if (!vtd_dev_as) { 4221 struct vtd_as_key *new_key; 4222 /* Slow path */ 4223 4224 /* 4225 * memory_region_add_subregion_overlap requires the bql, 4226 * make sure we own it. 4227 */ 4228 BQL_LOCK_GUARD(); 4229 vtd_iommu_lock(s); 4230 4231 /* Check again as we released the lock for a moment */ 4232 vtd_dev_as = g_hash_table_lookup(s->vtd_address_spaces, &key); 4233 if (vtd_dev_as) { 4234 vtd_iommu_unlock(s); 4235 return vtd_dev_as; 4236 } 4237 4238 /* Still nothing, allocate a new address space */ 4239 new_key = g_malloc(sizeof(*new_key)); 4240 4241 new_key->bus = bus; 4242 new_key->devfn = devfn; 4243 new_key->pasid = pasid; 4244 4245 if (pasid == PCI_NO_PASID) { 4246 snprintf(name, sizeof(name), "vtd-%02x.%x", PCI_SLOT(devfn), 4247 PCI_FUNC(devfn)); 4248 } else { 4249 snprintf(name, sizeof(name), "vtd-%02x.%x-pasid-%x", PCI_SLOT(devfn), 4250 PCI_FUNC(devfn), pasid); 4251 } 4252 4253 vtd_dev_as = g_new0(VTDAddressSpace, 1); 4254 4255 vtd_dev_as->bus = bus; 4256 vtd_dev_as->devfn = (uint8_t)devfn; 4257 vtd_dev_as->pasid = pasid; 4258 vtd_dev_as->iommu_state = s; 4259 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 4260 vtd_dev_as->iova_tree = iova_tree_new(); 4261 4262 memory_region_init(&vtd_dev_as->root, OBJECT(s), name, UINT64_MAX); 4263 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, "vtd-root"); 4264 4265 /* 4266 * Build the DMAR-disabled container with aliases to the 4267 * shared MRs. Note that aliasing to a shared memory region 4268 * could help the memory API to detect same FlatViews so we 4269 * can have devices to share the same FlatView when DMAR is 4270 * disabled (either by not providing "intel_iommu=on" or with 4271 * "iommu=pt"). It will greatly reduce the total number of 4272 * FlatViews of the system hence VM runs faster. 4273 */ 4274 memory_region_init_alias(&vtd_dev_as->nodmar, OBJECT(s), 4275 "vtd-nodmar", &s->mr_nodmar, 0, 4276 memory_region_size(&s->mr_nodmar)); 4277 4278 /* 4279 * Build the per-device DMAR-enabled container. 4280 * 4281 * TODO: currently we have per-device IOMMU memory region only 4282 * because we have per-device IOMMU notifiers for devices. If 4283 * one day we can abstract the IOMMU notifiers out of the 4284 * memory regions then we can also share the same memory 4285 * region here just like what we've done above with the nodmar 4286 * region. 4287 */ 4288 strcat(name, "-dmar"); 4289 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 4290 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 4291 name, UINT64_MAX); 4292 memory_region_init_alias(&vtd_dev_as->iommu_ir, OBJECT(s), "vtd-ir", 4293 &s->mr_ir, 0, memory_region_size(&s->mr_ir)); 4294 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->iommu), 4295 VTD_INTERRUPT_ADDR_FIRST, 4296 &vtd_dev_as->iommu_ir, 1); 4297 4298 /* 4299 * This region is used for catching fault to access interrupt 4300 * range via passthrough + PASID. See also 4301 * vtd_switch_address_space(). We can't use alias since we 4302 * need to know the sid which is valid for MSI who uses 4303 * bus_master_as (see msi_send_message()). 4304 */ 4305 memory_region_init_io(&vtd_dev_as->iommu_ir_fault, OBJECT(s), 4306 &vtd_mem_ir_fault_ops, vtd_dev_as, "vtd-no-ir", 4307 VTD_INTERRUPT_ADDR_SIZE); 4308 /* 4309 * Hook to root since when PT is enabled vtd_dev_as->iommu 4310 * will be disabled. 4311 */ 4312 memory_region_add_subregion_overlap(MEMORY_REGION(&vtd_dev_as->root), 4313 VTD_INTERRUPT_ADDR_FIRST, 4314 &vtd_dev_as->iommu_ir_fault, 2); 4315 4316 /* 4317 * Hook both the containers under the root container, we 4318 * switch between DMAR & noDMAR by enable/disable 4319 * corresponding sub-containers 4320 */ 4321 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 4322 MEMORY_REGION(&vtd_dev_as->iommu), 4323 0); 4324 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 4325 &vtd_dev_as->nodmar, 0); 4326 4327 vtd_switch_address_space(vtd_dev_as); 4328 4329 g_hash_table_insert(s->vtd_address_spaces, new_key, vtd_dev_as); 4330 4331 vtd_iommu_unlock(s); 4332 } 4333 return vtd_dev_as; 4334 } 4335 4336 static bool vtd_check_hiod(IntelIOMMUState *s, HostIOMMUDevice *hiod, 4337 Error **errp) 4338 { 4339 HostIOMMUDeviceClass *hiodc = HOST_IOMMU_DEVICE_GET_CLASS(hiod); 4340 int ret; 4341 4342 if (!hiodc->get_cap) { 4343 error_setg(errp, ".get_cap() not implemented"); 4344 return false; 4345 } 4346 4347 /* Common checks */ 4348 ret = hiodc->get_cap(hiod, HOST_IOMMU_DEVICE_CAP_AW_BITS, errp); 4349 if (ret < 0) { 4350 return false; 4351 } 4352 if (s->aw_bits > ret) { 4353 error_setg(errp, "aw-bits %d > host aw-bits %d", s->aw_bits, ret); 4354 return false; 4355 } 4356 4357 if (!s->flts) { 4358 /* All checks requested by VTD stage-2 translation pass */ 4359 return true; 4360 } 4361 4362 error_setg(errp, "host device is uncompatible with stage-1 translation"); 4363 return false; 4364 } 4365 4366 static bool vtd_dev_set_iommu_device(PCIBus *bus, void *opaque, int devfn, 4367 HostIOMMUDevice *hiod, Error **errp) 4368 { 4369 IntelIOMMUState *s = opaque; 4370 struct vtd_as_key key = { 4371 .bus = bus, 4372 .devfn = devfn, 4373 }; 4374 struct vtd_as_key *new_key; 4375 4376 assert(hiod); 4377 4378 vtd_iommu_lock(s); 4379 4380 if (g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) { 4381 error_setg(errp, "Host IOMMU device already exist"); 4382 vtd_iommu_unlock(s); 4383 return false; 4384 } 4385 4386 if (!vtd_check_hiod(s, hiod, errp)) { 4387 vtd_iommu_unlock(s); 4388 return false; 4389 } 4390 4391 new_key = g_malloc(sizeof(*new_key)); 4392 new_key->bus = bus; 4393 new_key->devfn = devfn; 4394 4395 object_ref(hiod); 4396 g_hash_table_insert(s->vtd_host_iommu_dev, new_key, hiod); 4397 4398 vtd_iommu_unlock(s); 4399 4400 return true; 4401 } 4402 4403 static void vtd_dev_unset_iommu_device(PCIBus *bus, void *opaque, int devfn) 4404 { 4405 IntelIOMMUState *s = opaque; 4406 struct vtd_as_key key = { 4407 .bus = bus, 4408 .devfn = devfn, 4409 }; 4410 4411 vtd_iommu_lock(s); 4412 4413 if (!g_hash_table_lookup(s->vtd_host_iommu_dev, &key)) { 4414 vtd_iommu_unlock(s); 4415 return; 4416 } 4417 4418 g_hash_table_remove(s->vtd_host_iommu_dev, &key); 4419 4420 vtd_iommu_unlock(s); 4421 } 4422 4423 /* Unmap the whole range in the notifier's scope. */ 4424 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 4425 { 4426 hwaddr total, remain; 4427 hwaddr start = n->start; 4428 hwaddr end = n->end; 4429 IntelIOMMUState *s = as->iommu_state; 4430 DMAMap map; 4431 4432 /* 4433 * Note: all the codes in this function has a assumption that IOVA 4434 * bits are no more than VTD_MGAW bits (which is restricted by 4435 * VT-d spec), otherwise we need to consider overflow of 64 bits. 4436 */ 4437 4438 if (end > VTD_ADDRESS_SIZE(s->aw_bits) - 1) { 4439 /* 4440 * Don't need to unmap regions that is bigger than the whole 4441 * VT-d supported address space size 4442 */ 4443 end = VTD_ADDRESS_SIZE(s->aw_bits) - 1; 4444 } 4445 4446 assert(start <= end); 4447 total = remain = end - start + 1; 4448 4449 while (remain >= VTD_PAGE_SIZE) { 4450 IOMMUTLBEvent event; 4451 uint64_t mask = dma_aligned_pow2_mask(start, end, s->aw_bits); 4452 uint64_t size = mask + 1; 4453 4454 assert(size); 4455 4456 event.type = IOMMU_NOTIFIER_UNMAP; 4457 event.entry.iova = start; 4458 event.entry.addr_mask = mask; 4459 event.entry.target_as = &address_space_memory; 4460 event.entry.perm = IOMMU_NONE; 4461 /* This field is meaningless for unmap */ 4462 event.entry.translated_addr = 0; 4463 4464 memory_region_notify_iommu_one(n, &event); 4465 4466 start += size; 4467 remain -= size; 4468 } 4469 4470 assert(!remain); 4471 4472 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 4473 VTD_PCI_SLOT(as->devfn), 4474 VTD_PCI_FUNC(as->devfn), 4475 n->start, total); 4476 4477 map.iova = n->start; 4478 map.size = total - 1; /* Inclusive */ 4479 iova_tree_remove(as->iova_tree, map); 4480 } 4481 4482 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 4483 { 4484 VTDAddressSpace *vtd_as; 4485 IOMMUNotifier *n; 4486 4487 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 4488 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 4489 vtd_address_space_unmap(vtd_as, n); 4490 } 4491 } 4492 } 4493 4494 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 4495 { 4496 vtd_address_space_unmap_all(s); 4497 vtd_switch_address_space_all(s); 4498 } 4499 4500 static int vtd_replay_hook(const IOMMUTLBEvent *event, void *private) 4501 { 4502 memory_region_notify_iommu_one(private, event); 4503 return 0; 4504 } 4505 4506 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 4507 { 4508 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 4509 IntelIOMMUState *s = vtd_as->iommu_state; 4510 uint8_t bus_n = pci_bus_num(vtd_as->bus); 4511 VTDContextEntry ce; 4512 DMAMap map = { .iova = 0, .size = HWADDR_MAX }; 4513 4514 /* replay is protected by BQL, page walk will re-setup it safely */ 4515 iova_tree_remove(vtd_as->iova_tree, map); 4516 4517 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 4518 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : 4519 "legacy mode", 4520 bus_n, PCI_SLOT(vtd_as->devfn), 4521 PCI_FUNC(vtd_as->devfn), 4522 vtd_get_domain_id(s, &ce, vtd_as->pasid), 4523 ce.hi, ce.lo); 4524 if (n->notifier_flags & IOMMU_NOTIFIER_MAP) { 4525 /* This is required only for MAP typed notifiers */ 4526 vtd_page_walk_info info = { 4527 .hook_fn = vtd_replay_hook, 4528 .private = (void *)n, 4529 .notify_unmap = false, 4530 .aw = s->aw_bits, 4531 .as = vtd_as, 4532 .domain_id = vtd_get_domain_id(s, &ce, vtd_as->pasid), 4533 }; 4534 4535 vtd_page_walk(s, &ce, 0, ~0ULL, &info, vtd_as->pasid); 4536 } 4537 } else { 4538 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 4539 PCI_FUNC(vtd_as->devfn)); 4540 } 4541 } 4542 4543 static void vtd_cap_init(IntelIOMMUState *s) 4544 { 4545 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4546 4547 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 4548 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 4549 VTD_CAP_MGAW(s->aw_bits); 4550 if (s->dma_drain) { 4551 s->cap |= VTD_CAP_DRAIN; 4552 } 4553 if (s->dma_translation) { 4554 if (s->aw_bits >= VTD_HOST_AW_39BIT) { 4555 s->cap |= VTD_CAP_SAGAW_39bit; 4556 } 4557 if (s->aw_bits >= VTD_HOST_AW_48BIT) { 4558 s->cap |= VTD_CAP_SAGAW_48bit; 4559 } 4560 } 4561 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 4562 4563 if (x86_iommu_ir_supported(x86_iommu)) { 4564 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 4565 if (s->intr_eim == ON_OFF_AUTO_ON) { 4566 s->ecap |= VTD_ECAP_EIM; 4567 } 4568 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 4569 } 4570 4571 if (x86_iommu->dt_supported) { 4572 s->ecap |= VTD_ECAP_DT; 4573 } 4574 4575 if (x86_iommu->pt_supported) { 4576 s->ecap |= VTD_ECAP_PT; 4577 } 4578 4579 if (s->caching_mode) { 4580 s->cap |= VTD_CAP_CM; 4581 } 4582 4583 /* TODO: read cap/ecap from host to decide which cap to be exposed. */ 4584 if (s->flts) { 4585 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_FLTS; 4586 if (s->fs1gp) { 4587 s->cap |= VTD_CAP_FS1GP; 4588 } 4589 } else if (s->scalable_mode) { 4590 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; 4591 } 4592 4593 if (s->snoop_control) { 4594 s->ecap |= VTD_ECAP_SC; 4595 } 4596 4597 if (s->pasid) { 4598 s->ecap |= VTD_ECAP_PASID | VTD_ECAP_PSS; 4599 } 4600 } 4601 4602 /* 4603 * Do the initialization. It will also be called when reset, so pay 4604 * attention when adding new initialization stuff. 4605 */ 4606 static void vtd_init(IntelIOMMUState *s) 4607 { 4608 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4609 4610 memset(s->csr, 0, DMAR_REG_SIZE); 4611 memset(s->wmask, 0, DMAR_REG_SIZE); 4612 memset(s->w1cmask, 0, DMAR_REG_SIZE); 4613 memset(s->womask, 0, DMAR_REG_SIZE); 4614 4615 s->root = 0; 4616 s->root_scalable = false; 4617 s->dmar_enabled = false; 4618 s->intr_enabled = false; 4619 s->iq_head = 0; 4620 s->iq_tail = 0; 4621 s->iq = 0; 4622 s->iq_size = 0; 4623 s->qi_enabled = false; 4624 s->iq_last_desc_type = VTD_INV_DESC_NONE; 4625 s->iq_dw = false; 4626 s->next_frcd_reg = 0; 4627 4628 vtd_cap_init(s); 4629 4630 /* 4631 * Rsvd field masks for spte 4632 */ 4633 vtd_spte_rsvd[0] = ~0ULL; 4634 vtd_spte_rsvd[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits, 4635 x86_iommu->dt_supported && s->stale_tm); 4636 vtd_spte_rsvd[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 4637 vtd_spte_rsvd[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 4638 vtd_spte_rsvd[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 4639 4640 vtd_spte_rsvd_large[2] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits, 4641 x86_iommu->dt_supported && s->stale_tm); 4642 vtd_spte_rsvd_large[3] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits, 4643 x86_iommu->dt_supported && s->stale_tm); 4644 4645 /* 4646 * Rsvd field masks for fpte 4647 */ 4648 vtd_fpte_rsvd[0] = ~0ULL; 4649 vtd_fpte_rsvd[1] = VTD_FPTE_PAGE_L1_RSVD_MASK(s->aw_bits); 4650 vtd_fpte_rsvd[2] = VTD_FPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 4651 vtd_fpte_rsvd[3] = VTD_FPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 4652 vtd_fpte_rsvd[4] = VTD_FPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 4653 4654 vtd_fpte_rsvd_large[2] = VTD_FPTE_LPAGE_L2_RSVD_MASK(s->aw_bits); 4655 vtd_fpte_rsvd_large[3] = VTD_FPTE_LPAGE_L3_RSVD_MASK(s->aw_bits); 4656 4657 if (s->scalable_mode || s->snoop_control) { 4658 vtd_spte_rsvd[1] &= ~VTD_SPTE_SNP; 4659 vtd_spte_rsvd_large[2] &= ~VTD_SPTE_SNP; 4660 vtd_spte_rsvd_large[3] &= ~VTD_SPTE_SNP; 4661 } 4662 4663 vtd_reset_caches(s); 4664 4665 /* Define registers with default values and bit semantics */ 4666 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 4667 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 4668 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 4669 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 4670 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 4671 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 4672 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); 4673 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 4674 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 4675 4676 /* Advanced Fault Logging not supported */ 4677 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 4678 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 4679 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 4680 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 4681 4682 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 4683 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 4684 */ 4685 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 4686 4687 /* Treated as RO for implementations that PLMR and PHMR fields reported 4688 * as Clear in the CAP_REG. 4689 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 4690 */ 4691 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 4692 4693 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 4694 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 4695 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); 4696 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 4697 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 4698 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 4699 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 4700 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 4701 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 4702 4703 /* IOTLB registers */ 4704 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 4705 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 4706 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 4707 4708 /* Fault Recording Registers, 128-bit */ 4709 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 4710 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 4711 4712 /* 4713 * Interrupt remapping registers. 4714 */ 4715 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 4716 } 4717 4718 /* Should not reset address_spaces when reset because devices will still use 4719 * the address space they got at first (won't ask the bus again). 4720 */ 4721 static void vtd_reset_exit(Object *obj, ResetType type) 4722 { 4723 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(obj); 4724 4725 trace_vtd_reset_exit(); 4726 vtd_init(s); 4727 vtd_address_space_refresh_all(s); 4728 } 4729 4730 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 4731 { 4732 IntelIOMMUState *s = opaque; 4733 VTDAddressSpace *vtd_as; 4734 4735 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 4736 4737 vtd_as = vtd_find_add_as(s, bus, devfn, PCI_NO_PASID); 4738 return &vtd_as->as; 4739 } 4740 4741 static IOMMUTLBEntry vtd_iommu_ats_do_translate(IOMMUMemoryRegion *iommu, 4742 hwaddr addr, 4743 IOMMUAccessFlags flags) 4744 { 4745 IOMMUTLBEntry entry; 4746 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 4747 4748 if (vtd_is_interrupt_addr(addr)) { 4749 vtd_report_ir_illegal_access(vtd_as, addr, flags & IOMMU_WO); 4750 entry.target_as = &address_space_memory; 4751 entry.iova = 0; 4752 entry.translated_addr = 0; 4753 entry.addr_mask = ~VTD_PAGE_MASK_4K; 4754 entry.perm = IOMMU_NONE; 4755 entry.pasid = PCI_NO_PASID; 4756 } else { 4757 entry = vtd_iommu_translate(iommu, addr, flags, 0); 4758 } 4759 4760 return entry; 4761 } 4762 4763 static ssize_t vtd_ats_request_translation(PCIBus *bus, void *opaque, 4764 int devfn, uint32_t pasid, 4765 bool priv_req, bool exec_req, 4766 hwaddr addr, size_t length, 4767 bool no_write, IOMMUTLBEntry *result, 4768 size_t result_length, 4769 uint32_t *err_count) 4770 { 4771 IntelIOMMUState *s = opaque; 4772 VTDAddressSpace *vtd_as; 4773 IOMMUAccessFlags flags = IOMMU_ACCESS_FLAG_FULL(true, !no_write, exec_req, 4774 priv_req, false, false); 4775 ssize_t res_index = 0; 4776 hwaddr target_address = addr + length; 4777 IOMMUTLBEntry entry; 4778 4779 vtd_as = vtd_find_add_as(s, bus, devfn, pasid); 4780 *err_count = 0; 4781 4782 while ((addr < target_address) && (res_index < result_length)) { 4783 entry = vtd_iommu_ats_do_translate(&vtd_as->iommu, addr, flags); 4784 entry.perm &= ~IOMMU_GLOBAL; /* Spec 4.1.2: Global Mapping never set */ 4785 4786 if ((entry.perm & flags) != flags) { 4787 *err_count += 1; /* Less than expected */ 4788 } 4789 4790 result[res_index] = entry; 4791 res_index += 1; 4792 addr = (addr & (~entry.addr_mask)) + (entry.addr_mask + 1); 4793 } 4794 4795 /* Buffer too small */ 4796 if (addr < target_address) { 4797 return -ENOMEM; 4798 } 4799 4800 return res_index; 4801 } 4802 4803 static void vtd_init_iotlb_notifier(PCIBus *bus, void *opaque, int devfn, 4804 IOMMUNotifier *n, IOMMUNotify fn, 4805 void *user_opaque) 4806 { 4807 n->opaque = user_opaque; 4808 iommu_notifier_init(n, fn, IOMMU_NOTIFIER_DEVIOTLB_EVENTS, 0, 4809 HWADDR_MAX, 0); 4810 } 4811 4812 static void vtd_get_iotlb_info(void *opaque, uint8_t *addr_width, 4813 uint32_t *min_page_size) 4814 { 4815 IntelIOMMUState *s = opaque; 4816 4817 *addr_width = s->aw_bits; 4818 *min_page_size = VTD_PAGE_SIZE; 4819 } 4820 4821 static void vtd_register_iotlb_notifier(PCIBus *bus, void *opaque, 4822 int devfn, uint32_t pasid, 4823 IOMMUNotifier *n) 4824 { 4825 IntelIOMMUState *s = opaque; 4826 VTDAddressSpace *vtd_as; 4827 4828 vtd_as = vtd_find_add_as(s, bus, devfn, pasid); 4829 memory_region_register_iommu_notifier(MEMORY_REGION(&vtd_as->iommu), n, 4830 &error_fatal); 4831 } 4832 4833 static void vtd_unregister_iotlb_notifier(PCIBus *bus, void *opaque, 4834 int devfn, uint32_t pasid, 4835 IOMMUNotifier *n) 4836 { 4837 IntelIOMMUState *s = opaque; 4838 VTDAddressSpace *vtd_as; 4839 4840 vtd_as = vtd_find_add_as(s, bus, devfn, pasid); 4841 memory_region_unregister_iommu_notifier(MEMORY_REGION(&vtd_as->iommu), n); 4842 } 4843 4844 static PCIIOMMUOps vtd_iommu_ops = { 4845 .get_address_space = vtd_host_dma_iommu, 4846 .set_iommu_device = vtd_dev_set_iommu_device, 4847 .unset_iommu_device = vtd_dev_unset_iommu_device, 4848 .get_iotlb_info = vtd_get_iotlb_info, 4849 .init_iotlb_notifier = vtd_init_iotlb_notifier, 4850 .register_iotlb_notifier = vtd_register_iotlb_notifier, 4851 .unregister_iotlb_notifier = vtd_unregister_iotlb_notifier, 4852 .ats_request_translation = vtd_ats_request_translation, 4853 }; 4854 4855 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 4856 { 4857 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4858 4859 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 4860 error_setg(errp, "eim=on cannot be selected without intremap=on"); 4861 return false; 4862 } 4863 4864 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 4865 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 4866 && x86_iommu_ir_supported(x86_iommu) ? 4867 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 4868 } 4869 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 4870 if (kvm_irqchip_is_split() && !kvm_enable_x2apic()) { 4871 error_setg(errp, "eim=on requires support on the KVM side" 4872 "(X2APIC_API, first shipped in v4.7)"); 4873 return false; 4874 } 4875 } 4876 4877 if (!s->scalable_mode && s->flts) { 4878 error_setg(errp, "x-flts is only available in scalable mode"); 4879 return false; 4880 } 4881 4882 if (!s->flts && s->aw_bits != VTD_HOST_AW_39BIT && 4883 s->aw_bits != VTD_HOST_AW_48BIT) { 4884 error_setg(errp, "%s: supported values for aw-bits are: %d, %d", 4885 s->scalable_mode ? "Scalable mode(flts=off)" : "Legacy mode", 4886 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 4887 return false; 4888 } 4889 4890 if (s->flts && s->aw_bits != VTD_HOST_AW_48BIT) { 4891 error_setg(errp, 4892 "Scalable mode(flts=on): supported value for aw-bits is: %d", 4893 VTD_HOST_AW_48BIT); 4894 return false; 4895 } 4896 4897 if (s->scalable_mode && !s->dma_drain) { 4898 error_setg(errp, "Need to set dma_drain for scalable mode"); 4899 return false; 4900 } 4901 4902 if (s->pasid && !s->scalable_mode) { 4903 error_setg(errp, "Need to set scalable mode for PASID"); 4904 return false; 4905 } 4906 4907 return true; 4908 } 4909 4910 static int vtd_machine_done_notify_one(Object *child, void *unused) 4911 { 4912 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 4913 4914 /* 4915 * We hard-coded here because vfio-pci is the only special case 4916 * here. Let's be more elegant in the future when we can, but so 4917 * far there seems to be no better way. 4918 */ 4919 if (object_dynamic_cast(child, "vfio-pci") && !iommu->caching_mode) { 4920 vtd_panic_require_caching_mode(); 4921 } 4922 4923 return 0; 4924 } 4925 4926 static void vtd_machine_done_hook(Notifier *notifier, void *unused) 4927 { 4928 object_child_foreach_recursive(object_get_root(), 4929 vtd_machine_done_notify_one, NULL); 4930 } 4931 4932 static Notifier vtd_machine_done_notify = { 4933 .notify = vtd_machine_done_hook, 4934 }; 4935 4936 static void vtd_realize(DeviceState *dev, Error **errp) 4937 { 4938 MachineState *ms = MACHINE(qdev_get_machine()); 4939 PCMachineState *pcms = PC_MACHINE(ms); 4940 X86MachineState *x86ms = X86_MACHINE(ms); 4941 PCIBus *bus = pcms->pcibus; 4942 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 4943 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 4944 4945 if (s->pasid && x86_iommu->dt_supported) { 4946 /* 4947 * PASID-based-Device-TLB Invalidate Descriptor is not 4948 * implemented and it requires support from vhost layer which 4949 * needs to be implemented in the future. 4950 */ 4951 error_setg(errp, "PASID based device IOTLB is not supported"); 4952 return; 4953 } 4954 4955 if (!vtd_decide_config(s, errp)) { 4956 return; 4957 } 4958 4959 QLIST_INIT(&s->vtd_as_with_notifiers); 4960 qemu_mutex_init(&s->iommu_lock); 4961 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 4962 "intel_iommu", DMAR_REG_SIZE); 4963 memory_region_add_subregion(get_system_memory(), 4964 Q35_HOST_BRIDGE_IOMMU_ADDR, &s->csrmem); 4965 4966 /* Create the shared memory regions by all devices */ 4967 memory_region_init(&s->mr_nodmar, OBJECT(s), "vtd-nodmar", 4968 UINT64_MAX); 4969 memory_region_init_io(&s->mr_ir, OBJECT(s), &vtd_mem_ir_ops, 4970 s, "vtd-ir", VTD_INTERRUPT_ADDR_SIZE); 4971 memory_region_init_alias(&s->mr_sys_alias, OBJECT(s), 4972 "vtd-sys-alias", get_system_memory(), 0, 4973 memory_region_size(get_system_memory())); 4974 memory_region_add_subregion_overlap(&s->mr_nodmar, 0, 4975 &s->mr_sys_alias, 0); 4976 memory_region_add_subregion_overlap(&s->mr_nodmar, 4977 VTD_INTERRUPT_ADDR_FIRST, 4978 &s->mr_ir, 1); 4979 /* No corresponding destroy */ 4980 s->iotlb = g_hash_table_new_full(vtd_iotlb_hash, vtd_iotlb_equal, 4981 g_free, g_free); 4982 s->vtd_address_spaces = g_hash_table_new_full(vtd_as_hash, vtd_as_equal, 4983 g_free, g_free); 4984 s->vtd_host_iommu_dev = g_hash_table_new_full(vtd_hiod_hash, vtd_hiod_equal, 4985 g_free, vtd_hiod_destroy); 4986 vtd_init(s); 4987 pci_setup_iommu(bus, &vtd_iommu_ops, dev); 4988 /* Pseudo address space under root PCI bus. */ 4989 x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 4990 qemu_add_machine_init_done_notifier(&vtd_machine_done_notify); 4991 } 4992 4993 static void vtd_class_init(ObjectClass *klass, const void *data) 4994 { 4995 DeviceClass *dc = DEVICE_CLASS(klass); 4996 X86IOMMUClass *x86_class = X86_IOMMU_DEVICE_CLASS(klass); 4997 ResettableClass *rc = RESETTABLE_CLASS(klass); 4998 4999 /* 5000 * Use 'exit' reset phase to make sure all DMA requests 5001 * have been quiesced during 'enter' or 'hold' phase 5002 */ 5003 rc->phases.exit = vtd_reset_exit; 5004 dc->vmsd = &vtd_vmstate; 5005 device_class_set_props(dc, vtd_properties); 5006 dc->hotpluggable = false; 5007 x86_class->realize = vtd_realize; 5008 x86_class->int_remap = vtd_int_remap; 5009 set_bit(DEVICE_CATEGORY_MISC, dc->categories); 5010 dc->desc = "Intel IOMMU (VT-d) DMA Remapping device"; 5011 } 5012 5013 static const TypeInfo vtd_info = { 5014 .name = TYPE_INTEL_IOMMU_DEVICE, 5015 .parent = TYPE_X86_IOMMU_DEVICE, 5016 .instance_size = sizeof(IntelIOMMUState), 5017 .class_init = vtd_class_init, 5018 }; 5019 5020 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 5021 const void *data) 5022 { 5023 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 5024 5025 imrc->translate = vtd_iommu_translate; 5026 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 5027 imrc->replay = vtd_iommu_replay; 5028 } 5029 5030 static const TypeInfo vtd_iommu_memory_region_info = { 5031 .parent = TYPE_IOMMU_MEMORY_REGION, 5032 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 5033 .class_init = vtd_iommu_memory_region_class_init, 5034 }; 5035 5036 static void vtd_register_types(void) 5037 { 5038 type_register_static(&vtd_info); 5039 type_register_static(&vtd_iommu_memory_region_info); 5040 } 5041 5042 type_init(vtd_register_types) 5043