1 /* 2 * QEMU emulation of an Intel IOMMU (VT-d) 3 * (DMA Remapping device) 4 * 5 * Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com> 6 * Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qemu/error-report.h" 24 #include "qapi/error.h" 25 #include "hw/sysbus.h" 26 #include "exec/address-spaces.h" 27 #include "intel_iommu_internal.h" 28 #include "hw/pci/pci.h" 29 #include "hw/pci/pci_bus.h" 30 #include "hw/i386/pc.h" 31 #include "hw/i386/apic-msidef.h" 32 #include "hw/boards.h" 33 #include "hw/i386/x86-iommu.h" 34 #include "hw/pci-host/q35.h" 35 #include "sysemu/kvm.h" 36 #include "hw/i386/apic_internal.h" 37 #include "kvm_i386.h" 38 #include "trace.h" 39 40 /* context entry operations */ 41 #define VTD_CE_GET_RID2PASID(ce) \ 42 ((ce)->val[1] & VTD_SM_CONTEXT_ENTRY_RID2PASID_MASK) 43 #define VTD_CE_GET_PASID_DIR_TABLE(ce) \ 44 ((ce)->val[0] & VTD_PASID_DIR_BASE_ADDR_MASK) 45 46 /* pe operations */ 47 #define VTD_PE_GET_TYPE(pe) ((pe)->val[0] & VTD_SM_PASID_ENTRY_PGTT) 48 #define VTD_PE_GET_LEVEL(pe) (2 + (((pe)->val[0] >> 2) & VTD_SM_PASID_ENTRY_AW)) 49 #define VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write) {\ 50 if (ret_fr) { \ 51 ret_fr = -ret_fr; \ 52 if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) { \ 53 trace_vtd_fault_disabled(); \ 54 } else { \ 55 vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write); \ 56 } \ 57 goto error; \ 58 } \ 59 } 60 61 static void vtd_address_space_refresh_all(IntelIOMMUState *s); 62 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n); 63 64 static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val, 65 uint64_t wmask, uint64_t w1cmask) 66 { 67 stq_le_p(&s->csr[addr], val); 68 stq_le_p(&s->wmask[addr], wmask); 69 stq_le_p(&s->w1cmask[addr], w1cmask); 70 } 71 72 static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask) 73 { 74 stq_le_p(&s->womask[addr], mask); 75 } 76 77 static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val, 78 uint32_t wmask, uint32_t w1cmask) 79 { 80 stl_le_p(&s->csr[addr], val); 81 stl_le_p(&s->wmask[addr], wmask); 82 stl_le_p(&s->w1cmask[addr], w1cmask); 83 } 84 85 static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask) 86 { 87 stl_le_p(&s->womask[addr], mask); 88 } 89 90 /* "External" get/set operations */ 91 static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val) 92 { 93 uint64_t oldval = ldq_le_p(&s->csr[addr]); 94 uint64_t wmask = ldq_le_p(&s->wmask[addr]); 95 uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]); 96 stq_le_p(&s->csr[addr], 97 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 98 } 99 100 static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val) 101 { 102 uint32_t oldval = ldl_le_p(&s->csr[addr]); 103 uint32_t wmask = ldl_le_p(&s->wmask[addr]); 104 uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]); 105 stl_le_p(&s->csr[addr], 106 ((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val)); 107 } 108 109 static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr) 110 { 111 uint64_t val = ldq_le_p(&s->csr[addr]); 112 uint64_t womask = ldq_le_p(&s->womask[addr]); 113 return val & ~womask; 114 } 115 116 static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr) 117 { 118 uint32_t val = ldl_le_p(&s->csr[addr]); 119 uint32_t womask = ldl_le_p(&s->womask[addr]); 120 return val & ~womask; 121 } 122 123 /* "Internal" get/set operations */ 124 static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr) 125 { 126 return ldq_le_p(&s->csr[addr]); 127 } 128 129 static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr) 130 { 131 return ldl_le_p(&s->csr[addr]); 132 } 133 134 static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val) 135 { 136 stq_le_p(&s->csr[addr], val); 137 } 138 139 static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr, 140 uint32_t clear, uint32_t mask) 141 { 142 uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask; 143 stl_le_p(&s->csr[addr], new_val); 144 return new_val; 145 } 146 147 static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr, 148 uint64_t clear, uint64_t mask) 149 { 150 uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask; 151 stq_le_p(&s->csr[addr], new_val); 152 return new_val; 153 } 154 155 static inline void vtd_iommu_lock(IntelIOMMUState *s) 156 { 157 qemu_mutex_lock(&s->iommu_lock); 158 } 159 160 static inline void vtd_iommu_unlock(IntelIOMMUState *s) 161 { 162 qemu_mutex_unlock(&s->iommu_lock); 163 } 164 165 /* Whether the address space needs to notify new mappings */ 166 static inline gboolean vtd_as_has_map_notifier(VTDAddressSpace *as) 167 { 168 return as->notifier_flags & IOMMU_NOTIFIER_MAP; 169 } 170 171 /* GHashTable functions */ 172 static gboolean vtd_uint64_equal(gconstpointer v1, gconstpointer v2) 173 { 174 return *((const uint64_t *)v1) == *((const uint64_t *)v2); 175 } 176 177 static guint vtd_uint64_hash(gconstpointer v) 178 { 179 return (guint)*(const uint64_t *)v; 180 } 181 182 static gboolean vtd_hash_remove_by_domain(gpointer key, gpointer value, 183 gpointer user_data) 184 { 185 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 186 uint16_t domain_id = *(uint16_t *)user_data; 187 return entry->domain_id == domain_id; 188 } 189 190 /* The shift of an addr for a certain level of paging structure */ 191 static inline uint32_t vtd_slpt_level_shift(uint32_t level) 192 { 193 assert(level != 0); 194 return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS; 195 } 196 197 static inline uint64_t vtd_slpt_level_page_mask(uint32_t level) 198 { 199 return ~((1ULL << vtd_slpt_level_shift(level)) - 1); 200 } 201 202 static gboolean vtd_hash_remove_by_page(gpointer key, gpointer value, 203 gpointer user_data) 204 { 205 VTDIOTLBEntry *entry = (VTDIOTLBEntry *)value; 206 VTDIOTLBPageInvInfo *info = (VTDIOTLBPageInvInfo *)user_data; 207 uint64_t gfn = (info->addr >> VTD_PAGE_SHIFT_4K) & info->mask; 208 uint64_t gfn_tlb = (info->addr & entry->mask) >> VTD_PAGE_SHIFT_4K; 209 return (entry->domain_id == info->domain_id) && 210 (((entry->gfn & info->mask) == gfn) || 211 (entry->gfn == gfn_tlb)); 212 } 213 214 /* Reset all the gen of VTDAddressSpace to zero and set the gen of 215 * IntelIOMMUState to 1. Must be called with IOMMU lock held. 216 */ 217 static void vtd_reset_context_cache_locked(IntelIOMMUState *s) 218 { 219 VTDAddressSpace *vtd_as; 220 VTDBus *vtd_bus; 221 GHashTableIter bus_it; 222 uint32_t devfn_it; 223 224 trace_vtd_context_cache_reset(); 225 226 g_hash_table_iter_init(&bus_it, s->vtd_as_by_busptr); 227 228 while (g_hash_table_iter_next (&bus_it, NULL, (void**)&vtd_bus)) { 229 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) { 230 vtd_as = vtd_bus->dev_as[devfn_it]; 231 if (!vtd_as) { 232 continue; 233 } 234 vtd_as->context_cache_entry.context_cache_gen = 0; 235 } 236 } 237 s->context_cache_gen = 1; 238 } 239 240 /* Must be called with IOMMU lock held. */ 241 static void vtd_reset_iotlb_locked(IntelIOMMUState *s) 242 { 243 assert(s->iotlb); 244 g_hash_table_remove_all(s->iotlb); 245 } 246 247 static void vtd_reset_iotlb(IntelIOMMUState *s) 248 { 249 vtd_iommu_lock(s); 250 vtd_reset_iotlb_locked(s); 251 vtd_iommu_unlock(s); 252 } 253 254 static void vtd_reset_caches(IntelIOMMUState *s) 255 { 256 vtd_iommu_lock(s); 257 vtd_reset_iotlb_locked(s); 258 vtd_reset_context_cache_locked(s); 259 vtd_iommu_unlock(s); 260 } 261 262 static uint64_t vtd_get_iotlb_key(uint64_t gfn, uint16_t source_id, 263 uint32_t level) 264 { 265 return gfn | ((uint64_t)(source_id) << VTD_IOTLB_SID_SHIFT) | 266 ((uint64_t)(level) << VTD_IOTLB_LVL_SHIFT); 267 } 268 269 static uint64_t vtd_get_iotlb_gfn(hwaddr addr, uint32_t level) 270 { 271 return (addr & vtd_slpt_level_page_mask(level)) >> VTD_PAGE_SHIFT_4K; 272 } 273 274 /* Must be called with IOMMU lock held */ 275 static VTDIOTLBEntry *vtd_lookup_iotlb(IntelIOMMUState *s, uint16_t source_id, 276 hwaddr addr) 277 { 278 VTDIOTLBEntry *entry; 279 uint64_t key; 280 int level; 281 282 for (level = VTD_SL_PT_LEVEL; level < VTD_SL_PML4_LEVEL; level++) { 283 key = vtd_get_iotlb_key(vtd_get_iotlb_gfn(addr, level), 284 source_id, level); 285 entry = g_hash_table_lookup(s->iotlb, &key); 286 if (entry) { 287 goto out; 288 } 289 } 290 291 out: 292 return entry; 293 } 294 295 /* Must be with IOMMU lock held */ 296 static void vtd_update_iotlb(IntelIOMMUState *s, uint16_t source_id, 297 uint16_t domain_id, hwaddr addr, uint64_t slpte, 298 uint8_t access_flags, uint32_t level) 299 { 300 VTDIOTLBEntry *entry = g_malloc(sizeof(*entry)); 301 uint64_t *key = g_malloc(sizeof(*key)); 302 uint64_t gfn = vtd_get_iotlb_gfn(addr, level); 303 304 trace_vtd_iotlb_page_update(source_id, addr, slpte, domain_id); 305 if (g_hash_table_size(s->iotlb) >= VTD_IOTLB_MAX_SIZE) { 306 trace_vtd_iotlb_reset("iotlb exceeds size limit"); 307 vtd_reset_iotlb_locked(s); 308 } 309 310 entry->gfn = gfn; 311 entry->domain_id = domain_id; 312 entry->slpte = slpte; 313 entry->access_flags = access_flags; 314 entry->mask = vtd_slpt_level_page_mask(level); 315 *key = vtd_get_iotlb_key(gfn, source_id, level); 316 g_hash_table_replace(s->iotlb, key, entry); 317 } 318 319 /* Given the reg addr of both the message data and address, generate an 320 * interrupt via MSI. 321 */ 322 static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg, 323 hwaddr mesg_data_reg) 324 { 325 MSIMessage msi; 326 327 assert(mesg_data_reg < DMAR_REG_SIZE); 328 assert(mesg_addr_reg < DMAR_REG_SIZE); 329 330 msi.address = vtd_get_long_raw(s, mesg_addr_reg); 331 msi.data = vtd_get_long_raw(s, mesg_data_reg); 332 333 trace_vtd_irq_generate(msi.address, msi.data); 334 335 apic_get_class()->send_msi(&msi); 336 } 337 338 /* Generate a fault event to software via MSI if conditions are met. 339 * Notice that the value of FSTS_REG being passed to it should be the one 340 * before any update. 341 */ 342 static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts) 343 { 344 if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO || 345 pre_fsts & VTD_FSTS_IQE) { 346 error_report_once("There are previous interrupt conditions " 347 "to be serviced by software, fault event " 348 "is not generated"); 349 return; 350 } 351 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP); 352 if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) { 353 error_report_once("Interrupt Mask set, irq is not generated"); 354 } else { 355 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 356 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 357 } 358 } 359 360 /* Check if the Fault (F) field of the Fault Recording Register referenced by 361 * @index is Set. 362 */ 363 static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index) 364 { 365 /* Each reg is 128-bit */ 366 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 367 addr += 8; /* Access the high 64-bit half */ 368 369 assert(index < DMAR_FRCD_REG_NR); 370 371 return vtd_get_quad_raw(s, addr) & VTD_FRCD_F; 372 } 373 374 /* Update the PPF field of Fault Status Register. 375 * Should be called whenever change the F field of any fault recording 376 * registers. 377 */ 378 static void vtd_update_fsts_ppf(IntelIOMMUState *s) 379 { 380 uint32_t i; 381 uint32_t ppf_mask = 0; 382 383 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 384 if (vtd_is_frcd_set(s, i)) { 385 ppf_mask = VTD_FSTS_PPF; 386 break; 387 } 388 } 389 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask); 390 trace_vtd_fsts_ppf(!!ppf_mask); 391 } 392 393 static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index) 394 { 395 /* Each reg is 128-bit */ 396 hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 397 addr += 8; /* Access the high 64-bit half */ 398 399 assert(index < DMAR_FRCD_REG_NR); 400 401 vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F); 402 vtd_update_fsts_ppf(s); 403 } 404 405 /* Must not update F field now, should be done later */ 406 static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index, 407 uint16_t source_id, hwaddr addr, 408 VTDFaultReason fault, bool is_write) 409 { 410 uint64_t hi = 0, lo; 411 hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4); 412 413 assert(index < DMAR_FRCD_REG_NR); 414 415 lo = VTD_FRCD_FI(addr); 416 hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault); 417 if (!is_write) { 418 hi |= VTD_FRCD_T; 419 } 420 vtd_set_quad_raw(s, frcd_reg_addr, lo); 421 vtd_set_quad_raw(s, frcd_reg_addr + 8, hi); 422 423 trace_vtd_frr_new(index, hi, lo); 424 } 425 426 /* Try to collapse multiple pending faults from the same requester */ 427 static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id) 428 { 429 uint32_t i; 430 uint64_t frcd_reg; 431 hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */ 432 433 for (i = 0; i < DMAR_FRCD_REG_NR; i++) { 434 frcd_reg = vtd_get_quad_raw(s, addr); 435 if ((frcd_reg & VTD_FRCD_F) && 436 ((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) { 437 return true; 438 } 439 addr += 16; /* 128-bit for each */ 440 } 441 return false; 442 } 443 444 /* Log and report an DMAR (address translation) fault to software */ 445 static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id, 446 hwaddr addr, VTDFaultReason fault, 447 bool is_write) 448 { 449 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 450 451 assert(fault < VTD_FR_MAX); 452 453 if (fault == VTD_FR_RESERVED_ERR) { 454 /* This is not a normal fault reason case. Drop it. */ 455 return; 456 } 457 458 trace_vtd_dmar_fault(source_id, fault, addr, is_write); 459 460 if (fsts_reg & VTD_FSTS_PFO) { 461 error_report_once("New fault is not recorded due to " 462 "Primary Fault Overflow"); 463 return; 464 } 465 466 if (vtd_try_collapse_fault(s, source_id)) { 467 error_report_once("New fault is not recorded due to " 468 "compression of faults"); 469 return; 470 } 471 472 if (vtd_is_frcd_set(s, s->next_frcd_reg)) { 473 error_report_once("Next Fault Recording Reg is used, " 474 "new fault is not recorded, set PFO field"); 475 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO); 476 return; 477 } 478 479 vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write); 480 481 if (fsts_reg & VTD_FSTS_PPF) { 482 error_report_once("There are pending faults already, " 483 "fault event is not generated"); 484 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); 485 s->next_frcd_reg++; 486 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 487 s->next_frcd_reg = 0; 488 } 489 } else { 490 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK, 491 VTD_FSTS_FRI(s->next_frcd_reg)); 492 vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */ 493 s->next_frcd_reg++; 494 if (s->next_frcd_reg == DMAR_FRCD_REG_NR) { 495 s->next_frcd_reg = 0; 496 } 497 /* This case actually cause the PPF to be Set. 498 * So generate fault event (interrupt). 499 */ 500 vtd_generate_fault_event(s, fsts_reg); 501 } 502 } 503 504 /* Handle Invalidation Queue Errors of queued invalidation interface error 505 * conditions. 506 */ 507 static void vtd_handle_inv_queue_error(IntelIOMMUState *s) 508 { 509 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 510 511 vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_IQE); 512 vtd_generate_fault_event(s, fsts_reg); 513 } 514 515 /* Set the IWC field and try to generate an invalidation completion interrupt */ 516 static void vtd_generate_completion_event(IntelIOMMUState *s) 517 { 518 if (vtd_get_long_raw(s, DMAR_ICS_REG) & VTD_ICS_IWC) { 519 trace_vtd_inv_desc_wait_irq("One pending, skip current"); 520 return; 521 } 522 vtd_set_clear_mask_long(s, DMAR_ICS_REG, 0, VTD_ICS_IWC); 523 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, 0, VTD_IECTL_IP); 524 if (vtd_get_long_raw(s, DMAR_IECTL_REG) & VTD_IECTL_IM) { 525 trace_vtd_inv_desc_wait_irq("IM in IECTL_REG is set, " 526 "new event not generated"); 527 return; 528 } else { 529 /* Generate the interrupt event */ 530 trace_vtd_inv_desc_wait_irq("Generating complete event"); 531 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 532 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 533 } 534 } 535 536 static inline bool vtd_root_entry_present(IntelIOMMUState *s, 537 VTDRootEntry *re, 538 uint8_t devfn) 539 { 540 if (s->root_scalable && devfn > UINT8_MAX / 2) { 541 return re->hi & VTD_ROOT_ENTRY_P; 542 } 543 544 return re->lo & VTD_ROOT_ENTRY_P; 545 } 546 547 static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index, 548 VTDRootEntry *re) 549 { 550 dma_addr_t addr; 551 552 addr = s->root + index * sizeof(*re); 553 if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) { 554 re->lo = 0; 555 return -VTD_FR_ROOT_TABLE_INV; 556 } 557 re->lo = le64_to_cpu(re->lo); 558 re->hi = le64_to_cpu(re->hi); 559 return 0; 560 } 561 562 static inline bool vtd_ce_present(VTDContextEntry *context) 563 { 564 return context->lo & VTD_CONTEXT_ENTRY_P; 565 } 566 567 static int vtd_get_context_entry_from_root(IntelIOMMUState *s, 568 VTDRootEntry *re, 569 uint8_t index, 570 VTDContextEntry *ce) 571 { 572 dma_addr_t addr, ce_size; 573 574 /* we have checked that root entry is present */ 575 ce_size = s->root_scalable ? VTD_CTX_ENTRY_SCALABLE_SIZE : 576 VTD_CTX_ENTRY_LEGACY_SIZE; 577 578 if (s->root_scalable && index > UINT8_MAX / 2) { 579 index = index & (~VTD_DEVFN_CHECK_MASK); 580 addr = re->hi & VTD_ROOT_ENTRY_CTP; 581 } else { 582 addr = re->lo & VTD_ROOT_ENTRY_CTP; 583 } 584 585 addr = addr + index * ce_size; 586 if (dma_memory_read(&address_space_memory, addr, ce, ce_size)) { 587 return -VTD_FR_CONTEXT_TABLE_INV; 588 } 589 590 ce->lo = le64_to_cpu(ce->lo); 591 ce->hi = le64_to_cpu(ce->hi); 592 if (ce_size == VTD_CTX_ENTRY_SCALABLE_SIZE) { 593 ce->val[2] = le64_to_cpu(ce->val[2]); 594 ce->val[3] = le64_to_cpu(ce->val[3]); 595 } 596 return 0; 597 } 598 599 static inline dma_addr_t vtd_ce_get_slpt_base(VTDContextEntry *ce) 600 { 601 return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR; 602 } 603 604 static inline uint64_t vtd_get_slpte_addr(uint64_t slpte, uint8_t aw) 605 { 606 return slpte & VTD_SL_PT_BASE_ADDR_MASK(aw); 607 } 608 609 /* Whether the pte indicates the address of the page frame */ 610 static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level) 611 { 612 return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK); 613 } 614 615 /* Get the content of a spte located in @base_addr[@index] */ 616 static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index) 617 { 618 uint64_t slpte; 619 620 assert(index < VTD_SL_PT_ENTRY_NR); 621 622 if (dma_memory_read(&address_space_memory, 623 base_addr + index * sizeof(slpte), &slpte, 624 sizeof(slpte))) { 625 slpte = (uint64_t)-1; 626 return slpte; 627 } 628 slpte = le64_to_cpu(slpte); 629 return slpte; 630 } 631 632 /* Given an iova and the level of paging structure, return the offset 633 * of current level. 634 */ 635 static inline uint32_t vtd_iova_level_offset(uint64_t iova, uint32_t level) 636 { 637 return (iova >> vtd_slpt_level_shift(level)) & 638 ((1ULL << VTD_SL_LEVEL_BITS) - 1); 639 } 640 641 /* Check Capability Register to see if the @level of page-table is supported */ 642 static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level) 643 { 644 return VTD_CAP_SAGAW_MASK & s->cap & 645 (1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT)); 646 } 647 648 /* Return true if check passed, otherwise false */ 649 static inline bool vtd_pe_type_check(X86IOMMUState *x86_iommu, 650 VTDPASIDEntry *pe) 651 { 652 switch (VTD_PE_GET_TYPE(pe)) { 653 case VTD_SM_PASID_ENTRY_FLT: 654 case VTD_SM_PASID_ENTRY_SLT: 655 case VTD_SM_PASID_ENTRY_NESTED: 656 break; 657 case VTD_SM_PASID_ENTRY_PT: 658 if (!x86_iommu->pt_supported) { 659 return false; 660 } 661 break; 662 default: 663 /* Unknwon type */ 664 return false; 665 } 666 return true; 667 } 668 669 static int vtd_get_pasid_dire(dma_addr_t pasid_dir_base, 670 uint32_t pasid, 671 VTDPASIDDirEntry *pdire) 672 { 673 uint32_t index; 674 dma_addr_t addr, entry_size; 675 676 index = VTD_PASID_DIR_INDEX(pasid); 677 entry_size = VTD_PASID_DIR_ENTRY_SIZE; 678 addr = pasid_dir_base + index * entry_size; 679 if (dma_memory_read(&address_space_memory, addr, pdire, entry_size)) { 680 return -VTD_FR_PASID_TABLE_INV; 681 } 682 683 return 0; 684 } 685 686 static int vtd_get_pasid_entry(IntelIOMMUState *s, 687 uint32_t pasid, 688 VTDPASIDDirEntry *pdire, 689 VTDPASIDEntry *pe) 690 { 691 uint32_t index; 692 dma_addr_t addr, entry_size; 693 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 694 695 index = VTD_PASID_TABLE_INDEX(pasid); 696 entry_size = VTD_PASID_ENTRY_SIZE; 697 addr = pdire->val & VTD_PASID_TABLE_BASE_ADDR_MASK; 698 addr = addr + index * entry_size; 699 if (dma_memory_read(&address_space_memory, addr, pe, entry_size)) { 700 return -VTD_FR_PASID_TABLE_INV; 701 } 702 703 /* Do translation type check */ 704 if (!vtd_pe_type_check(x86_iommu, pe)) { 705 return -VTD_FR_PASID_TABLE_INV; 706 } 707 708 if (!vtd_is_level_supported(s, VTD_PE_GET_LEVEL(pe))) { 709 return -VTD_FR_PASID_TABLE_INV; 710 } 711 712 return 0; 713 } 714 715 static int vtd_get_pasid_entry_from_pasid(IntelIOMMUState *s, 716 dma_addr_t pasid_dir_base, 717 uint32_t pasid, 718 VTDPASIDEntry *pe) 719 { 720 int ret; 721 VTDPASIDDirEntry pdire; 722 723 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire); 724 if (ret) { 725 return ret; 726 } 727 728 ret = vtd_get_pasid_entry(s, pasid, &pdire, pe); 729 if (ret) { 730 return ret; 731 } 732 733 return ret; 734 } 735 736 static int vtd_ce_get_rid2pasid_entry(IntelIOMMUState *s, 737 VTDContextEntry *ce, 738 VTDPASIDEntry *pe) 739 { 740 uint32_t pasid; 741 dma_addr_t pasid_dir_base; 742 int ret = 0; 743 744 pasid = VTD_CE_GET_RID2PASID(ce); 745 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 746 ret = vtd_get_pasid_entry_from_pasid(s, pasid_dir_base, pasid, pe); 747 748 return ret; 749 } 750 751 static int vtd_ce_get_pasid_fpd(IntelIOMMUState *s, 752 VTDContextEntry *ce, 753 bool *pe_fpd_set) 754 { 755 int ret; 756 uint32_t pasid; 757 dma_addr_t pasid_dir_base; 758 VTDPASIDDirEntry pdire; 759 VTDPASIDEntry pe; 760 761 pasid = VTD_CE_GET_RID2PASID(ce); 762 pasid_dir_base = VTD_CE_GET_PASID_DIR_TABLE(ce); 763 764 ret = vtd_get_pasid_dire(pasid_dir_base, pasid, &pdire); 765 if (ret) { 766 return ret; 767 } 768 769 if (pdire.val & VTD_PASID_DIR_FPD) { 770 *pe_fpd_set = true; 771 return 0; 772 } 773 774 ret = vtd_get_pasid_entry(s, pasid, &pdire, &pe); 775 if (ret) { 776 return ret; 777 } 778 779 if (pe.val[0] & VTD_PASID_ENTRY_FPD) { 780 *pe_fpd_set = true; 781 } 782 783 return 0; 784 } 785 786 /* Get the page-table level that hardware should use for the second-level 787 * page-table walk from the Address Width field of context-entry. 788 */ 789 static inline uint32_t vtd_ce_get_level(VTDContextEntry *ce) 790 { 791 return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW); 792 } 793 794 static uint32_t vtd_get_iova_level(IntelIOMMUState *s, 795 VTDContextEntry *ce) 796 { 797 VTDPASIDEntry pe; 798 799 if (s->root_scalable) { 800 vtd_ce_get_rid2pasid_entry(s, ce, &pe); 801 return VTD_PE_GET_LEVEL(&pe); 802 } 803 804 return vtd_ce_get_level(ce); 805 } 806 807 static inline uint32_t vtd_ce_get_agaw(VTDContextEntry *ce) 808 { 809 return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9; 810 } 811 812 static uint32_t vtd_get_iova_agaw(IntelIOMMUState *s, 813 VTDContextEntry *ce) 814 { 815 VTDPASIDEntry pe; 816 817 if (s->root_scalable) { 818 vtd_ce_get_rid2pasid_entry(s, ce, &pe); 819 return 30 + ((pe.val[0] >> 2) & VTD_SM_PASID_ENTRY_AW) * 9; 820 } 821 822 return vtd_ce_get_agaw(ce); 823 } 824 825 static inline uint32_t vtd_ce_get_type(VTDContextEntry *ce) 826 { 827 return ce->lo & VTD_CONTEXT_ENTRY_TT; 828 } 829 830 /* Only for Legacy Mode. Return true if check passed, otherwise false */ 831 static inline bool vtd_ce_type_check(X86IOMMUState *x86_iommu, 832 VTDContextEntry *ce) 833 { 834 switch (vtd_ce_get_type(ce)) { 835 case VTD_CONTEXT_TT_MULTI_LEVEL: 836 /* Always supported */ 837 break; 838 case VTD_CONTEXT_TT_DEV_IOTLB: 839 if (!x86_iommu->dt_supported) { 840 error_report_once("%s: DT specified but not supported", __func__); 841 return false; 842 } 843 break; 844 case VTD_CONTEXT_TT_PASS_THROUGH: 845 if (!x86_iommu->pt_supported) { 846 error_report_once("%s: PT specified but not supported", __func__); 847 return false; 848 } 849 break; 850 default: 851 /* Unknown type */ 852 error_report_once("%s: unknown ce type: %"PRIu32, __func__, 853 vtd_ce_get_type(ce)); 854 return false; 855 } 856 return true; 857 } 858 859 static inline uint64_t vtd_iova_limit(IntelIOMMUState *s, 860 VTDContextEntry *ce, uint8_t aw) 861 { 862 uint32_t ce_agaw = vtd_get_iova_agaw(s, ce); 863 return 1ULL << MIN(ce_agaw, aw); 864 } 865 866 /* Return true if IOVA passes range check, otherwise false. */ 867 static inline bool vtd_iova_range_check(IntelIOMMUState *s, 868 uint64_t iova, VTDContextEntry *ce, 869 uint8_t aw) 870 { 871 /* 872 * Check if @iova is above 2^X-1, where X is the minimum of MGAW 873 * in CAP_REG and AW in context-entry. 874 */ 875 return !(iova & ~(vtd_iova_limit(s, ce, aw) - 1)); 876 } 877 878 static dma_addr_t vtd_get_iova_pgtbl_base(IntelIOMMUState *s, 879 VTDContextEntry *ce) 880 { 881 VTDPASIDEntry pe; 882 883 if (s->root_scalable) { 884 vtd_ce_get_rid2pasid_entry(s, ce, &pe); 885 return pe.val[0] & VTD_SM_PASID_ENTRY_SLPTPTR; 886 } 887 888 return vtd_ce_get_slpt_base(ce); 889 } 890 891 /* 892 * Rsvd field masks for spte: 893 * Index [1] to [4] 4k pages 894 * Index [5] to [8] large pages 895 */ 896 static uint64_t vtd_paging_entry_rsvd_field[9]; 897 898 static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level) 899 { 900 if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) { 901 /* Maybe large page */ 902 return slpte & vtd_paging_entry_rsvd_field[level + 4]; 903 } else { 904 return slpte & vtd_paging_entry_rsvd_field[level]; 905 } 906 } 907 908 /* Find the VTD address space associated with a given bus number */ 909 static VTDBus *vtd_find_as_from_bus_num(IntelIOMMUState *s, uint8_t bus_num) 910 { 911 VTDBus *vtd_bus = s->vtd_as_by_bus_num[bus_num]; 912 if (!vtd_bus) { 913 /* 914 * Iterate over the registered buses to find the one which 915 * currently hold this bus number, and update the bus_num 916 * lookup table: 917 */ 918 GHashTableIter iter; 919 920 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); 921 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { 922 if (pci_bus_num(vtd_bus->bus) == bus_num) { 923 s->vtd_as_by_bus_num[bus_num] = vtd_bus; 924 return vtd_bus; 925 } 926 } 927 } 928 return vtd_bus; 929 } 930 931 /* Given the @iova, get relevant @slptep. @slpte_level will be the last level 932 * of the translation, can be used for deciding the size of large page. 933 */ 934 static int vtd_iova_to_slpte(IntelIOMMUState *s, VTDContextEntry *ce, 935 uint64_t iova, bool is_write, 936 uint64_t *slptep, uint32_t *slpte_level, 937 bool *reads, bool *writes, uint8_t aw_bits) 938 { 939 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce); 940 uint32_t level = vtd_get_iova_level(s, ce); 941 uint32_t offset; 942 uint64_t slpte; 943 uint64_t access_right_check; 944 945 if (!vtd_iova_range_check(s, iova, ce, aw_bits)) { 946 error_report_once("%s: detected IOVA overflow (iova=0x%" PRIx64 ")", 947 __func__, iova); 948 return -VTD_FR_ADDR_BEYOND_MGAW; 949 } 950 951 /* FIXME: what is the Atomics request here? */ 952 access_right_check = is_write ? VTD_SL_W : VTD_SL_R; 953 954 while (true) { 955 offset = vtd_iova_level_offset(iova, level); 956 slpte = vtd_get_slpte(addr, offset); 957 958 if (slpte == (uint64_t)-1) { 959 error_report_once("%s: detected read error on DMAR slpte " 960 "(iova=0x%" PRIx64 ")", __func__, iova); 961 if (level == vtd_get_iova_level(s, ce)) { 962 /* Invalid programming of context-entry */ 963 return -VTD_FR_CONTEXT_ENTRY_INV; 964 } else { 965 return -VTD_FR_PAGING_ENTRY_INV; 966 } 967 } 968 *reads = (*reads) && (slpte & VTD_SL_R); 969 *writes = (*writes) && (slpte & VTD_SL_W); 970 if (!(slpte & access_right_check)) { 971 error_report_once("%s: detected slpte permission error " 972 "(iova=0x%" PRIx64 ", level=0x%" PRIx32 ", " 973 "slpte=0x%" PRIx64 ", write=%d)", __func__, 974 iova, level, slpte, is_write); 975 return is_write ? -VTD_FR_WRITE : -VTD_FR_READ; 976 } 977 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 978 error_report_once("%s: detected splte reserve non-zero " 979 "iova=0x%" PRIx64 ", level=0x%" PRIx32 980 "slpte=0x%" PRIx64 ")", __func__, iova, 981 level, slpte); 982 return -VTD_FR_PAGING_ENTRY_RSVD; 983 } 984 985 if (vtd_is_last_slpte(slpte, level)) { 986 *slptep = slpte; 987 *slpte_level = level; 988 return 0; 989 } 990 addr = vtd_get_slpte_addr(slpte, aw_bits); 991 level--; 992 } 993 } 994 995 typedef int (*vtd_page_walk_hook)(IOMMUTLBEntry *entry, void *private); 996 997 /** 998 * Constant information used during page walking 999 * 1000 * @hook_fn: hook func to be called when detected page 1001 * @private: private data to be passed into hook func 1002 * @notify_unmap: whether we should notify invalid entries 1003 * @as: VT-d address space of the device 1004 * @aw: maximum address width 1005 * @domain: domain ID of the page walk 1006 */ 1007 typedef struct { 1008 VTDAddressSpace *as; 1009 vtd_page_walk_hook hook_fn; 1010 void *private; 1011 bool notify_unmap; 1012 uint8_t aw; 1013 uint16_t domain_id; 1014 } vtd_page_walk_info; 1015 1016 static int vtd_page_walk_one(IOMMUTLBEntry *entry, vtd_page_walk_info *info) 1017 { 1018 VTDAddressSpace *as = info->as; 1019 vtd_page_walk_hook hook_fn = info->hook_fn; 1020 void *private = info->private; 1021 DMAMap target = { 1022 .iova = entry->iova, 1023 .size = entry->addr_mask, 1024 .translated_addr = entry->translated_addr, 1025 .perm = entry->perm, 1026 }; 1027 DMAMap *mapped = iova_tree_find(as->iova_tree, &target); 1028 1029 if (entry->perm == IOMMU_NONE && !info->notify_unmap) { 1030 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1031 return 0; 1032 } 1033 1034 assert(hook_fn); 1035 1036 /* Update local IOVA mapped ranges */ 1037 if (entry->perm) { 1038 if (mapped) { 1039 /* If it's exactly the same translation, skip */ 1040 if (!memcmp(mapped, &target, sizeof(target))) { 1041 trace_vtd_page_walk_one_skip_map(entry->iova, entry->addr_mask, 1042 entry->translated_addr); 1043 return 0; 1044 } else { 1045 /* 1046 * Translation changed. Normally this should not 1047 * happen, but it can happen when with buggy guest 1048 * OSes. Note that there will be a small window that 1049 * we don't have map at all. But that's the best 1050 * effort we can do. The ideal way to emulate this is 1051 * atomically modify the PTE to follow what has 1052 * changed, but we can't. One example is that vfio 1053 * driver only has VFIO_IOMMU_[UN]MAP_DMA but no 1054 * interface to modify a mapping (meanwhile it seems 1055 * meaningless to even provide one). Anyway, let's 1056 * mark this as a TODO in case one day we'll have 1057 * a better solution. 1058 */ 1059 IOMMUAccessFlags cache_perm = entry->perm; 1060 int ret; 1061 1062 /* Emulate an UNMAP */ 1063 entry->perm = IOMMU_NONE; 1064 trace_vtd_page_walk_one(info->domain_id, 1065 entry->iova, 1066 entry->translated_addr, 1067 entry->addr_mask, 1068 entry->perm); 1069 ret = hook_fn(entry, private); 1070 if (ret) { 1071 return ret; 1072 } 1073 /* Drop any existing mapping */ 1074 iova_tree_remove(as->iova_tree, &target); 1075 /* Recover the correct permission */ 1076 entry->perm = cache_perm; 1077 } 1078 } 1079 iova_tree_insert(as->iova_tree, &target); 1080 } else { 1081 if (!mapped) { 1082 /* Skip since we didn't map this range at all */ 1083 trace_vtd_page_walk_one_skip_unmap(entry->iova, entry->addr_mask); 1084 return 0; 1085 } 1086 iova_tree_remove(as->iova_tree, &target); 1087 } 1088 1089 trace_vtd_page_walk_one(info->domain_id, entry->iova, 1090 entry->translated_addr, entry->addr_mask, 1091 entry->perm); 1092 return hook_fn(entry, private); 1093 } 1094 1095 /** 1096 * vtd_page_walk_level - walk over specific level for IOVA range 1097 * 1098 * @addr: base GPA addr to start the walk 1099 * @start: IOVA range start address 1100 * @end: IOVA range end address (start <= addr < end) 1101 * @read: whether parent level has read permission 1102 * @write: whether parent level has write permission 1103 * @info: constant information for the page walk 1104 */ 1105 static int vtd_page_walk_level(dma_addr_t addr, uint64_t start, 1106 uint64_t end, uint32_t level, bool read, 1107 bool write, vtd_page_walk_info *info) 1108 { 1109 bool read_cur, write_cur, entry_valid; 1110 uint32_t offset; 1111 uint64_t slpte; 1112 uint64_t subpage_size, subpage_mask; 1113 IOMMUTLBEntry entry; 1114 uint64_t iova = start; 1115 uint64_t iova_next; 1116 int ret = 0; 1117 1118 trace_vtd_page_walk_level(addr, level, start, end); 1119 1120 subpage_size = 1ULL << vtd_slpt_level_shift(level); 1121 subpage_mask = vtd_slpt_level_page_mask(level); 1122 1123 while (iova < end) { 1124 iova_next = (iova & subpage_mask) + subpage_size; 1125 1126 offset = vtd_iova_level_offset(iova, level); 1127 slpte = vtd_get_slpte(addr, offset); 1128 1129 if (slpte == (uint64_t)-1) { 1130 trace_vtd_page_walk_skip_read(iova, iova_next); 1131 goto next; 1132 } 1133 1134 if (vtd_slpte_nonzero_rsvd(slpte, level)) { 1135 trace_vtd_page_walk_skip_reserve(iova, iova_next); 1136 goto next; 1137 } 1138 1139 /* Permissions are stacked with parents' */ 1140 read_cur = read && (slpte & VTD_SL_R); 1141 write_cur = write && (slpte & VTD_SL_W); 1142 1143 /* 1144 * As long as we have either read/write permission, this is a 1145 * valid entry. The rule works for both page entries and page 1146 * table entries. 1147 */ 1148 entry_valid = read_cur | write_cur; 1149 1150 if (!vtd_is_last_slpte(slpte, level) && entry_valid) { 1151 /* 1152 * This is a valid PDE (or even bigger than PDE). We need 1153 * to walk one further level. 1154 */ 1155 ret = vtd_page_walk_level(vtd_get_slpte_addr(slpte, info->aw), 1156 iova, MIN(iova_next, end), level - 1, 1157 read_cur, write_cur, info); 1158 } else { 1159 /* 1160 * This means we are either: 1161 * 1162 * (1) the real page entry (either 4K page, or huge page) 1163 * (2) the whole range is invalid 1164 * 1165 * In either case, we send an IOTLB notification down. 1166 */ 1167 entry.target_as = &address_space_memory; 1168 entry.iova = iova & subpage_mask; 1169 entry.perm = IOMMU_ACCESS_FLAG(read_cur, write_cur); 1170 entry.addr_mask = ~subpage_mask; 1171 /* NOTE: this is only meaningful if entry_valid == true */ 1172 entry.translated_addr = vtd_get_slpte_addr(slpte, info->aw); 1173 ret = vtd_page_walk_one(&entry, info); 1174 } 1175 1176 if (ret < 0) { 1177 return ret; 1178 } 1179 1180 next: 1181 iova = iova_next; 1182 } 1183 1184 return 0; 1185 } 1186 1187 /** 1188 * vtd_page_walk - walk specific IOVA range, and call the hook 1189 * 1190 * @s: intel iommu state 1191 * @ce: context entry to walk upon 1192 * @start: IOVA address to start the walk 1193 * @end: IOVA range end address (start <= addr < end) 1194 * @info: page walking information struct 1195 */ 1196 static int vtd_page_walk(IntelIOMMUState *s, VTDContextEntry *ce, 1197 uint64_t start, uint64_t end, 1198 vtd_page_walk_info *info) 1199 { 1200 dma_addr_t addr = vtd_get_iova_pgtbl_base(s, ce); 1201 uint32_t level = vtd_get_iova_level(s, ce); 1202 1203 if (!vtd_iova_range_check(s, start, ce, info->aw)) { 1204 return -VTD_FR_ADDR_BEYOND_MGAW; 1205 } 1206 1207 if (!vtd_iova_range_check(s, end, ce, info->aw)) { 1208 /* Fix end so that it reaches the maximum */ 1209 end = vtd_iova_limit(s, ce, info->aw); 1210 } 1211 1212 return vtd_page_walk_level(addr, start, end, level, true, true, info); 1213 } 1214 1215 static int vtd_root_entry_rsvd_bits_check(IntelIOMMUState *s, 1216 VTDRootEntry *re) 1217 { 1218 /* Legacy Mode reserved bits check */ 1219 if (!s->root_scalable && 1220 (re->hi || (re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1221 goto rsvd_err; 1222 1223 /* Scalable Mode reserved bits check */ 1224 if (s->root_scalable && 1225 ((re->lo & VTD_ROOT_ENTRY_RSVD(s->aw_bits)) || 1226 (re->hi & VTD_ROOT_ENTRY_RSVD(s->aw_bits)))) 1227 goto rsvd_err; 1228 1229 return 0; 1230 1231 rsvd_err: 1232 error_report_once("%s: invalid root entry: hi=0x%"PRIx64 1233 ", lo=0x%"PRIx64, 1234 __func__, re->hi, re->lo); 1235 return -VTD_FR_ROOT_ENTRY_RSVD; 1236 } 1237 1238 static inline int vtd_context_entry_rsvd_bits_check(IntelIOMMUState *s, 1239 VTDContextEntry *ce) 1240 { 1241 if (!s->root_scalable && 1242 (ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI || 1243 ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO(s->aw_bits))) { 1244 error_report_once("%s: invalid context entry: hi=%"PRIx64 1245 ", lo=%"PRIx64" (reserved nonzero)", 1246 __func__, ce->hi, ce->lo); 1247 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1248 } 1249 1250 if (s->root_scalable && 1251 (ce->val[0] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL0(s->aw_bits) || 1252 ce->val[1] & VTD_SM_CONTEXT_ENTRY_RSVD_VAL1 || 1253 ce->val[2] || 1254 ce->val[3])) { 1255 error_report_once("%s: invalid context entry: val[3]=%"PRIx64 1256 ", val[2]=%"PRIx64 1257 ", val[1]=%"PRIx64 1258 ", val[0]=%"PRIx64" (reserved nonzero)", 1259 __func__, ce->val[3], ce->val[2], 1260 ce->val[1], ce->val[0]); 1261 return -VTD_FR_CONTEXT_ENTRY_RSVD; 1262 } 1263 1264 return 0; 1265 } 1266 1267 static int vtd_ce_rid2pasid_check(IntelIOMMUState *s, 1268 VTDContextEntry *ce) 1269 { 1270 VTDPASIDEntry pe; 1271 1272 /* 1273 * Make sure in Scalable Mode, a present context entry 1274 * has valid rid2pasid setting, which includes valid 1275 * rid2pasid field and corresponding pasid entry setting 1276 */ 1277 return vtd_ce_get_rid2pasid_entry(s, ce, &pe); 1278 } 1279 1280 /* Map a device to its corresponding domain (context-entry) */ 1281 static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num, 1282 uint8_t devfn, VTDContextEntry *ce) 1283 { 1284 VTDRootEntry re; 1285 int ret_fr; 1286 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 1287 1288 ret_fr = vtd_get_root_entry(s, bus_num, &re); 1289 if (ret_fr) { 1290 return ret_fr; 1291 } 1292 1293 if (!vtd_root_entry_present(s, &re, devfn)) { 1294 /* Not error - it's okay we don't have root entry. */ 1295 trace_vtd_re_not_present(bus_num); 1296 return -VTD_FR_ROOT_ENTRY_P; 1297 } 1298 1299 ret_fr = vtd_root_entry_rsvd_bits_check(s, &re); 1300 if (ret_fr) { 1301 return ret_fr; 1302 } 1303 1304 ret_fr = vtd_get_context_entry_from_root(s, &re, devfn, ce); 1305 if (ret_fr) { 1306 return ret_fr; 1307 } 1308 1309 if (!vtd_ce_present(ce)) { 1310 /* Not error - it's okay we don't have context entry. */ 1311 trace_vtd_ce_not_present(bus_num, devfn); 1312 return -VTD_FR_CONTEXT_ENTRY_P; 1313 } 1314 1315 ret_fr = vtd_context_entry_rsvd_bits_check(s, ce); 1316 if (ret_fr) { 1317 return ret_fr; 1318 } 1319 1320 /* Check if the programming of context-entry is valid */ 1321 if (!s->root_scalable && 1322 !vtd_is_level_supported(s, vtd_ce_get_level(ce))) { 1323 error_report_once("%s: invalid context entry: hi=%"PRIx64 1324 ", lo=%"PRIx64" (level %d not supported)", 1325 __func__, ce->hi, ce->lo, 1326 vtd_ce_get_level(ce)); 1327 return -VTD_FR_CONTEXT_ENTRY_INV; 1328 } 1329 1330 if (!s->root_scalable) { 1331 /* Do translation type check */ 1332 if (!vtd_ce_type_check(x86_iommu, ce)) { 1333 /* Errors dumped in vtd_ce_type_check() */ 1334 return -VTD_FR_CONTEXT_ENTRY_INV; 1335 } 1336 } else { 1337 /* 1338 * Check if the programming of context-entry.rid2pasid 1339 * and corresponding pasid setting is valid, and thus 1340 * avoids to check pasid entry fetching result in future 1341 * helper function calling. 1342 */ 1343 ret_fr = vtd_ce_rid2pasid_check(s, ce); 1344 if (ret_fr) { 1345 return ret_fr; 1346 } 1347 } 1348 1349 return 0; 1350 } 1351 1352 static int vtd_sync_shadow_page_hook(IOMMUTLBEntry *entry, 1353 void *private) 1354 { 1355 memory_region_notify_iommu((IOMMUMemoryRegion *)private, 0, *entry); 1356 return 0; 1357 } 1358 1359 static uint16_t vtd_get_domain_id(IntelIOMMUState *s, 1360 VTDContextEntry *ce) 1361 { 1362 VTDPASIDEntry pe; 1363 1364 if (s->root_scalable) { 1365 vtd_ce_get_rid2pasid_entry(s, ce, &pe); 1366 return VTD_SM_PASID_ENTRY_DID(pe.val[1]); 1367 } 1368 1369 return VTD_CONTEXT_ENTRY_DID(ce->hi); 1370 } 1371 1372 static int vtd_sync_shadow_page_table_range(VTDAddressSpace *vtd_as, 1373 VTDContextEntry *ce, 1374 hwaddr addr, hwaddr size) 1375 { 1376 IntelIOMMUState *s = vtd_as->iommu_state; 1377 vtd_page_walk_info info = { 1378 .hook_fn = vtd_sync_shadow_page_hook, 1379 .private = (void *)&vtd_as->iommu, 1380 .notify_unmap = true, 1381 .aw = s->aw_bits, 1382 .as = vtd_as, 1383 .domain_id = vtd_get_domain_id(s, ce), 1384 }; 1385 1386 return vtd_page_walk(s, ce, addr, addr + size, &info); 1387 } 1388 1389 static int vtd_sync_shadow_page_table(VTDAddressSpace *vtd_as) 1390 { 1391 int ret; 1392 VTDContextEntry ce; 1393 IOMMUNotifier *n; 1394 1395 ret = vtd_dev_to_context_entry(vtd_as->iommu_state, 1396 pci_bus_num(vtd_as->bus), 1397 vtd_as->devfn, &ce); 1398 if (ret) { 1399 if (ret == -VTD_FR_CONTEXT_ENTRY_P) { 1400 /* 1401 * It's a valid scenario to have a context entry that is 1402 * not present. For example, when a device is removed 1403 * from an existing domain then the context entry will be 1404 * zeroed by the guest before it was put into another 1405 * domain. When this happens, instead of synchronizing 1406 * the shadow pages we should invalidate all existing 1407 * mappings and notify the backends. 1408 */ 1409 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 1410 vtd_address_space_unmap(vtd_as, n); 1411 } 1412 ret = 0; 1413 } 1414 return ret; 1415 } 1416 1417 return vtd_sync_shadow_page_table_range(vtd_as, &ce, 0, UINT64_MAX); 1418 } 1419 1420 /* 1421 * Check if specific device is configed to bypass address 1422 * translation for DMA requests. In Scalable Mode, bypass 1423 * 1st-level translation or 2nd-level translation, it depends 1424 * on PGTT setting. 1425 */ 1426 static bool vtd_dev_pt_enabled(VTDAddressSpace *as) 1427 { 1428 IntelIOMMUState *s; 1429 VTDContextEntry ce; 1430 VTDPASIDEntry pe; 1431 int ret; 1432 1433 assert(as); 1434 1435 s = as->iommu_state; 1436 ret = vtd_dev_to_context_entry(s, pci_bus_num(as->bus), 1437 as->devfn, &ce); 1438 if (ret) { 1439 /* 1440 * Possibly failed to parse the context entry for some reason 1441 * (e.g., during init, or any guest configuration errors on 1442 * context entries). We should assume PT not enabled for 1443 * safety. 1444 */ 1445 return false; 1446 } 1447 1448 if (s->root_scalable) { 1449 ret = vtd_ce_get_rid2pasid_entry(s, &ce, &pe); 1450 if (ret) { 1451 error_report_once("%s: vtd_ce_get_rid2pasid_entry error: %"PRId32, 1452 __func__, ret); 1453 return false; 1454 } 1455 return (VTD_PE_GET_TYPE(&pe) == VTD_SM_PASID_ENTRY_PT); 1456 } 1457 1458 return (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH); 1459 } 1460 1461 /* Return whether the device is using IOMMU translation. */ 1462 static bool vtd_switch_address_space(VTDAddressSpace *as) 1463 { 1464 bool use_iommu; 1465 /* Whether we need to take the BQL on our own */ 1466 bool take_bql = !qemu_mutex_iothread_locked(); 1467 1468 assert(as); 1469 1470 use_iommu = as->iommu_state->dmar_enabled && !vtd_dev_pt_enabled(as); 1471 1472 trace_vtd_switch_address_space(pci_bus_num(as->bus), 1473 VTD_PCI_SLOT(as->devfn), 1474 VTD_PCI_FUNC(as->devfn), 1475 use_iommu); 1476 1477 /* 1478 * It's possible that we reach here without BQL, e.g., when called 1479 * from vtd_pt_enable_fast_path(). However the memory APIs need 1480 * it. We'd better make sure we have had it already, or, take it. 1481 */ 1482 if (take_bql) { 1483 qemu_mutex_lock_iothread(); 1484 } 1485 1486 /* Turn off first then on the other */ 1487 if (use_iommu) { 1488 memory_region_set_enabled(&as->sys_alias, false); 1489 memory_region_set_enabled(MEMORY_REGION(&as->iommu), true); 1490 } else { 1491 memory_region_set_enabled(MEMORY_REGION(&as->iommu), false); 1492 memory_region_set_enabled(&as->sys_alias, true); 1493 } 1494 1495 if (take_bql) { 1496 qemu_mutex_unlock_iothread(); 1497 } 1498 1499 return use_iommu; 1500 } 1501 1502 static void vtd_switch_address_space_all(IntelIOMMUState *s) 1503 { 1504 GHashTableIter iter; 1505 VTDBus *vtd_bus; 1506 int i; 1507 1508 g_hash_table_iter_init(&iter, s->vtd_as_by_busptr); 1509 while (g_hash_table_iter_next(&iter, NULL, (void **)&vtd_bus)) { 1510 for (i = 0; i < PCI_DEVFN_MAX; i++) { 1511 if (!vtd_bus->dev_as[i]) { 1512 continue; 1513 } 1514 vtd_switch_address_space(vtd_bus->dev_as[i]); 1515 } 1516 } 1517 } 1518 1519 static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn) 1520 { 1521 return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL); 1522 } 1523 1524 static const bool vtd_qualified_faults[] = { 1525 [VTD_FR_RESERVED] = false, 1526 [VTD_FR_ROOT_ENTRY_P] = false, 1527 [VTD_FR_CONTEXT_ENTRY_P] = true, 1528 [VTD_FR_CONTEXT_ENTRY_INV] = true, 1529 [VTD_FR_ADDR_BEYOND_MGAW] = true, 1530 [VTD_FR_WRITE] = true, 1531 [VTD_FR_READ] = true, 1532 [VTD_FR_PAGING_ENTRY_INV] = true, 1533 [VTD_FR_ROOT_TABLE_INV] = false, 1534 [VTD_FR_CONTEXT_TABLE_INV] = false, 1535 [VTD_FR_ROOT_ENTRY_RSVD] = false, 1536 [VTD_FR_PAGING_ENTRY_RSVD] = true, 1537 [VTD_FR_CONTEXT_ENTRY_TT] = true, 1538 [VTD_FR_PASID_TABLE_INV] = false, 1539 [VTD_FR_RESERVED_ERR] = false, 1540 [VTD_FR_MAX] = false, 1541 }; 1542 1543 /* To see if a fault condition is "qualified", which is reported to software 1544 * only if the FPD field in the context-entry used to process the faulting 1545 * request is 0. 1546 */ 1547 static inline bool vtd_is_qualified_fault(VTDFaultReason fault) 1548 { 1549 return vtd_qualified_faults[fault]; 1550 } 1551 1552 static inline bool vtd_is_interrupt_addr(hwaddr addr) 1553 { 1554 return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST; 1555 } 1556 1557 static void vtd_pt_enable_fast_path(IntelIOMMUState *s, uint16_t source_id) 1558 { 1559 VTDBus *vtd_bus; 1560 VTDAddressSpace *vtd_as; 1561 bool success = false; 1562 1563 vtd_bus = vtd_find_as_from_bus_num(s, VTD_SID_TO_BUS(source_id)); 1564 if (!vtd_bus) { 1565 goto out; 1566 } 1567 1568 vtd_as = vtd_bus->dev_as[VTD_SID_TO_DEVFN(source_id)]; 1569 if (!vtd_as) { 1570 goto out; 1571 } 1572 1573 if (vtd_switch_address_space(vtd_as) == false) { 1574 /* We switched off IOMMU region successfully. */ 1575 success = true; 1576 } 1577 1578 out: 1579 trace_vtd_pt_enable_fast_path(source_id, success); 1580 } 1581 1582 /* Map dev to context-entry then do a paging-structures walk to do a iommu 1583 * translation. 1584 * 1585 * Called from RCU critical section. 1586 * 1587 * @bus_num: The bus number 1588 * @devfn: The devfn, which is the combined of device and function number 1589 * @is_write: The access is a write operation 1590 * @entry: IOMMUTLBEntry that contain the addr to be translated and result 1591 * 1592 * Returns true if translation is successful, otherwise false. 1593 */ 1594 static bool vtd_do_iommu_translate(VTDAddressSpace *vtd_as, PCIBus *bus, 1595 uint8_t devfn, hwaddr addr, bool is_write, 1596 IOMMUTLBEntry *entry) 1597 { 1598 IntelIOMMUState *s = vtd_as->iommu_state; 1599 VTDContextEntry ce; 1600 uint8_t bus_num = pci_bus_num(bus); 1601 VTDContextCacheEntry *cc_entry; 1602 uint64_t slpte, page_mask; 1603 uint32_t level; 1604 uint16_t source_id = vtd_make_source_id(bus_num, devfn); 1605 int ret_fr; 1606 bool is_fpd_set = false; 1607 bool reads = true; 1608 bool writes = true; 1609 uint8_t access_flags; 1610 VTDIOTLBEntry *iotlb_entry; 1611 1612 /* 1613 * We have standalone memory region for interrupt addresses, we 1614 * should never receive translation requests in this region. 1615 */ 1616 assert(!vtd_is_interrupt_addr(addr)); 1617 1618 vtd_iommu_lock(s); 1619 1620 cc_entry = &vtd_as->context_cache_entry; 1621 1622 /* Try to fetch slpte form IOTLB */ 1623 iotlb_entry = vtd_lookup_iotlb(s, source_id, addr); 1624 if (iotlb_entry) { 1625 trace_vtd_iotlb_page_hit(source_id, addr, iotlb_entry->slpte, 1626 iotlb_entry->domain_id); 1627 slpte = iotlb_entry->slpte; 1628 access_flags = iotlb_entry->access_flags; 1629 page_mask = iotlb_entry->mask; 1630 goto out; 1631 } 1632 1633 /* Try to fetch context-entry from cache first */ 1634 if (cc_entry->context_cache_gen == s->context_cache_gen) { 1635 trace_vtd_iotlb_cc_hit(bus_num, devfn, cc_entry->context_entry.hi, 1636 cc_entry->context_entry.lo, 1637 cc_entry->context_cache_gen); 1638 ce = cc_entry->context_entry; 1639 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1640 if (!is_fpd_set && s->root_scalable) { 1641 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set); 1642 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write); 1643 } 1644 } else { 1645 ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce); 1646 is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD; 1647 if (!ret_fr && !is_fpd_set && s->root_scalable) { 1648 ret_fr = vtd_ce_get_pasid_fpd(s, &ce, &is_fpd_set); 1649 } 1650 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write); 1651 /* Update context-cache */ 1652 trace_vtd_iotlb_cc_update(bus_num, devfn, ce.hi, ce.lo, 1653 cc_entry->context_cache_gen, 1654 s->context_cache_gen); 1655 cc_entry->context_entry = ce; 1656 cc_entry->context_cache_gen = s->context_cache_gen; 1657 } 1658 1659 /* 1660 * We don't need to translate for pass-through context entries. 1661 * Also, let's ignore IOTLB caching as well for PT devices. 1662 */ 1663 if (vtd_ce_get_type(&ce) == VTD_CONTEXT_TT_PASS_THROUGH) { 1664 entry->iova = addr & VTD_PAGE_MASK_4K; 1665 entry->translated_addr = entry->iova; 1666 entry->addr_mask = ~VTD_PAGE_MASK_4K; 1667 entry->perm = IOMMU_RW; 1668 trace_vtd_translate_pt(source_id, entry->iova); 1669 1670 /* 1671 * When this happens, it means firstly caching-mode is not 1672 * enabled, and this is the first passthrough translation for 1673 * the device. Let's enable the fast path for passthrough. 1674 * 1675 * When passthrough is disabled again for the device, we can 1676 * capture it via the context entry invalidation, then the 1677 * IOMMU region can be swapped back. 1678 */ 1679 vtd_pt_enable_fast_path(s, source_id); 1680 vtd_iommu_unlock(s); 1681 return true; 1682 } 1683 1684 ret_fr = vtd_iova_to_slpte(s, &ce, addr, is_write, &slpte, &level, 1685 &reads, &writes, s->aw_bits); 1686 VTD_PE_GET_FPD_ERR(ret_fr, is_fpd_set, s, source_id, addr, is_write); 1687 1688 page_mask = vtd_slpt_level_page_mask(level); 1689 access_flags = IOMMU_ACCESS_FLAG(reads, writes); 1690 vtd_update_iotlb(s, source_id, vtd_get_domain_id(s, &ce), addr, slpte, 1691 access_flags, level); 1692 out: 1693 vtd_iommu_unlock(s); 1694 entry->iova = addr & page_mask; 1695 entry->translated_addr = vtd_get_slpte_addr(slpte, s->aw_bits) & page_mask; 1696 entry->addr_mask = ~page_mask; 1697 entry->perm = access_flags; 1698 return true; 1699 1700 error: 1701 vtd_iommu_unlock(s); 1702 entry->iova = 0; 1703 entry->translated_addr = 0; 1704 entry->addr_mask = 0; 1705 entry->perm = IOMMU_NONE; 1706 return false; 1707 } 1708 1709 static void vtd_root_table_setup(IntelIOMMUState *s) 1710 { 1711 s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG); 1712 s->root_extended = s->root & VTD_RTADDR_RTT; 1713 if (s->scalable_mode) { 1714 s->root_scalable = s->root & VTD_RTADDR_SMT; 1715 } 1716 s->root &= VTD_RTADDR_ADDR_MASK(s->aw_bits); 1717 1718 trace_vtd_reg_dmar_root(s->root, s->root_extended); 1719 } 1720 1721 static void vtd_iec_notify_all(IntelIOMMUState *s, bool global, 1722 uint32_t index, uint32_t mask) 1723 { 1724 x86_iommu_iec_notify_all(X86_IOMMU_DEVICE(s), global, index, mask); 1725 } 1726 1727 static void vtd_interrupt_remap_table_setup(IntelIOMMUState *s) 1728 { 1729 uint64_t value = 0; 1730 value = vtd_get_quad_raw(s, DMAR_IRTA_REG); 1731 s->intr_size = 1UL << ((value & VTD_IRTA_SIZE_MASK) + 1); 1732 s->intr_root = value & VTD_IRTA_ADDR_MASK(s->aw_bits); 1733 s->intr_eime = value & VTD_IRTA_EIME; 1734 1735 /* Notify global invalidation */ 1736 vtd_iec_notify_all(s, true, 0, 0); 1737 1738 trace_vtd_reg_ir_root(s->intr_root, s->intr_size); 1739 } 1740 1741 static void vtd_iommu_replay_all(IntelIOMMUState *s) 1742 { 1743 VTDAddressSpace *vtd_as; 1744 1745 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 1746 vtd_sync_shadow_page_table(vtd_as); 1747 } 1748 } 1749 1750 static void vtd_context_global_invalidate(IntelIOMMUState *s) 1751 { 1752 trace_vtd_inv_desc_cc_global(); 1753 /* Protects context cache */ 1754 vtd_iommu_lock(s); 1755 s->context_cache_gen++; 1756 if (s->context_cache_gen == VTD_CONTEXT_CACHE_GEN_MAX) { 1757 vtd_reset_context_cache_locked(s); 1758 } 1759 vtd_iommu_unlock(s); 1760 vtd_address_space_refresh_all(s); 1761 /* 1762 * From VT-d spec 6.5.2.1, a global context entry invalidation 1763 * should be followed by a IOTLB global invalidation, so we should 1764 * be safe even without this. Hoewever, let's replay the region as 1765 * well to be safer, and go back here when we need finer tunes for 1766 * VT-d emulation codes. 1767 */ 1768 vtd_iommu_replay_all(s); 1769 } 1770 1771 /* Do a context-cache device-selective invalidation. 1772 * @func_mask: FM field after shifting 1773 */ 1774 static void vtd_context_device_invalidate(IntelIOMMUState *s, 1775 uint16_t source_id, 1776 uint16_t func_mask) 1777 { 1778 uint16_t mask; 1779 VTDBus *vtd_bus; 1780 VTDAddressSpace *vtd_as; 1781 uint8_t bus_n, devfn; 1782 uint16_t devfn_it; 1783 1784 trace_vtd_inv_desc_cc_devices(source_id, func_mask); 1785 1786 switch (func_mask & 3) { 1787 case 0: 1788 mask = 0; /* No bits in the SID field masked */ 1789 break; 1790 case 1: 1791 mask = 4; /* Mask bit 2 in the SID field */ 1792 break; 1793 case 2: 1794 mask = 6; /* Mask bit 2:1 in the SID field */ 1795 break; 1796 case 3: 1797 mask = 7; /* Mask bit 2:0 in the SID field */ 1798 break; 1799 } 1800 mask = ~mask; 1801 1802 bus_n = VTD_SID_TO_BUS(source_id); 1803 vtd_bus = vtd_find_as_from_bus_num(s, bus_n); 1804 if (vtd_bus) { 1805 devfn = VTD_SID_TO_DEVFN(source_id); 1806 for (devfn_it = 0; devfn_it < PCI_DEVFN_MAX; ++devfn_it) { 1807 vtd_as = vtd_bus->dev_as[devfn_it]; 1808 if (vtd_as && ((devfn_it & mask) == (devfn & mask))) { 1809 trace_vtd_inv_desc_cc_device(bus_n, VTD_PCI_SLOT(devfn_it), 1810 VTD_PCI_FUNC(devfn_it)); 1811 vtd_iommu_lock(s); 1812 vtd_as->context_cache_entry.context_cache_gen = 0; 1813 vtd_iommu_unlock(s); 1814 /* 1815 * Do switch address space when needed, in case if the 1816 * device passthrough bit is switched. 1817 */ 1818 vtd_switch_address_space(vtd_as); 1819 /* 1820 * So a device is moving out of (or moving into) a 1821 * domain, resync the shadow page table. 1822 * This won't bring bad even if we have no such 1823 * notifier registered - the IOMMU notification 1824 * framework will skip MAP notifications if that 1825 * happened. 1826 */ 1827 vtd_sync_shadow_page_table(vtd_as); 1828 } 1829 } 1830 } 1831 } 1832 1833 /* Context-cache invalidation 1834 * Returns the Context Actual Invalidation Granularity. 1835 * @val: the content of the CCMD_REG 1836 */ 1837 static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val) 1838 { 1839 uint64_t caig; 1840 uint64_t type = val & VTD_CCMD_CIRG_MASK; 1841 1842 switch (type) { 1843 case VTD_CCMD_DOMAIN_INVL: 1844 /* Fall through */ 1845 case VTD_CCMD_GLOBAL_INVL: 1846 caig = VTD_CCMD_GLOBAL_INVL_A; 1847 vtd_context_global_invalidate(s); 1848 break; 1849 1850 case VTD_CCMD_DEVICE_INVL: 1851 caig = VTD_CCMD_DEVICE_INVL_A; 1852 vtd_context_device_invalidate(s, VTD_CCMD_SID(val), VTD_CCMD_FM(val)); 1853 break; 1854 1855 default: 1856 error_report_once("%s: invalid context: 0x%" PRIx64, 1857 __func__, val); 1858 caig = 0; 1859 } 1860 return caig; 1861 } 1862 1863 static void vtd_iotlb_global_invalidate(IntelIOMMUState *s) 1864 { 1865 trace_vtd_inv_desc_iotlb_global(); 1866 vtd_reset_iotlb(s); 1867 vtd_iommu_replay_all(s); 1868 } 1869 1870 static void vtd_iotlb_domain_invalidate(IntelIOMMUState *s, uint16_t domain_id) 1871 { 1872 VTDContextEntry ce; 1873 VTDAddressSpace *vtd_as; 1874 1875 trace_vtd_inv_desc_iotlb_domain(domain_id); 1876 1877 vtd_iommu_lock(s); 1878 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_domain, 1879 &domain_id); 1880 vtd_iommu_unlock(s); 1881 1882 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 1883 if (!vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 1884 vtd_as->devfn, &ce) && 1885 domain_id == vtd_get_domain_id(s, &ce)) { 1886 vtd_sync_shadow_page_table(vtd_as); 1887 } 1888 } 1889 } 1890 1891 static void vtd_iotlb_page_invalidate_notify(IntelIOMMUState *s, 1892 uint16_t domain_id, hwaddr addr, 1893 uint8_t am) 1894 { 1895 VTDAddressSpace *vtd_as; 1896 VTDContextEntry ce; 1897 int ret; 1898 hwaddr size = (1 << am) * VTD_PAGE_SIZE; 1899 1900 QLIST_FOREACH(vtd_as, &(s->vtd_as_with_notifiers), next) { 1901 ret = vtd_dev_to_context_entry(s, pci_bus_num(vtd_as->bus), 1902 vtd_as->devfn, &ce); 1903 if (!ret && domain_id == vtd_get_domain_id(s, &ce)) { 1904 if (vtd_as_has_map_notifier(vtd_as)) { 1905 /* 1906 * As long as we have MAP notifications registered in 1907 * any of our IOMMU notifiers, we need to sync the 1908 * shadow page table. 1909 */ 1910 vtd_sync_shadow_page_table_range(vtd_as, &ce, addr, size); 1911 } else { 1912 /* 1913 * For UNMAP-only notifiers, we don't need to walk the 1914 * page tables. We just deliver the PSI down to 1915 * invalidate caches. 1916 */ 1917 IOMMUTLBEntry entry = { 1918 .target_as = &address_space_memory, 1919 .iova = addr, 1920 .translated_addr = 0, 1921 .addr_mask = size - 1, 1922 .perm = IOMMU_NONE, 1923 }; 1924 memory_region_notify_iommu(&vtd_as->iommu, 0, entry); 1925 } 1926 } 1927 } 1928 } 1929 1930 static void vtd_iotlb_page_invalidate(IntelIOMMUState *s, uint16_t domain_id, 1931 hwaddr addr, uint8_t am) 1932 { 1933 VTDIOTLBPageInvInfo info; 1934 1935 trace_vtd_inv_desc_iotlb_pages(domain_id, addr, am); 1936 1937 assert(am <= VTD_MAMV); 1938 info.domain_id = domain_id; 1939 info.addr = addr; 1940 info.mask = ~((1 << am) - 1); 1941 vtd_iommu_lock(s); 1942 g_hash_table_foreach_remove(s->iotlb, vtd_hash_remove_by_page, &info); 1943 vtd_iommu_unlock(s); 1944 vtd_iotlb_page_invalidate_notify(s, domain_id, addr, am); 1945 } 1946 1947 /* Flush IOTLB 1948 * Returns the IOTLB Actual Invalidation Granularity. 1949 * @val: the content of the IOTLB_REG 1950 */ 1951 static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val) 1952 { 1953 uint64_t iaig; 1954 uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK; 1955 uint16_t domain_id; 1956 hwaddr addr; 1957 uint8_t am; 1958 1959 switch (type) { 1960 case VTD_TLB_GLOBAL_FLUSH: 1961 iaig = VTD_TLB_GLOBAL_FLUSH_A; 1962 vtd_iotlb_global_invalidate(s); 1963 break; 1964 1965 case VTD_TLB_DSI_FLUSH: 1966 domain_id = VTD_TLB_DID(val); 1967 iaig = VTD_TLB_DSI_FLUSH_A; 1968 vtd_iotlb_domain_invalidate(s, domain_id); 1969 break; 1970 1971 case VTD_TLB_PSI_FLUSH: 1972 domain_id = VTD_TLB_DID(val); 1973 addr = vtd_get_quad_raw(s, DMAR_IVA_REG); 1974 am = VTD_IVA_AM(addr); 1975 addr = VTD_IVA_ADDR(addr); 1976 if (am > VTD_MAMV) { 1977 error_report_once("%s: address mask overflow: 0x%" PRIx64, 1978 __func__, vtd_get_quad_raw(s, DMAR_IVA_REG)); 1979 iaig = 0; 1980 break; 1981 } 1982 iaig = VTD_TLB_PSI_FLUSH_A; 1983 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 1984 break; 1985 1986 default: 1987 error_report_once("%s: invalid granularity: 0x%" PRIx64, 1988 __func__, val); 1989 iaig = 0; 1990 } 1991 return iaig; 1992 } 1993 1994 static void vtd_fetch_inv_desc(IntelIOMMUState *s); 1995 1996 static inline bool vtd_queued_inv_disable_check(IntelIOMMUState *s) 1997 { 1998 return s->qi_enabled && (s->iq_tail == s->iq_head) && 1999 (s->iq_last_desc_type == VTD_INV_DESC_WAIT); 2000 } 2001 2002 static void vtd_handle_gcmd_qie(IntelIOMMUState *s, bool en) 2003 { 2004 uint64_t iqa_val = vtd_get_quad_raw(s, DMAR_IQA_REG); 2005 2006 trace_vtd_inv_qi_enable(en); 2007 2008 if (en) { 2009 s->iq = iqa_val & VTD_IQA_IQA_MASK(s->aw_bits); 2010 /* 2^(x+8) entries */ 2011 s->iq_size = 1UL << ((iqa_val & VTD_IQA_QS) + 8 - (s->iq_dw ? 1 : 0)); 2012 s->qi_enabled = true; 2013 trace_vtd_inv_qi_setup(s->iq, s->iq_size); 2014 /* Ok - report back to driver */ 2015 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_QIES); 2016 2017 if (s->iq_tail != 0) { 2018 /* 2019 * This is a spec violation but Windows guests are known to set up 2020 * Queued Invalidation this way so we allow the write and process 2021 * Invalidation Descriptors right away. 2022 */ 2023 trace_vtd_warn_invalid_qi_tail(s->iq_tail); 2024 if (!(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2025 vtd_fetch_inv_desc(s); 2026 } 2027 } 2028 } else { 2029 if (vtd_queued_inv_disable_check(s)) { 2030 /* disable Queued Invalidation */ 2031 vtd_set_quad_raw(s, DMAR_IQH_REG, 0); 2032 s->iq_head = 0; 2033 s->qi_enabled = false; 2034 /* Ok - report back to driver */ 2035 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_QIES, 0); 2036 } else { 2037 error_report_once("%s: detected improper state when disable QI " 2038 "(head=0x%x, tail=0x%x, last_type=%d)", 2039 __func__, 2040 s->iq_head, s->iq_tail, s->iq_last_desc_type); 2041 } 2042 } 2043 } 2044 2045 /* Set Root Table Pointer */ 2046 static void vtd_handle_gcmd_srtp(IntelIOMMUState *s) 2047 { 2048 vtd_root_table_setup(s); 2049 /* Ok - report back to driver */ 2050 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS); 2051 vtd_reset_caches(s); 2052 vtd_address_space_refresh_all(s); 2053 } 2054 2055 /* Set Interrupt Remap Table Pointer */ 2056 static void vtd_handle_gcmd_sirtp(IntelIOMMUState *s) 2057 { 2058 vtd_interrupt_remap_table_setup(s); 2059 /* Ok - report back to driver */ 2060 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRTPS); 2061 } 2062 2063 /* Handle Translation Enable/Disable */ 2064 static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en) 2065 { 2066 if (s->dmar_enabled == en) { 2067 return; 2068 } 2069 2070 trace_vtd_dmar_enable(en); 2071 2072 if (en) { 2073 s->dmar_enabled = true; 2074 /* Ok - report back to driver */ 2075 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES); 2076 } else { 2077 s->dmar_enabled = false; 2078 2079 /* Clear the index of Fault Recording Register */ 2080 s->next_frcd_reg = 0; 2081 /* Ok - report back to driver */ 2082 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0); 2083 } 2084 2085 vtd_reset_caches(s); 2086 vtd_address_space_refresh_all(s); 2087 } 2088 2089 /* Handle Interrupt Remap Enable/Disable */ 2090 static void vtd_handle_gcmd_ire(IntelIOMMUState *s, bool en) 2091 { 2092 trace_vtd_ir_enable(en); 2093 2094 if (en) { 2095 s->intr_enabled = true; 2096 /* Ok - report back to driver */ 2097 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_IRES); 2098 } else { 2099 s->intr_enabled = false; 2100 /* Ok - report back to driver */ 2101 vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_IRES, 0); 2102 } 2103 } 2104 2105 /* Handle write to Global Command Register */ 2106 static void vtd_handle_gcmd_write(IntelIOMMUState *s) 2107 { 2108 uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG); 2109 uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG); 2110 uint32_t changed = status ^ val; 2111 2112 trace_vtd_reg_write_gcmd(status, val); 2113 if (changed & VTD_GCMD_TE) { 2114 /* Translation enable/disable */ 2115 vtd_handle_gcmd_te(s, val & VTD_GCMD_TE); 2116 } 2117 if (val & VTD_GCMD_SRTP) { 2118 /* Set/update the root-table pointer */ 2119 vtd_handle_gcmd_srtp(s); 2120 } 2121 if (changed & VTD_GCMD_QIE) { 2122 /* Queued Invalidation Enable */ 2123 vtd_handle_gcmd_qie(s, val & VTD_GCMD_QIE); 2124 } 2125 if (val & VTD_GCMD_SIRTP) { 2126 /* Set/update the interrupt remapping root-table pointer */ 2127 vtd_handle_gcmd_sirtp(s); 2128 } 2129 if (changed & VTD_GCMD_IRE) { 2130 /* Interrupt remap enable/disable */ 2131 vtd_handle_gcmd_ire(s, val & VTD_GCMD_IRE); 2132 } 2133 } 2134 2135 /* Handle write to Context Command Register */ 2136 static void vtd_handle_ccmd_write(IntelIOMMUState *s) 2137 { 2138 uint64_t ret; 2139 uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG); 2140 2141 /* Context-cache invalidation request */ 2142 if (val & VTD_CCMD_ICC) { 2143 if (s->qi_enabled) { 2144 error_report_once("Queued Invalidation enabled, " 2145 "should not use register-based invalidation"); 2146 return; 2147 } 2148 ret = vtd_context_cache_invalidate(s, val); 2149 /* Invalidation completed. Change something to show */ 2150 vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL); 2151 ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK, 2152 ret); 2153 } 2154 } 2155 2156 /* Handle write to IOTLB Invalidation Register */ 2157 static void vtd_handle_iotlb_write(IntelIOMMUState *s) 2158 { 2159 uint64_t ret; 2160 uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG); 2161 2162 /* IOTLB invalidation request */ 2163 if (val & VTD_TLB_IVT) { 2164 if (s->qi_enabled) { 2165 error_report_once("Queued Invalidation enabled, " 2166 "should not use register-based invalidation"); 2167 return; 2168 } 2169 ret = vtd_iotlb_flush(s, val); 2170 /* Invalidation completed. Change something to show */ 2171 vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL); 2172 ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, 2173 VTD_TLB_FLUSH_GRANU_MASK_A, ret); 2174 } 2175 } 2176 2177 /* Fetch an Invalidation Descriptor from the Invalidation Queue */ 2178 static bool vtd_get_inv_desc(IntelIOMMUState *s, 2179 VTDInvDesc *inv_desc) 2180 { 2181 dma_addr_t base_addr = s->iq; 2182 uint32_t offset = s->iq_head; 2183 uint32_t dw = s->iq_dw ? 32 : 16; 2184 dma_addr_t addr = base_addr + offset * dw; 2185 2186 if (dma_memory_read(&address_space_memory, addr, inv_desc, dw)) { 2187 error_report_once("Read INV DESC failed."); 2188 return false; 2189 } 2190 inv_desc->lo = le64_to_cpu(inv_desc->lo); 2191 inv_desc->hi = le64_to_cpu(inv_desc->hi); 2192 if (dw == 32) { 2193 inv_desc->val[2] = le64_to_cpu(inv_desc->val[2]); 2194 inv_desc->val[3] = le64_to_cpu(inv_desc->val[3]); 2195 } 2196 return true; 2197 } 2198 2199 static bool vtd_process_wait_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2200 { 2201 if ((inv_desc->hi & VTD_INV_DESC_WAIT_RSVD_HI) || 2202 (inv_desc->lo & VTD_INV_DESC_WAIT_RSVD_LO)) { 2203 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2204 " (reserved nonzero)", __func__, inv_desc->hi, 2205 inv_desc->lo); 2206 return false; 2207 } 2208 if (inv_desc->lo & VTD_INV_DESC_WAIT_SW) { 2209 /* Status Write */ 2210 uint32_t status_data = (uint32_t)(inv_desc->lo >> 2211 VTD_INV_DESC_WAIT_DATA_SHIFT); 2212 2213 assert(!(inv_desc->lo & VTD_INV_DESC_WAIT_IF)); 2214 2215 /* FIXME: need to be masked with HAW? */ 2216 dma_addr_t status_addr = inv_desc->hi; 2217 trace_vtd_inv_desc_wait_sw(status_addr, status_data); 2218 status_data = cpu_to_le32(status_data); 2219 if (dma_memory_write(&address_space_memory, status_addr, &status_data, 2220 sizeof(status_data))) { 2221 trace_vtd_inv_desc_wait_write_fail(inv_desc->hi, inv_desc->lo); 2222 return false; 2223 } 2224 } else if (inv_desc->lo & VTD_INV_DESC_WAIT_IF) { 2225 /* Interrupt flag */ 2226 vtd_generate_completion_event(s); 2227 } else { 2228 error_report_once("%s: invalid wait desc: hi=%"PRIx64", lo=%"PRIx64 2229 " (unknown type)", __func__, inv_desc->hi, 2230 inv_desc->lo); 2231 return false; 2232 } 2233 return true; 2234 } 2235 2236 static bool vtd_process_context_cache_desc(IntelIOMMUState *s, 2237 VTDInvDesc *inv_desc) 2238 { 2239 uint16_t sid, fmask; 2240 2241 if ((inv_desc->lo & VTD_INV_DESC_CC_RSVD) || inv_desc->hi) { 2242 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2243 " (reserved nonzero)", __func__, inv_desc->hi, 2244 inv_desc->lo); 2245 return false; 2246 } 2247 switch (inv_desc->lo & VTD_INV_DESC_CC_G) { 2248 case VTD_INV_DESC_CC_DOMAIN: 2249 trace_vtd_inv_desc_cc_domain( 2250 (uint16_t)VTD_INV_DESC_CC_DID(inv_desc->lo)); 2251 /* Fall through */ 2252 case VTD_INV_DESC_CC_GLOBAL: 2253 vtd_context_global_invalidate(s); 2254 break; 2255 2256 case VTD_INV_DESC_CC_DEVICE: 2257 sid = VTD_INV_DESC_CC_SID(inv_desc->lo); 2258 fmask = VTD_INV_DESC_CC_FM(inv_desc->lo); 2259 vtd_context_device_invalidate(s, sid, fmask); 2260 break; 2261 2262 default: 2263 error_report_once("%s: invalid cc inv desc: hi=%"PRIx64", lo=%"PRIx64 2264 " (invalid type)", __func__, inv_desc->hi, 2265 inv_desc->lo); 2266 return false; 2267 } 2268 return true; 2269 } 2270 2271 static bool vtd_process_iotlb_desc(IntelIOMMUState *s, VTDInvDesc *inv_desc) 2272 { 2273 uint16_t domain_id; 2274 uint8_t am; 2275 hwaddr addr; 2276 2277 if ((inv_desc->lo & VTD_INV_DESC_IOTLB_RSVD_LO) || 2278 (inv_desc->hi & VTD_INV_DESC_IOTLB_RSVD_HI)) { 2279 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2280 ", lo=0x%"PRIx64" (reserved bits unzero)\n", 2281 __func__, inv_desc->hi, inv_desc->lo); 2282 return false; 2283 } 2284 2285 switch (inv_desc->lo & VTD_INV_DESC_IOTLB_G) { 2286 case VTD_INV_DESC_IOTLB_GLOBAL: 2287 vtd_iotlb_global_invalidate(s); 2288 break; 2289 2290 case VTD_INV_DESC_IOTLB_DOMAIN: 2291 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2292 vtd_iotlb_domain_invalidate(s, domain_id); 2293 break; 2294 2295 case VTD_INV_DESC_IOTLB_PAGE: 2296 domain_id = VTD_INV_DESC_IOTLB_DID(inv_desc->lo); 2297 addr = VTD_INV_DESC_IOTLB_ADDR(inv_desc->hi); 2298 am = VTD_INV_DESC_IOTLB_AM(inv_desc->hi); 2299 if (am > VTD_MAMV) { 2300 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2301 ", lo=0x%"PRIx64" (am=%u > VTD_MAMV=%u)\n", 2302 __func__, inv_desc->hi, inv_desc->lo, 2303 am, (unsigned)VTD_MAMV); 2304 return false; 2305 } 2306 vtd_iotlb_page_invalidate(s, domain_id, addr, am); 2307 break; 2308 2309 default: 2310 error_report_once("%s: invalid iotlb inv desc: hi=0x%"PRIx64 2311 ", lo=0x%"PRIx64" (type mismatch: 0x%llx)\n", 2312 __func__, inv_desc->hi, inv_desc->lo, 2313 inv_desc->lo & VTD_INV_DESC_IOTLB_G); 2314 return false; 2315 } 2316 return true; 2317 } 2318 2319 static bool vtd_process_inv_iec_desc(IntelIOMMUState *s, 2320 VTDInvDesc *inv_desc) 2321 { 2322 trace_vtd_inv_desc_iec(inv_desc->iec.granularity, 2323 inv_desc->iec.index, 2324 inv_desc->iec.index_mask); 2325 2326 vtd_iec_notify_all(s, !inv_desc->iec.granularity, 2327 inv_desc->iec.index, 2328 inv_desc->iec.index_mask); 2329 return true; 2330 } 2331 2332 static bool vtd_process_device_iotlb_desc(IntelIOMMUState *s, 2333 VTDInvDesc *inv_desc) 2334 { 2335 VTDAddressSpace *vtd_dev_as; 2336 IOMMUTLBEntry entry; 2337 struct VTDBus *vtd_bus; 2338 hwaddr addr; 2339 uint64_t sz; 2340 uint16_t sid; 2341 uint8_t devfn; 2342 bool size; 2343 uint8_t bus_num; 2344 2345 addr = VTD_INV_DESC_DEVICE_IOTLB_ADDR(inv_desc->hi); 2346 sid = VTD_INV_DESC_DEVICE_IOTLB_SID(inv_desc->lo); 2347 devfn = sid & 0xff; 2348 bus_num = sid >> 8; 2349 size = VTD_INV_DESC_DEVICE_IOTLB_SIZE(inv_desc->hi); 2350 2351 if ((inv_desc->lo & VTD_INV_DESC_DEVICE_IOTLB_RSVD_LO) || 2352 (inv_desc->hi & VTD_INV_DESC_DEVICE_IOTLB_RSVD_HI)) { 2353 error_report_once("%s: invalid dev-iotlb inv desc: hi=%"PRIx64 2354 ", lo=%"PRIx64" (reserved nonzero)", __func__, 2355 inv_desc->hi, inv_desc->lo); 2356 return false; 2357 } 2358 2359 vtd_bus = vtd_find_as_from_bus_num(s, bus_num); 2360 if (!vtd_bus) { 2361 goto done; 2362 } 2363 2364 vtd_dev_as = vtd_bus->dev_as[devfn]; 2365 if (!vtd_dev_as) { 2366 goto done; 2367 } 2368 2369 /* According to ATS spec table 2.4: 2370 * S = 0, bits 15:12 = xxxx range size: 4K 2371 * S = 1, bits 15:12 = xxx0 range size: 8K 2372 * S = 1, bits 15:12 = xx01 range size: 16K 2373 * S = 1, bits 15:12 = x011 range size: 32K 2374 * S = 1, bits 15:12 = 0111 range size: 64K 2375 * ... 2376 */ 2377 if (size) { 2378 sz = (VTD_PAGE_SIZE * 2) << cto64(addr >> VTD_PAGE_SHIFT); 2379 addr &= ~(sz - 1); 2380 } else { 2381 sz = VTD_PAGE_SIZE; 2382 } 2383 2384 entry.target_as = &vtd_dev_as->as; 2385 entry.addr_mask = sz - 1; 2386 entry.iova = addr; 2387 entry.perm = IOMMU_NONE; 2388 entry.translated_addr = 0; 2389 memory_region_notify_iommu(&vtd_dev_as->iommu, 0, entry); 2390 2391 done: 2392 return true; 2393 } 2394 2395 static bool vtd_process_inv_desc(IntelIOMMUState *s) 2396 { 2397 VTDInvDesc inv_desc; 2398 uint8_t desc_type; 2399 2400 trace_vtd_inv_qi_head(s->iq_head); 2401 if (!vtd_get_inv_desc(s, &inv_desc)) { 2402 s->iq_last_desc_type = VTD_INV_DESC_NONE; 2403 return false; 2404 } 2405 2406 desc_type = inv_desc.lo & VTD_INV_DESC_TYPE; 2407 /* FIXME: should update at first or at last? */ 2408 s->iq_last_desc_type = desc_type; 2409 2410 switch (desc_type) { 2411 case VTD_INV_DESC_CC: 2412 trace_vtd_inv_desc("context-cache", inv_desc.hi, inv_desc.lo); 2413 if (!vtd_process_context_cache_desc(s, &inv_desc)) { 2414 return false; 2415 } 2416 break; 2417 2418 case VTD_INV_DESC_IOTLB: 2419 trace_vtd_inv_desc("iotlb", inv_desc.hi, inv_desc.lo); 2420 if (!vtd_process_iotlb_desc(s, &inv_desc)) { 2421 return false; 2422 } 2423 break; 2424 2425 /* 2426 * TODO: the entity of below two cases will be implemented in future series. 2427 * To make guest (which integrates scalable mode support patch set in 2428 * iommu driver) work, just return true is enough so far. 2429 */ 2430 case VTD_INV_DESC_PC: 2431 break; 2432 2433 case VTD_INV_DESC_PIOTLB: 2434 break; 2435 2436 case VTD_INV_DESC_WAIT: 2437 trace_vtd_inv_desc("wait", inv_desc.hi, inv_desc.lo); 2438 if (!vtd_process_wait_desc(s, &inv_desc)) { 2439 return false; 2440 } 2441 break; 2442 2443 case VTD_INV_DESC_IEC: 2444 trace_vtd_inv_desc("iec", inv_desc.hi, inv_desc.lo); 2445 if (!vtd_process_inv_iec_desc(s, &inv_desc)) { 2446 return false; 2447 } 2448 break; 2449 2450 case VTD_INV_DESC_DEVICE: 2451 trace_vtd_inv_desc("device", inv_desc.hi, inv_desc.lo); 2452 if (!vtd_process_device_iotlb_desc(s, &inv_desc)) { 2453 return false; 2454 } 2455 break; 2456 2457 default: 2458 error_report_once("%s: invalid inv desc: hi=%"PRIx64", lo=%"PRIx64 2459 " (unknown type)", __func__, inv_desc.hi, 2460 inv_desc.lo); 2461 return false; 2462 } 2463 s->iq_head++; 2464 if (s->iq_head == s->iq_size) { 2465 s->iq_head = 0; 2466 } 2467 return true; 2468 } 2469 2470 /* Try to fetch and process more Invalidation Descriptors */ 2471 static void vtd_fetch_inv_desc(IntelIOMMUState *s) 2472 { 2473 trace_vtd_inv_qi_fetch(); 2474 2475 if (s->iq_tail >= s->iq_size) { 2476 /* Detects an invalid Tail pointer */ 2477 error_report_once("%s: detected invalid QI tail " 2478 "(tail=0x%x, size=0x%x)", 2479 __func__, s->iq_tail, s->iq_size); 2480 vtd_handle_inv_queue_error(s); 2481 return; 2482 } 2483 while (s->iq_head != s->iq_tail) { 2484 if (!vtd_process_inv_desc(s)) { 2485 /* Invalidation Queue Errors */ 2486 vtd_handle_inv_queue_error(s); 2487 break; 2488 } 2489 /* Must update the IQH_REG in time */ 2490 vtd_set_quad_raw(s, DMAR_IQH_REG, 2491 (((uint64_t)(s->iq_head)) << VTD_IQH_QH_SHIFT) & 2492 VTD_IQH_QH_MASK); 2493 } 2494 } 2495 2496 /* Handle write to Invalidation Queue Tail Register */ 2497 static void vtd_handle_iqt_write(IntelIOMMUState *s) 2498 { 2499 uint64_t val = vtd_get_quad_raw(s, DMAR_IQT_REG); 2500 2501 if (s->iq_dw && (val & VTD_IQT_QT_256_RSV_BIT)) { 2502 error_report_once("%s: RSV bit is set: val=0x%"PRIx64, 2503 __func__, val); 2504 return; 2505 } 2506 s->iq_tail = VTD_IQT_QT(s->iq_dw, val); 2507 trace_vtd_inv_qi_tail(s->iq_tail); 2508 2509 if (s->qi_enabled && !(vtd_get_long_raw(s, DMAR_FSTS_REG) & VTD_FSTS_IQE)) { 2510 /* Process Invalidation Queue here */ 2511 vtd_fetch_inv_desc(s); 2512 } 2513 } 2514 2515 static void vtd_handle_fsts_write(IntelIOMMUState *s) 2516 { 2517 uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG); 2518 uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2519 uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE; 2520 2521 if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) { 2522 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2523 trace_vtd_fsts_clear_ip(); 2524 } 2525 /* FIXME: when IQE is Clear, should we try to fetch some Invalidation 2526 * Descriptors if there are any when Queued Invalidation is enabled? 2527 */ 2528 } 2529 2530 static void vtd_handle_fectl_write(IntelIOMMUState *s) 2531 { 2532 uint32_t fectl_reg; 2533 /* FIXME: when software clears the IM field, check the IP field. But do we 2534 * need to compare the old value and the new value to conclude that 2535 * software clears the IM field? Or just check if the IM field is zero? 2536 */ 2537 fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG); 2538 2539 trace_vtd_reg_write_fectl(fectl_reg); 2540 2541 if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) { 2542 vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG); 2543 vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0); 2544 } 2545 } 2546 2547 static void vtd_handle_ics_write(IntelIOMMUState *s) 2548 { 2549 uint32_t ics_reg = vtd_get_long_raw(s, DMAR_ICS_REG); 2550 uint32_t iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2551 2552 if ((iectl_reg & VTD_IECTL_IP) && !(ics_reg & VTD_ICS_IWC)) { 2553 trace_vtd_reg_ics_clear_ip(); 2554 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2555 } 2556 } 2557 2558 static void vtd_handle_iectl_write(IntelIOMMUState *s) 2559 { 2560 uint32_t iectl_reg; 2561 /* FIXME: when software clears the IM field, check the IP field. But do we 2562 * need to compare the old value and the new value to conclude that 2563 * software clears the IM field? Or just check if the IM field is zero? 2564 */ 2565 iectl_reg = vtd_get_long_raw(s, DMAR_IECTL_REG); 2566 2567 trace_vtd_reg_write_iectl(iectl_reg); 2568 2569 if ((iectl_reg & VTD_IECTL_IP) && !(iectl_reg & VTD_IECTL_IM)) { 2570 vtd_generate_interrupt(s, DMAR_IEADDR_REG, DMAR_IEDATA_REG); 2571 vtd_set_clear_mask_long(s, DMAR_IECTL_REG, VTD_IECTL_IP, 0); 2572 } 2573 } 2574 2575 static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size) 2576 { 2577 IntelIOMMUState *s = opaque; 2578 uint64_t val; 2579 2580 trace_vtd_reg_read(addr, size); 2581 2582 if (addr + size > DMAR_REG_SIZE) { 2583 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2584 " size=0x%u", __func__, addr, size); 2585 return (uint64_t)-1; 2586 } 2587 2588 switch (addr) { 2589 /* Root Table Address Register, 64-bit */ 2590 case DMAR_RTADDR_REG: 2591 if (size == 4) { 2592 val = s->root & ((1ULL << 32) - 1); 2593 } else { 2594 val = s->root; 2595 } 2596 break; 2597 2598 case DMAR_RTADDR_REG_HI: 2599 assert(size == 4); 2600 val = s->root >> 32; 2601 break; 2602 2603 /* Invalidation Queue Address Register, 64-bit */ 2604 case DMAR_IQA_REG: 2605 val = s->iq | (vtd_get_quad(s, DMAR_IQA_REG) & VTD_IQA_QS); 2606 if (size == 4) { 2607 val = val & ((1ULL << 32) - 1); 2608 } 2609 break; 2610 2611 case DMAR_IQA_REG_HI: 2612 assert(size == 4); 2613 val = s->iq >> 32; 2614 break; 2615 2616 default: 2617 if (size == 4) { 2618 val = vtd_get_long(s, addr); 2619 } else { 2620 val = vtd_get_quad(s, addr); 2621 } 2622 } 2623 2624 return val; 2625 } 2626 2627 static void vtd_mem_write(void *opaque, hwaddr addr, 2628 uint64_t val, unsigned size) 2629 { 2630 IntelIOMMUState *s = opaque; 2631 2632 trace_vtd_reg_write(addr, size, val); 2633 2634 if (addr + size > DMAR_REG_SIZE) { 2635 error_report_once("%s: MMIO over range: addr=0x%" PRIx64 2636 " size=0x%u", __func__, addr, size); 2637 return; 2638 } 2639 2640 switch (addr) { 2641 /* Global Command Register, 32-bit */ 2642 case DMAR_GCMD_REG: 2643 vtd_set_long(s, addr, val); 2644 vtd_handle_gcmd_write(s); 2645 break; 2646 2647 /* Context Command Register, 64-bit */ 2648 case DMAR_CCMD_REG: 2649 if (size == 4) { 2650 vtd_set_long(s, addr, val); 2651 } else { 2652 vtd_set_quad(s, addr, val); 2653 vtd_handle_ccmd_write(s); 2654 } 2655 break; 2656 2657 case DMAR_CCMD_REG_HI: 2658 assert(size == 4); 2659 vtd_set_long(s, addr, val); 2660 vtd_handle_ccmd_write(s); 2661 break; 2662 2663 /* IOTLB Invalidation Register, 64-bit */ 2664 case DMAR_IOTLB_REG: 2665 if (size == 4) { 2666 vtd_set_long(s, addr, val); 2667 } else { 2668 vtd_set_quad(s, addr, val); 2669 vtd_handle_iotlb_write(s); 2670 } 2671 break; 2672 2673 case DMAR_IOTLB_REG_HI: 2674 assert(size == 4); 2675 vtd_set_long(s, addr, val); 2676 vtd_handle_iotlb_write(s); 2677 break; 2678 2679 /* Invalidate Address Register, 64-bit */ 2680 case DMAR_IVA_REG: 2681 if (size == 4) { 2682 vtd_set_long(s, addr, val); 2683 } else { 2684 vtd_set_quad(s, addr, val); 2685 } 2686 break; 2687 2688 case DMAR_IVA_REG_HI: 2689 assert(size == 4); 2690 vtd_set_long(s, addr, val); 2691 break; 2692 2693 /* Fault Status Register, 32-bit */ 2694 case DMAR_FSTS_REG: 2695 assert(size == 4); 2696 vtd_set_long(s, addr, val); 2697 vtd_handle_fsts_write(s); 2698 break; 2699 2700 /* Fault Event Control Register, 32-bit */ 2701 case DMAR_FECTL_REG: 2702 assert(size == 4); 2703 vtd_set_long(s, addr, val); 2704 vtd_handle_fectl_write(s); 2705 break; 2706 2707 /* Fault Event Data Register, 32-bit */ 2708 case DMAR_FEDATA_REG: 2709 assert(size == 4); 2710 vtd_set_long(s, addr, val); 2711 break; 2712 2713 /* Fault Event Address Register, 32-bit */ 2714 case DMAR_FEADDR_REG: 2715 if (size == 4) { 2716 vtd_set_long(s, addr, val); 2717 } else { 2718 /* 2719 * While the register is 32-bit only, some guests (Xen...) write to 2720 * it with 64-bit. 2721 */ 2722 vtd_set_quad(s, addr, val); 2723 } 2724 break; 2725 2726 /* Fault Event Upper Address Register, 32-bit */ 2727 case DMAR_FEUADDR_REG: 2728 assert(size == 4); 2729 vtd_set_long(s, addr, val); 2730 break; 2731 2732 /* Protected Memory Enable Register, 32-bit */ 2733 case DMAR_PMEN_REG: 2734 assert(size == 4); 2735 vtd_set_long(s, addr, val); 2736 break; 2737 2738 /* Root Table Address Register, 64-bit */ 2739 case DMAR_RTADDR_REG: 2740 if (size == 4) { 2741 vtd_set_long(s, addr, val); 2742 } else { 2743 vtd_set_quad(s, addr, val); 2744 } 2745 break; 2746 2747 case DMAR_RTADDR_REG_HI: 2748 assert(size == 4); 2749 vtd_set_long(s, addr, val); 2750 break; 2751 2752 /* Invalidation Queue Tail Register, 64-bit */ 2753 case DMAR_IQT_REG: 2754 if (size == 4) { 2755 vtd_set_long(s, addr, val); 2756 } else { 2757 vtd_set_quad(s, addr, val); 2758 } 2759 vtd_handle_iqt_write(s); 2760 break; 2761 2762 case DMAR_IQT_REG_HI: 2763 assert(size == 4); 2764 vtd_set_long(s, addr, val); 2765 /* 19:63 of IQT_REG is RsvdZ, do nothing here */ 2766 break; 2767 2768 /* Invalidation Queue Address Register, 64-bit */ 2769 case DMAR_IQA_REG: 2770 if (size == 4) { 2771 vtd_set_long(s, addr, val); 2772 } else { 2773 vtd_set_quad(s, addr, val); 2774 } 2775 if (s->ecap & VTD_ECAP_SMTS && 2776 val & VTD_IQA_DW_MASK) { 2777 s->iq_dw = true; 2778 } else { 2779 s->iq_dw = false; 2780 } 2781 break; 2782 2783 case DMAR_IQA_REG_HI: 2784 assert(size == 4); 2785 vtd_set_long(s, addr, val); 2786 break; 2787 2788 /* Invalidation Completion Status Register, 32-bit */ 2789 case DMAR_ICS_REG: 2790 assert(size == 4); 2791 vtd_set_long(s, addr, val); 2792 vtd_handle_ics_write(s); 2793 break; 2794 2795 /* Invalidation Event Control Register, 32-bit */ 2796 case DMAR_IECTL_REG: 2797 assert(size == 4); 2798 vtd_set_long(s, addr, val); 2799 vtd_handle_iectl_write(s); 2800 break; 2801 2802 /* Invalidation Event Data Register, 32-bit */ 2803 case DMAR_IEDATA_REG: 2804 assert(size == 4); 2805 vtd_set_long(s, addr, val); 2806 break; 2807 2808 /* Invalidation Event Address Register, 32-bit */ 2809 case DMAR_IEADDR_REG: 2810 assert(size == 4); 2811 vtd_set_long(s, addr, val); 2812 break; 2813 2814 /* Invalidation Event Upper Address Register, 32-bit */ 2815 case DMAR_IEUADDR_REG: 2816 assert(size == 4); 2817 vtd_set_long(s, addr, val); 2818 break; 2819 2820 /* Fault Recording Registers, 128-bit */ 2821 case DMAR_FRCD_REG_0_0: 2822 if (size == 4) { 2823 vtd_set_long(s, addr, val); 2824 } else { 2825 vtd_set_quad(s, addr, val); 2826 } 2827 break; 2828 2829 case DMAR_FRCD_REG_0_1: 2830 assert(size == 4); 2831 vtd_set_long(s, addr, val); 2832 break; 2833 2834 case DMAR_FRCD_REG_0_2: 2835 if (size == 4) { 2836 vtd_set_long(s, addr, val); 2837 } else { 2838 vtd_set_quad(s, addr, val); 2839 /* May clear bit 127 (Fault), update PPF */ 2840 vtd_update_fsts_ppf(s); 2841 } 2842 break; 2843 2844 case DMAR_FRCD_REG_0_3: 2845 assert(size == 4); 2846 vtd_set_long(s, addr, val); 2847 /* May clear bit 127 (Fault), update PPF */ 2848 vtd_update_fsts_ppf(s); 2849 break; 2850 2851 case DMAR_IRTA_REG: 2852 if (size == 4) { 2853 vtd_set_long(s, addr, val); 2854 } else { 2855 vtd_set_quad(s, addr, val); 2856 } 2857 break; 2858 2859 case DMAR_IRTA_REG_HI: 2860 assert(size == 4); 2861 vtd_set_long(s, addr, val); 2862 break; 2863 2864 default: 2865 if (size == 4) { 2866 vtd_set_long(s, addr, val); 2867 } else { 2868 vtd_set_quad(s, addr, val); 2869 } 2870 } 2871 } 2872 2873 static IOMMUTLBEntry vtd_iommu_translate(IOMMUMemoryRegion *iommu, hwaddr addr, 2874 IOMMUAccessFlags flag, int iommu_idx) 2875 { 2876 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 2877 IntelIOMMUState *s = vtd_as->iommu_state; 2878 IOMMUTLBEntry iotlb = { 2879 /* We'll fill in the rest later. */ 2880 .target_as = &address_space_memory, 2881 }; 2882 bool success; 2883 2884 if (likely(s->dmar_enabled)) { 2885 success = vtd_do_iommu_translate(vtd_as, vtd_as->bus, vtd_as->devfn, 2886 addr, flag & IOMMU_WO, &iotlb); 2887 } else { 2888 /* DMAR disabled, passthrough, use 4k-page*/ 2889 iotlb.iova = addr & VTD_PAGE_MASK_4K; 2890 iotlb.translated_addr = addr & VTD_PAGE_MASK_4K; 2891 iotlb.addr_mask = ~VTD_PAGE_MASK_4K; 2892 iotlb.perm = IOMMU_RW; 2893 success = true; 2894 } 2895 2896 if (likely(success)) { 2897 trace_vtd_dmar_translate(pci_bus_num(vtd_as->bus), 2898 VTD_PCI_SLOT(vtd_as->devfn), 2899 VTD_PCI_FUNC(vtd_as->devfn), 2900 iotlb.iova, iotlb.translated_addr, 2901 iotlb.addr_mask); 2902 } else { 2903 error_report_once("%s: detected translation failure " 2904 "(dev=%02x:%02x:%02x, iova=0x%" PRIx64 ")", 2905 __func__, pci_bus_num(vtd_as->bus), 2906 VTD_PCI_SLOT(vtd_as->devfn), 2907 VTD_PCI_FUNC(vtd_as->devfn), 2908 addr); 2909 } 2910 2911 return iotlb; 2912 } 2913 2914 static void vtd_iommu_notify_flag_changed(IOMMUMemoryRegion *iommu, 2915 IOMMUNotifierFlag old, 2916 IOMMUNotifierFlag new) 2917 { 2918 VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu); 2919 IntelIOMMUState *s = vtd_as->iommu_state; 2920 2921 if (!s->caching_mode && new & IOMMU_NOTIFIER_MAP) { 2922 error_report("We need to set caching-mode=1 for intel-iommu to enable " 2923 "device assignment with IOMMU protection."); 2924 exit(1); 2925 } 2926 2927 /* Update per-address-space notifier flags */ 2928 vtd_as->notifier_flags = new; 2929 2930 if (old == IOMMU_NOTIFIER_NONE) { 2931 QLIST_INSERT_HEAD(&s->vtd_as_with_notifiers, vtd_as, next); 2932 } else if (new == IOMMU_NOTIFIER_NONE) { 2933 QLIST_REMOVE(vtd_as, next); 2934 } 2935 } 2936 2937 static int vtd_post_load(void *opaque, int version_id) 2938 { 2939 IntelIOMMUState *iommu = opaque; 2940 2941 /* 2942 * Memory regions are dynamically turned on/off depending on 2943 * context entry configurations from the guest. After migration, 2944 * we need to make sure the memory regions are still correct. 2945 */ 2946 vtd_switch_address_space_all(iommu); 2947 2948 return 0; 2949 } 2950 2951 static const VMStateDescription vtd_vmstate = { 2952 .name = "iommu-intel", 2953 .version_id = 1, 2954 .minimum_version_id = 1, 2955 .priority = MIG_PRI_IOMMU, 2956 .post_load = vtd_post_load, 2957 .fields = (VMStateField[]) { 2958 VMSTATE_UINT64(root, IntelIOMMUState), 2959 VMSTATE_UINT64(intr_root, IntelIOMMUState), 2960 VMSTATE_UINT64(iq, IntelIOMMUState), 2961 VMSTATE_UINT32(intr_size, IntelIOMMUState), 2962 VMSTATE_UINT16(iq_head, IntelIOMMUState), 2963 VMSTATE_UINT16(iq_tail, IntelIOMMUState), 2964 VMSTATE_UINT16(iq_size, IntelIOMMUState), 2965 VMSTATE_UINT16(next_frcd_reg, IntelIOMMUState), 2966 VMSTATE_UINT8_ARRAY(csr, IntelIOMMUState, DMAR_REG_SIZE), 2967 VMSTATE_UINT8(iq_last_desc_type, IntelIOMMUState), 2968 VMSTATE_BOOL(root_extended, IntelIOMMUState), 2969 VMSTATE_BOOL(root_scalable, IntelIOMMUState), 2970 VMSTATE_BOOL(dmar_enabled, IntelIOMMUState), 2971 VMSTATE_BOOL(qi_enabled, IntelIOMMUState), 2972 VMSTATE_BOOL(intr_enabled, IntelIOMMUState), 2973 VMSTATE_BOOL(intr_eime, IntelIOMMUState), 2974 VMSTATE_END_OF_LIST() 2975 } 2976 }; 2977 2978 static const MemoryRegionOps vtd_mem_ops = { 2979 .read = vtd_mem_read, 2980 .write = vtd_mem_write, 2981 .endianness = DEVICE_LITTLE_ENDIAN, 2982 .impl = { 2983 .min_access_size = 4, 2984 .max_access_size = 8, 2985 }, 2986 .valid = { 2987 .min_access_size = 4, 2988 .max_access_size = 8, 2989 }, 2990 }; 2991 2992 static Property vtd_properties[] = { 2993 DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0), 2994 DEFINE_PROP_ON_OFF_AUTO("eim", IntelIOMMUState, intr_eim, 2995 ON_OFF_AUTO_AUTO), 2996 DEFINE_PROP_BOOL("x-buggy-eim", IntelIOMMUState, buggy_eim, false), 2997 DEFINE_PROP_UINT8("aw-bits", IntelIOMMUState, aw_bits, 2998 VTD_HOST_ADDRESS_WIDTH), 2999 DEFINE_PROP_BOOL("caching-mode", IntelIOMMUState, caching_mode, FALSE), 3000 DEFINE_PROP_BOOL("x-scalable-mode", IntelIOMMUState, scalable_mode, FALSE), 3001 DEFINE_PROP_BOOL("dma-drain", IntelIOMMUState, dma_drain, true), 3002 DEFINE_PROP_END_OF_LIST(), 3003 }; 3004 3005 /* Read IRTE entry with specific index */ 3006 static int vtd_irte_get(IntelIOMMUState *iommu, uint16_t index, 3007 VTD_IR_TableEntry *entry, uint16_t sid) 3008 { 3009 static const uint16_t vtd_svt_mask[VTD_SQ_MAX] = \ 3010 {0xffff, 0xfffb, 0xfff9, 0xfff8}; 3011 dma_addr_t addr = 0x00; 3012 uint16_t mask, source_id; 3013 uint8_t bus, bus_max, bus_min; 3014 3015 addr = iommu->intr_root + index * sizeof(*entry); 3016 if (dma_memory_read(&address_space_memory, addr, entry, 3017 sizeof(*entry))) { 3018 error_report_once("%s: read failed: ind=0x%x addr=0x%" PRIx64, 3019 __func__, index, addr); 3020 return -VTD_FR_IR_ROOT_INVAL; 3021 } 3022 3023 trace_vtd_ir_irte_get(index, le64_to_cpu(entry->data[1]), 3024 le64_to_cpu(entry->data[0])); 3025 3026 if (!entry->irte.present) { 3027 error_report_once("%s: detected non-present IRTE " 3028 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3029 __func__, index, le64_to_cpu(entry->data[1]), 3030 le64_to_cpu(entry->data[0])); 3031 return -VTD_FR_IR_ENTRY_P; 3032 } 3033 3034 if (entry->irte.__reserved_0 || entry->irte.__reserved_1 || 3035 entry->irte.__reserved_2) { 3036 error_report_once("%s: detected non-zero reserved IRTE " 3037 "(index=%u, high=0x%" PRIx64 ", low=0x%" PRIx64 ")", 3038 __func__, index, le64_to_cpu(entry->data[1]), 3039 le64_to_cpu(entry->data[0])); 3040 return -VTD_FR_IR_IRTE_RSVD; 3041 } 3042 3043 if (sid != X86_IOMMU_SID_INVALID) { 3044 /* Validate IRTE SID */ 3045 source_id = le32_to_cpu(entry->irte.source_id); 3046 switch (entry->irte.sid_vtype) { 3047 case VTD_SVT_NONE: 3048 break; 3049 3050 case VTD_SVT_ALL: 3051 mask = vtd_svt_mask[entry->irte.sid_q]; 3052 if ((source_id & mask) != (sid & mask)) { 3053 error_report_once("%s: invalid IRTE SID " 3054 "(index=%u, sid=%u, source_id=%u)", 3055 __func__, index, sid, source_id); 3056 return -VTD_FR_IR_SID_ERR; 3057 } 3058 break; 3059 3060 case VTD_SVT_BUS: 3061 bus_max = source_id >> 8; 3062 bus_min = source_id & 0xff; 3063 bus = sid >> 8; 3064 if (bus > bus_max || bus < bus_min) { 3065 error_report_once("%s: invalid SVT_BUS " 3066 "(index=%u, bus=%u, min=%u, max=%u)", 3067 __func__, index, bus, bus_min, bus_max); 3068 return -VTD_FR_IR_SID_ERR; 3069 } 3070 break; 3071 3072 default: 3073 error_report_once("%s: detected invalid IRTE SVT " 3074 "(index=%u, type=%d)", __func__, 3075 index, entry->irte.sid_vtype); 3076 /* Take this as verification failure. */ 3077 return -VTD_FR_IR_SID_ERR; 3078 break; 3079 } 3080 } 3081 3082 return 0; 3083 } 3084 3085 /* Fetch IRQ information of specific IR index */ 3086 static int vtd_remap_irq_get(IntelIOMMUState *iommu, uint16_t index, 3087 X86IOMMUIrq *irq, uint16_t sid) 3088 { 3089 VTD_IR_TableEntry irte = {}; 3090 int ret = 0; 3091 3092 ret = vtd_irte_get(iommu, index, &irte, sid); 3093 if (ret) { 3094 return ret; 3095 } 3096 3097 irq->trigger_mode = irte.irte.trigger_mode; 3098 irq->vector = irte.irte.vector; 3099 irq->delivery_mode = irte.irte.delivery_mode; 3100 irq->dest = le32_to_cpu(irte.irte.dest_id); 3101 if (!iommu->intr_eime) { 3102 #define VTD_IR_APIC_DEST_MASK (0xff00ULL) 3103 #define VTD_IR_APIC_DEST_SHIFT (8) 3104 irq->dest = (irq->dest & VTD_IR_APIC_DEST_MASK) >> 3105 VTD_IR_APIC_DEST_SHIFT; 3106 } 3107 irq->dest_mode = irte.irte.dest_mode; 3108 irq->redir_hint = irte.irte.redir_hint; 3109 3110 trace_vtd_ir_remap(index, irq->trigger_mode, irq->vector, 3111 irq->delivery_mode, irq->dest, irq->dest_mode); 3112 3113 return 0; 3114 } 3115 3116 /* Interrupt remapping for MSI/MSI-X entry */ 3117 static int vtd_interrupt_remap_msi(IntelIOMMUState *iommu, 3118 MSIMessage *origin, 3119 MSIMessage *translated, 3120 uint16_t sid) 3121 { 3122 int ret = 0; 3123 VTD_IR_MSIAddress addr; 3124 uint16_t index; 3125 X86IOMMUIrq irq = {}; 3126 3127 assert(origin && translated); 3128 3129 trace_vtd_ir_remap_msi_req(origin->address, origin->data); 3130 3131 if (!iommu || !iommu->intr_enabled) { 3132 memcpy(translated, origin, sizeof(*origin)); 3133 goto out; 3134 } 3135 3136 if (origin->address & VTD_MSI_ADDR_HI_MASK) { 3137 error_report_once("%s: MSI address high 32 bits non-zero detected: " 3138 "address=0x%" PRIx64, __func__, origin->address); 3139 return -VTD_FR_IR_REQ_RSVD; 3140 } 3141 3142 addr.data = origin->address & VTD_MSI_ADDR_LO_MASK; 3143 if (addr.addr.__head != 0xfee) { 3144 error_report_once("%s: MSI address low 32 bit invalid: 0x%" PRIx32, 3145 __func__, addr.data); 3146 return -VTD_FR_IR_REQ_RSVD; 3147 } 3148 3149 /* This is compatible mode. */ 3150 if (addr.addr.int_mode != VTD_IR_INT_FORMAT_REMAP) { 3151 memcpy(translated, origin, sizeof(*origin)); 3152 goto out; 3153 } 3154 3155 index = addr.addr.index_h << 15 | le16_to_cpu(addr.addr.index_l); 3156 3157 #define VTD_IR_MSI_DATA_SUBHANDLE (0x0000ffff) 3158 #define VTD_IR_MSI_DATA_RESERVED (0xffff0000) 3159 3160 if (addr.addr.sub_valid) { 3161 /* See VT-d spec 5.1.2.2 and 5.1.3 on subhandle */ 3162 index += origin->data & VTD_IR_MSI_DATA_SUBHANDLE; 3163 } 3164 3165 ret = vtd_remap_irq_get(iommu, index, &irq, sid); 3166 if (ret) { 3167 return ret; 3168 } 3169 3170 if (addr.addr.sub_valid) { 3171 trace_vtd_ir_remap_type("MSI"); 3172 if (origin->data & VTD_IR_MSI_DATA_RESERVED) { 3173 error_report_once("%s: invalid IR MSI " 3174 "(sid=%u, address=0x%" PRIx64 3175 ", data=0x%" PRIx32 ")", 3176 __func__, sid, origin->address, origin->data); 3177 return -VTD_FR_IR_REQ_RSVD; 3178 } 3179 } else { 3180 uint8_t vector = origin->data & 0xff; 3181 uint8_t trigger_mode = (origin->data >> MSI_DATA_TRIGGER_SHIFT) & 0x1; 3182 3183 trace_vtd_ir_remap_type("IOAPIC"); 3184 /* IOAPIC entry vector should be aligned with IRTE vector 3185 * (see vt-d spec 5.1.5.1). */ 3186 if (vector != irq.vector) { 3187 trace_vtd_warn_ir_vector(sid, index, vector, irq.vector); 3188 } 3189 3190 /* The Trigger Mode field must match the Trigger Mode in the IRTE. 3191 * (see vt-d spec 5.1.5.1). */ 3192 if (trigger_mode != irq.trigger_mode) { 3193 trace_vtd_warn_ir_trigger(sid, index, trigger_mode, 3194 irq.trigger_mode); 3195 } 3196 } 3197 3198 /* 3199 * We'd better keep the last two bits, assuming that guest OS 3200 * might modify it. Keep it does not hurt after all. 3201 */ 3202 irq.msi_addr_last_bits = addr.addr.__not_care; 3203 3204 /* Translate X86IOMMUIrq to MSI message */ 3205 x86_iommu_irq_to_msi_message(&irq, translated); 3206 3207 out: 3208 trace_vtd_ir_remap_msi(origin->address, origin->data, 3209 translated->address, translated->data); 3210 return 0; 3211 } 3212 3213 static int vtd_int_remap(X86IOMMUState *iommu, MSIMessage *src, 3214 MSIMessage *dst, uint16_t sid) 3215 { 3216 return vtd_interrupt_remap_msi(INTEL_IOMMU_DEVICE(iommu), 3217 src, dst, sid); 3218 } 3219 3220 static MemTxResult vtd_mem_ir_read(void *opaque, hwaddr addr, 3221 uint64_t *data, unsigned size, 3222 MemTxAttrs attrs) 3223 { 3224 return MEMTX_OK; 3225 } 3226 3227 static MemTxResult vtd_mem_ir_write(void *opaque, hwaddr addr, 3228 uint64_t value, unsigned size, 3229 MemTxAttrs attrs) 3230 { 3231 int ret = 0; 3232 MSIMessage from = {}, to = {}; 3233 uint16_t sid = X86_IOMMU_SID_INVALID; 3234 3235 from.address = (uint64_t) addr + VTD_INTERRUPT_ADDR_FIRST; 3236 from.data = (uint32_t) value; 3237 3238 if (!attrs.unspecified) { 3239 /* We have explicit Source ID */ 3240 sid = attrs.requester_id; 3241 } 3242 3243 ret = vtd_interrupt_remap_msi(opaque, &from, &to, sid); 3244 if (ret) { 3245 /* TODO: report error */ 3246 /* Drop this interrupt */ 3247 return MEMTX_ERROR; 3248 } 3249 3250 apic_get_class()->send_msi(&to); 3251 3252 return MEMTX_OK; 3253 } 3254 3255 static const MemoryRegionOps vtd_mem_ir_ops = { 3256 .read_with_attrs = vtd_mem_ir_read, 3257 .write_with_attrs = vtd_mem_ir_write, 3258 .endianness = DEVICE_LITTLE_ENDIAN, 3259 .impl = { 3260 .min_access_size = 4, 3261 .max_access_size = 4, 3262 }, 3263 .valid = { 3264 .min_access_size = 4, 3265 .max_access_size = 4, 3266 }, 3267 }; 3268 3269 VTDAddressSpace *vtd_find_add_as(IntelIOMMUState *s, PCIBus *bus, int devfn) 3270 { 3271 uintptr_t key = (uintptr_t)bus; 3272 VTDBus *vtd_bus = g_hash_table_lookup(s->vtd_as_by_busptr, &key); 3273 VTDAddressSpace *vtd_dev_as; 3274 char name[128]; 3275 3276 if (!vtd_bus) { 3277 uintptr_t *new_key = g_malloc(sizeof(*new_key)); 3278 *new_key = (uintptr_t)bus; 3279 /* No corresponding free() */ 3280 vtd_bus = g_malloc0(sizeof(VTDBus) + sizeof(VTDAddressSpace *) * \ 3281 PCI_DEVFN_MAX); 3282 vtd_bus->bus = bus; 3283 g_hash_table_insert(s->vtd_as_by_busptr, new_key, vtd_bus); 3284 } 3285 3286 vtd_dev_as = vtd_bus->dev_as[devfn]; 3287 3288 if (!vtd_dev_as) { 3289 snprintf(name, sizeof(name), "intel_iommu_devfn_%d", devfn); 3290 vtd_bus->dev_as[devfn] = vtd_dev_as = g_malloc0(sizeof(VTDAddressSpace)); 3291 3292 vtd_dev_as->bus = bus; 3293 vtd_dev_as->devfn = (uint8_t)devfn; 3294 vtd_dev_as->iommu_state = s; 3295 vtd_dev_as->context_cache_entry.context_cache_gen = 0; 3296 vtd_dev_as->iova_tree = iova_tree_new(); 3297 3298 /* 3299 * Memory region relationships looks like (Address range shows 3300 * only lower 32 bits to make it short in length...): 3301 * 3302 * |-----------------+-------------------+----------| 3303 * | Name | Address range | Priority | 3304 * |-----------------+-------------------+----------+ 3305 * | vtd_root | 00000000-ffffffff | 0 | 3306 * | intel_iommu | 00000000-ffffffff | 1 | 3307 * | vtd_sys_alias | 00000000-ffffffff | 1 | 3308 * | intel_iommu_ir | fee00000-feefffff | 64 | 3309 * |-----------------+-------------------+----------| 3310 * 3311 * We enable/disable DMAR by switching enablement for 3312 * vtd_sys_alias and intel_iommu regions. IR region is always 3313 * enabled. 3314 */ 3315 memory_region_init_iommu(&vtd_dev_as->iommu, sizeof(vtd_dev_as->iommu), 3316 TYPE_INTEL_IOMMU_MEMORY_REGION, OBJECT(s), 3317 "intel_iommu_dmar", 3318 UINT64_MAX); 3319 memory_region_init_alias(&vtd_dev_as->sys_alias, OBJECT(s), 3320 "vtd_sys_alias", get_system_memory(), 3321 0, memory_region_size(get_system_memory())); 3322 memory_region_init_io(&vtd_dev_as->iommu_ir, OBJECT(s), 3323 &vtd_mem_ir_ops, s, "intel_iommu_ir", 3324 VTD_INTERRUPT_ADDR_SIZE); 3325 memory_region_init(&vtd_dev_as->root, OBJECT(s), 3326 "vtd_root", UINT64_MAX); 3327 memory_region_add_subregion_overlap(&vtd_dev_as->root, 3328 VTD_INTERRUPT_ADDR_FIRST, 3329 &vtd_dev_as->iommu_ir, 64); 3330 address_space_init(&vtd_dev_as->as, &vtd_dev_as->root, name); 3331 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3332 &vtd_dev_as->sys_alias, 1); 3333 memory_region_add_subregion_overlap(&vtd_dev_as->root, 0, 3334 MEMORY_REGION(&vtd_dev_as->iommu), 3335 1); 3336 vtd_switch_address_space(vtd_dev_as); 3337 } 3338 return vtd_dev_as; 3339 } 3340 3341 /* Unmap the whole range in the notifier's scope. */ 3342 static void vtd_address_space_unmap(VTDAddressSpace *as, IOMMUNotifier *n) 3343 { 3344 IOMMUTLBEntry entry; 3345 hwaddr size; 3346 hwaddr start = n->start; 3347 hwaddr end = n->end; 3348 IntelIOMMUState *s = as->iommu_state; 3349 DMAMap map; 3350 3351 /* 3352 * Note: all the codes in this function has a assumption that IOVA 3353 * bits are no more than VTD_MGAW bits (which is restricted by 3354 * VT-d spec), otherwise we need to consider overflow of 64 bits. 3355 */ 3356 3357 if (end > VTD_ADDRESS_SIZE(s->aw_bits)) { 3358 /* 3359 * Don't need to unmap regions that is bigger than the whole 3360 * VT-d supported address space size 3361 */ 3362 end = VTD_ADDRESS_SIZE(s->aw_bits); 3363 } 3364 3365 assert(start <= end); 3366 size = end - start; 3367 3368 if (ctpop64(size) != 1) { 3369 /* 3370 * This size cannot format a correct mask. Let's enlarge it to 3371 * suite the minimum available mask. 3372 */ 3373 int n = 64 - clz64(size); 3374 if (n > s->aw_bits) { 3375 /* should not happen, but in case it happens, limit it */ 3376 n = s->aw_bits; 3377 } 3378 size = 1ULL << n; 3379 } 3380 3381 entry.target_as = &address_space_memory; 3382 /* Adjust iova for the size */ 3383 entry.iova = n->start & ~(size - 1); 3384 /* This field is meaningless for unmap */ 3385 entry.translated_addr = 0; 3386 entry.perm = IOMMU_NONE; 3387 entry.addr_mask = size - 1; 3388 3389 trace_vtd_as_unmap_whole(pci_bus_num(as->bus), 3390 VTD_PCI_SLOT(as->devfn), 3391 VTD_PCI_FUNC(as->devfn), 3392 entry.iova, size); 3393 3394 map.iova = entry.iova; 3395 map.size = entry.addr_mask; 3396 iova_tree_remove(as->iova_tree, &map); 3397 3398 memory_region_notify_one(n, &entry); 3399 } 3400 3401 static void vtd_address_space_unmap_all(IntelIOMMUState *s) 3402 { 3403 VTDAddressSpace *vtd_as; 3404 IOMMUNotifier *n; 3405 3406 QLIST_FOREACH(vtd_as, &s->vtd_as_with_notifiers, next) { 3407 IOMMU_NOTIFIER_FOREACH(n, &vtd_as->iommu) { 3408 vtd_address_space_unmap(vtd_as, n); 3409 } 3410 } 3411 } 3412 3413 static void vtd_address_space_refresh_all(IntelIOMMUState *s) 3414 { 3415 vtd_address_space_unmap_all(s); 3416 vtd_switch_address_space_all(s); 3417 } 3418 3419 static int vtd_replay_hook(IOMMUTLBEntry *entry, void *private) 3420 { 3421 memory_region_notify_one((IOMMUNotifier *)private, entry); 3422 return 0; 3423 } 3424 3425 static void vtd_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n) 3426 { 3427 VTDAddressSpace *vtd_as = container_of(iommu_mr, VTDAddressSpace, iommu); 3428 IntelIOMMUState *s = vtd_as->iommu_state; 3429 uint8_t bus_n = pci_bus_num(vtd_as->bus); 3430 VTDContextEntry ce; 3431 3432 /* 3433 * The replay can be triggered by either a invalidation or a newly 3434 * created entry. No matter what, we release existing mappings 3435 * (it means flushing caches for UNMAP-only registers). 3436 */ 3437 vtd_address_space_unmap(vtd_as, n); 3438 3439 if (vtd_dev_to_context_entry(s, bus_n, vtd_as->devfn, &ce) == 0) { 3440 trace_vtd_replay_ce_valid(s->root_scalable ? "scalable mode" : 3441 "legacy mode", 3442 bus_n, PCI_SLOT(vtd_as->devfn), 3443 PCI_FUNC(vtd_as->devfn), 3444 vtd_get_domain_id(s, &ce), 3445 ce.hi, ce.lo); 3446 if (vtd_as_has_map_notifier(vtd_as)) { 3447 /* This is required only for MAP typed notifiers */ 3448 vtd_page_walk_info info = { 3449 .hook_fn = vtd_replay_hook, 3450 .private = (void *)n, 3451 .notify_unmap = false, 3452 .aw = s->aw_bits, 3453 .as = vtd_as, 3454 .domain_id = vtd_get_domain_id(s, &ce), 3455 }; 3456 3457 vtd_page_walk(s, &ce, 0, ~0ULL, &info); 3458 } 3459 } else { 3460 trace_vtd_replay_ce_invalid(bus_n, PCI_SLOT(vtd_as->devfn), 3461 PCI_FUNC(vtd_as->devfn)); 3462 } 3463 3464 return; 3465 } 3466 3467 /* Do the initialization. It will also be called when reset, so pay 3468 * attention when adding new initialization stuff. 3469 */ 3470 static void vtd_init(IntelIOMMUState *s) 3471 { 3472 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3473 3474 memset(s->csr, 0, DMAR_REG_SIZE); 3475 memset(s->wmask, 0, DMAR_REG_SIZE); 3476 memset(s->w1cmask, 0, DMAR_REG_SIZE); 3477 memset(s->womask, 0, DMAR_REG_SIZE); 3478 3479 s->root = 0; 3480 s->root_extended = false; 3481 s->root_scalable = false; 3482 s->dmar_enabled = false; 3483 s->intr_enabled = false; 3484 s->iq_head = 0; 3485 s->iq_tail = 0; 3486 s->iq = 0; 3487 s->iq_size = 0; 3488 s->qi_enabled = false; 3489 s->iq_last_desc_type = VTD_INV_DESC_NONE; 3490 s->iq_dw = false; 3491 s->next_frcd_reg = 0; 3492 s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | 3493 VTD_CAP_MAMV | VTD_CAP_PSI | VTD_CAP_SLLPS | 3494 VTD_CAP_SAGAW_39bit | VTD_CAP_MGAW(s->aw_bits); 3495 if (s->dma_drain) { 3496 s->cap |= VTD_CAP_DRAIN; 3497 } 3498 if (s->aw_bits == VTD_HOST_AW_48BIT) { 3499 s->cap |= VTD_CAP_SAGAW_48bit; 3500 } 3501 s->ecap = VTD_ECAP_QI | VTD_ECAP_IRO; 3502 3503 /* 3504 * Rsvd field masks for spte 3505 */ 3506 vtd_paging_entry_rsvd_field[0] = ~0ULL; 3507 vtd_paging_entry_rsvd_field[1] = VTD_SPTE_PAGE_L1_RSVD_MASK(s->aw_bits); 3508 vtd_paging_entry_rsvd_field[2] = VTD_SPTE_PAGE_L2_RSVD_MASK(s->aw_bits); 3509 vtd_paging_entry_rsvd_field[3] = VTD_SPTE_PAGE_L3_RSVD_MASK(s->aw_bits); 3510 vtd_paging_entry_rsvd_field[4] = VTD_SPTE_PAGE_L4_RSVD_MASK(s->aw_bits); 3511 vtd_paging_entry_rsvd_field[5] = VTD_SPTE_LPAGE_L1_RSVD_MASK(s->aw_bits); 3512 vtd_paging_entry_rsvd_field[6] = VTD_SPTE_LPAGE_L2_RSVD_MASK(s->aw_bits); 3513 vtd_paging_entry_rsvd_field[7] = VTD_SPTE_LPAGE_L3_RSVD_MASK(s->aw_bits); 3514 vtd_paging_entry_rsvd_field[8] = VTD_SPTE_LPAGE_L4_RSVD_MASK(s->aw_bits); 3515 3516 if (x86_iommu_ir_supported(x86_iommu)) { 3517 s->ecap |= VTD_ECAP_IR | VTD_ECAP_MHMV; 3518 if (s->intr_eim == ON_OFF_AUTO_ON) { 3519 s->ecap |= VTD_ECAP_EIM; 3520 } 3521 assert(s->intr_eim != ON_OFF_AUTO_AUTO); 3522 } 3523 3524 if (x86_iommu->dt_supported) { 3525 s->ecap |= VTD_ECAP_DT; 3526 } 3527 3528 if (x86_iommu->pt_supported) { 3529 s->ecap |= VTD_ECAP_PT; 3530 } 3531 3532 if (s->caching_mode) { 3533 s->cap |= VTD_CAP_CM; 3534 } 3535 3536 /* TODO: read cap/ecap from host to decide which cap to be exposed. */ 3537 if (s->scalable_mode) { 3538 s->ecap |= VTD_ECAP_SMTS | VTD_ECAP_SRS | VTD_ECAP_SLTS; 3539 } 3540 3541 vtd_reset_caches(s); 3542 3543 /* Define registers with default values and bit semantics */ 3544 vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0); 3545 vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0); 3546 vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0); 3547 vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0); 3548 vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL); 3549 vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0); 3550 vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffffc00ULL, 0); 3551 vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0); 3552 vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL); 3553 3554 /* Advanced Fault Logging not supported */ 3555 vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL); 3556 vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3557 vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0); 3558 vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0); 3559 3560 /* Treated as RsvdZ when EIM in ECAP_REG is not supported 3561 * vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0); 3562 */ 3563 vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0); 3564 3565 /* Treated as RO for implementations that PLMR and PHMR fields reported 3566 * as Clear in the CAP_REG. 3567 * vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0); 3568 */ 3569 vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0); 3570 3571 vtd_define_quad(s, DMAR_IQH_REG, 0, 0, 0); 3572 vtd_define_quad(s, DMAR_IQT_REG, 0, 0x7fff0ULL, 0); 3573 vtd_define_quad(s, DMAR_IQA_REG, 0, 0xfffffffffffff807ULL, 0); 3574 vtd_define_long(s, DMAR_ICS_REG, 0, 0, 0x1UL); 3575 vtd_define_long(s, DMAR_IECTL_REG, 0x80000000UL, 0x80000000UL, 0); 3576 vtd_define_long(s, DMAR_IEDATA_REG, 0, 0xffffffffUL, 0); 3577 vtd_define_long(s, DMAR_IEADDR_REG, 0, 0xfffffffcUL, 0); 3578 /* Treadted as RsvdZ when EIM in ECAP_REG is not supported */ 3579 vtd_define_long(s, DMAR_IEUADDR_REG, 0, 0, 0); 3580 3581 /* IOTLB registers */ 3582 vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0); 3583 vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0); 3584 vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL); 3585 3586 /* Fault Recording Registers, 128-bit */ 3587 vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0); 3588 vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL); 3589 3590 /* 3591 * Interrupt remapping registers. 3592 */ 3593 vtd_define_quad(s, DMAR_IRTA_REG, 0, 0xfffffffffffff80fULL, 0); 3594 } 3595 3596 /* Should not reset address_spaces when reset because devices will still use 3597 * the address space they got at first (won't ask the bus again). 3598 */ 3599 static void vtd_reset(DeviceState *dev) 3600 { 3601 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 3602 3603 vtd_init(s); 3604 vtd_address_space_refresh_all(s); 3605 } 3606 3607 static AddressSpace *vtd_host_dma_iommu(PCIBus *bus, void *opaque, int devfn) 3608 { 3609 IntelIOMMUState *s = opaque; 3610 VTDAddressSpace *vtd_as; 3611 3612 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 3613 3614 vtd_as = vtd_find_add_as(s, bus, devfn); 3615 return &vtd_as->as; 3616 } 3617 3618 static bool vtd_decide_config(IntelIOMMUState *s, Error **errp) 3619 { 3620 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(s); 3621 3622 if (s->intr_eim == ON_OFF_AUTO_ON && !x86_iommu_ir_supported(x86_iommu)) { 3623 error_setg(errp, "eim=on cannot be selected without intremap=on"); 3624 return false; 3625 } 3626 3627 if (s->intr_eim == ON_OFF_AUTO_AUTO) { 3628 s->intr_eim = (kvm_irqchip_in_kernel() || s->buggy_eim) 3629 && x86_iommu_ir_supported(x86_iommu) ? 3630 ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; 3631 } 3632 if (s->intr_eim == ON_OFF_AUTO_ON && !s->buggy_eim) { 3633 if (!kvm_irqchip_in_kernel()) { 3634 error_setg(errp, "eim=on requires accel=kvm,kernel-irqchip=split"); 3635 return false; 3636 } 3637 if (!kvm_enable_x2apic()) { 3638 error_setg(errp, "eim=on requires support on the KVM side" 3639 "(X2APIC_API, first shipped in v4.7)"); 3640 return false; 3641 } 3642 } 3643 3644 /* Currently only address widths supported are 39 and 48 bits */ 3645 if ((s->aw_bits != VTD_HOST_AW_39BIT) && 3646 (s->aw_bits != VTD_HOST_AW_48BIT)) { 3647 error_setg(errp, "Supported values for x-aw-bits are: %d, %d", 3648 VTD_HOST_AW_39BIT, VTD_HOST_AW_48BIT); 3649 return false; 3650 } 3651 3652 if (s->scalable_mode && !s->dma_drain) { 3653 error_setg(errp, "Need to set dma_drain for scalable mode"); 3654 return false; 3655 } 3656 3657 return true; 3658 } 3659 3660 static void vtd_realize(DeviceState *dev, Error **errp) 3661 { 3662 MachineState *ms = MACHINE(qdev_get_machine()); 3663 PCMachineState *pcms = PC_MACHINE(ms); 3664 PCIBus *bus = pcms->bus; 3665 IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev); 3666 X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev); 3667 3668 x86_iommu->type = TYPE_INTEL; 3669 3670 if (!vtd_decide_config(s, errp)) { 3671 return; 3672 } 3673 3674 QLIST_INIT(&s->vtd_as_with_notifiers); 3675 qemu_mutex_init(&s->iommu_lock); 3676 memset(s->vtd_as_by_bus_num, 0, sizeof(s->vtd_as_by_bus_num)); 3677 memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s, 3678 "intel_iommu", DMAR_REG_SIZE); 3679 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem); 3680 /* No corresponding destroy */ 3681 s->iotlb = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, 3682 g_free, g_free); 3683 s->vtd_as_by_busptr = g_hash_table_new_full(vtd_uint64_hash, vtd_uint64_equal, 3684 g_free, g_free); 3685 vtd_init(s); 3686 sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR); 3687 pci_setup_iommu(bus, vtd_host_dma_iommu, dev); 3688 /* Pseudo address space under root PCI bus. */ 3689 pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC); 3690 } 3691 3692 static void vtd_class_init(ObjectClass *klass, void *data) 3693 { 3694 DeviceClass *dc = DEVICE_CLASS(klass); 3695 X86IOMMUClass *x86_class = X86_IOMMU_CLASS(klass); 3696 3697 dc->reset = vtd_reset; 3698 dc->vmsd = &vtd_vmstate; 3699 dc->props = vtd_properties; 3700 dc->hotpluggable = false; 3701 x86_class->realize = vtd_realize; 3702 x86_class->int_remap = vtd_int_remap; 3703 /* Supported by the pc-q35-* machine types */ 3704 dc->user_creatable = true; 3705 } 3706 3707 static const TypeInfo vtd_info = { 3708 .name = TYPE_INTEL_IOMMU_DEVICE, 3709 .parent = TYPE_X86_IOMMU_DEVICE, 3710 .instance_size = sizeof(IntelIOMMUState), 3711 .class_init = vtd_class_init, 3712 }; 3713 3714 static void vtd_iommu_memory_region_class_init(ObjectClass *klass, 3715 void *data) 3716 { 3717 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 3718 3719 imrc->translate = vtd_iommu_translate; 3720 imrc->notify_flag_changed = vtd_iommu_notify_flag_changed; 3721 imrc->replay = vtd_iommu_replay; 3722 } 3723 3724 static const TypeInfo vtd_iommu_memory_region_info = { 3725 .parent = TYPE_IOMMU_MEMORY_REGION, 3726 .name = TYPE_INTEL_IOMMU_MEMORY_REGION, 3727 .class_init = vtd_iommu_memory_region_class_init, 3728 }; 3729 3730 static void vtd_register_types(void) 3731 { 3732 type_register_static(&vtd_info); 3733 type_register_static(&vtd_iommu_memory_region_info); 3734 } 3735 3736 type_init(vtd_register_types) 3737