1 /* 2 * QEMU fw_cfg helpers (X86 specific) 3 * 4 * Copyright (c) 2019 Red Hat, Inc. 5 * 6 * Author: 7 * Philippe Mathieu-Daudé <philmd@redhat.com> 8 * 9 * SPDX-License-Identifier: GPL-2.0-or-later 10 * 11 * This work is licensed under the terms of the GNU GPL, version 2 or later. 12 * See the COPYING file in the top-level directory. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "sysemu/numa.h" 17 #include "hw/acpi/acpi.h" 18 #include "hw/acpi/aml-build.h" 19 #include "hw/firmware/smbios.h" 20 #include "hw/i386/fw_cfg.h" 21 #include "hw/timer/hpet.h" 22 #include "hw/nvram/fw_cfg.h" 23 #include "e820_memory_layout.h" 24 #include "kvm/kvm_i386.h" 25 #include CONFIG_DEVICES 26 27 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 28 29 const char *fw_cfg_arch_key_name(uint16_t key) 30 { 31 static const struct { 32 uint16_t key; 33 const char *name; 34 } fw_cfg_arch_wellknown_keys[] = { 35 {FW_CFG_ACPI_TABLES, "acpi_tables"}, 36 {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"}, 37 {FW_CFG_IRQ0_OVERRIDE, "irq0_override"}, 38 {FW_CFG_E820_TABLE, "e820_table"}, 39 {FW_CFG_HPET, "hpet"}, 40 }; 41 42 for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { 43 if (fw_cfg_arch_wellknown_keys[i].key == key) { 44 return fw_cfg_arch_wellknown_keys[i].name; 45 } 46 } 47 return NULL; 48 } 49 50 void fw_cfg_build_smbios(MachineState *ms, FWCfgState *fw_cfg) 51 { 52 #ifdef CONFIG_SMBIOS 53 uint8_t *smbios_tables, *smbios_anchor; 54 size_t smbios_tables_len, smbios_anchor_len; 55 struct smbios_phys_mem_area *mem_array; 56 unsigned i, array_count; 57 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 58 59 /* tell smbios about cpuid version and features */ 60 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 61 62 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len); 63 if (smbios_tables) { 64 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 65 smbios_tables, smbios_tables_len); 66 } 67 68 /* build the array of physical mem area from e820 table */ 69 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 70 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 71 uint64_t addr, len; 72 73 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 74 mem_array[array_count].address = addr; 75 mem_array[array_count].length = len; 76 array_count++; 77 } 78 } 79 smbios_get_tables(ms, mem_array, array_count, 80 &smbios_tables, &smbios_tables_len, 81 &smbios_anchor, &smbios_anchor_len); 82 g_free(mem_array); 83 84 if (smbios_anchor) { 85 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 86 smbios_tables, smbios_tables_len); 87 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 88 smbios_anchor, smbios_anchor_len); 89 } 90 #endif 91 } 92 93 FWCfgState *fw_cfg_arch_create(MachineState *ms, 94 uint16_t boot_cpus, 95 uint16_t apic_id_limit) 96 { 97 FWCfgState *fw_cfg; 98 uint64_t *numa_fw_cfg; 99 int i; 100 MachineClass *mc = MACHINE_GET_CLASS(ms); 101 const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms); 102 int nb_numa_nodes = ms->numa_state->num_nodes; 103 104 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, 105 &address_space_memory); 106 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus); 107 108 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 109 * 110 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 111 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 112 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 113 * for CPU hotplug also uses APIC ID and not "CPU index". 114 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 115 * but the "limit to the APIC ID values SeaBIOS may see". 116 * 117 * So for compatibility reasons with old BIOSes we are stuck with 118 * "etc/max-cpus" actually being apic_id_limit 119 */ 120 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit); 121 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size); 122 #ifdef CONFIG_ACPI 123 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 124 acpi_tables, acpi_tables_len); 125 #endif 126 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1); 127 128 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 129 &e820_reserve, sizeof(e820_reserve)); 130 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 131 sizeof(struct e820_entry) * e820_get_num_entries()); 132 133 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 134 /* allocate memory for the NUMA channel: one (64bit) word for the number 135 * of nodes, one word for each VCPU->node and one word for each node to 136 * hold the amount of memory. 137 */ 138 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 139 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 140 for (i = 0; i < cpus->len; i++) { 141 unsigned int apic_id = cpus->cpus[i].arch_id; 142 assert(apic_id < apic_id_limit); 143 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); 144 } 145 for (i = 0; i < nb_numa_nodes; i++) { 146 numa_fw_cfg[apic_id_limit + 1 + i] = 147 cpu_to_le64(ms->numa_state->nodes[i].node_mem); 148 } 149 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 150 (1 + apic_id_limit + nb_numa_nodes) * 151 sizeof(*numa_fw_cfg)); 152 153 return fw_cfg; 154 } 155 156 void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg) 157 { 158 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); 159 CPUX86State *env = &cpu->env; 160 uint32_t unused, ecx, edx; 161 uint64_t feature_control_bits = 0; 162 uint64_t *val; 163 164 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 165 if (ecx & CPUID_EXT_VMX) { 166 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 167 } 168 169 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 170 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 171 (env->mcg_cap & MCG_LMCE_P)) { 172 feature_control_bits |= FEATURE_CONTROL_LMCE; 173 } 174 175 if (!feature_control_bits) { 176 return; 177 } 178 179 val = g_malloc(sizeof(*val)); 180 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 181 fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 182 } 183 184 void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg) 185 { 186 /* 187 * when using port i/o, the 8-bit data register *always* overlaps 188 * with half of the 16-bit control register. Hence, the total size 189 * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the 190 * DMA control register is located at FW_CFG_DMA_IO_BASE + 4 191 */ 192 Object *obj = OBJECT(fw_cfg); 193 uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ? 194 ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) : 195 FW_CFG_CTL_SIZE; 196 Aml *dev = aml_device("FWCF"); 197 Aml *crs = aml_resource_template(); 198 199 aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); 200 201 /* device present, functioning, decoding, not shown in UI */ 202 aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); 203 204 aml_append(crs, 205 aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size)); 206 207 aml_append(dev, aml_name_decl("_CRS", crs)); 208 aml_append(scope, dev); 209 } 210