1 /* 2 * QEMU SMBus EEPROM device 3 * 4 * Copyright (c) 2007 Arastra, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qapi/error.h" 28 #include "hw/hw.h" 29 #include "hw/boards.h" 30 #include "hw/i2c/i2c.h" 31 #include "hw/i2c/smbus_slave.h" 32 #include "hw/i2c/smbus_eeprom.h" 33 34 //#define DEBUG 35 36 #define TYPE_SMBUS_EEPROM "smbus-eeprom" 37 38 #define SMBUS_EEPROM(obj) \ 39 OBJECT_CHECK(SMBusEEPROMDevice, (obj), TYPE_SMBUS_EEPROM) 40 41 #define SMBUS_EEPROM_SIZE 256 42 43 typedef struct SMBusEEPROMDevice { 44 SMBusDevice smbusdev; 45 uint8_t data[SMBUS_EEPROM_SIZE]; 46 void *init_data; 47 uint8_t offset; 48 bool accessed; 49 } SMBusEEPROMDevice; 50 51 static uint8_t eeprom_receive_byte(SMBusDevice *dev) 52 { 53 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 54 uint8_t *data = eeprom->data; 55 uint8_t val = data[eeprom->offset++]; 56 57 eeprom->accessed = true; 58 #ifdef DEBUG 59 printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n", 60 dev->i2c.address, val); 61 #endif 62 return val; 63 } 64 65 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len) 66 { 67 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 68 uint8_t *data = eeprom->data; 69 70 eeprom->accessed = true; 71 #ifdef DEBUG 72 printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n", 73 dev->i2c.address, buf[0], buf[1]); 74 #endif 75 /* len is guaranteed to be > 0 */ 76 eeprom->offset = buf[0]; 77 buf++; 78 len--; 79 80 for (; len > 0; len--) { 81 data[eeprom->offset] = *buf++; 82 eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE; 83 } 84 85 return 0; 86 } 87 88 static bool smbus_eeprom_vmstate_needed(void *opaque) 89 { 90 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 91 SMBusEEPROMDevice *eeprom = opaque; 92 93 return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) && 94 !mc->smbus_no_migration_support; 95 } 96 97 static const VMStateDescription vmstate_smbus_eeprom = { 98 .name = "smbus-eeprom", 99 .version_id = 1, 100 .minimum_version_id = 1, 101 .needed = smbus_eeprom_vmstate_needed, 102 .fields = (VMStateField[]) { 103 VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice), 104 VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE), 105 VMSTATE_UINT8(offset, SMBusEEPROMDevice), 106 VMSTATE_BOOL(accessed, SMBusEEPROMDevice), 107 VMSTATE_END_OF_LIST() 108 } 109 }; 110 111 /* 112 * Reset the EEPROM contents to the initial state on a reset. This 113 * isn't really how an EEPROM works, of course, but the general 114 * principle of QEMU is to restore function on reset to what it would 115 * be if QEMU was stopped and started. 116 * 117 * The proper thing to do would be to have a backing blockdev to hold 118 * the contents and restore that on startup, and not do this on reset. 119 * But until that time, act as if we had been stopped and restarted. 120 */ 121 static void smbus_eeprom_reset(DeviceState *dev) 122 { 123 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 124 125 memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE); 126 eeprom->offset = 0; 127 } 128 129 static void smbus_eeprom_realize(DeviceState *dev, Error **errp) 130 { 131 smbus_eeprom_reset(dev); 132 } 133 134 static Property smbus_eeprom_properties[] = { 135 DEFINE_PROP_PTR("data", SMBusEEPROMDevice, init_data), 136 DEFINE_PROP_END_OF_LIST(), 137 }; 138 139 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data) 140 { 141 DeviceClass *dc = DEVICE_CLASS(klass); 142 SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass); 143 144 dc->realize = smbus_eeprom_realize; 145 dc->reset = smbus_eeprom_reset; 146 sc->receive_byte = eeprom_receive_byte; 147 sc->write_data = eeprom_write_data; 148 dc->props = smbus_eeprom_properties; 149 dc->vmsd = &vmstate_smbus_eeprom; 150 /* Reason: pointer property "data" */ 151 dc->user_creatable = false; 152 } 153 154 static const TypeInfo smbus_eeprom_info = { 155 .name = TYPE_SMBUS_EEPROM, 156 .parent = TYPE_SMBUS_DEVICE, 157 .instance_size = sizeof(SMBusEEPROMDevice), 158 .class_init = smbus_eeprom_class_initfn, 159 }; 160 161 static void smbus_eeprom_register_types(void) 162 { 163 type_register_static(&smbus_eeprom_info); 164 } 165 166 type_init(smbus_eeprom_register_types) 167 168 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf) 169 { 170 DeviceState *dev; 171 172 dev = qdev_create((BusState *) smbus, TYPE_SMBUS_EEPROM); 173 qdev_prop_set_uint8(dev, "address", address); 174 qdev_prop_set_ptr(dev, "data", eeprom_buf); 175 qdev_init_nofail(dev); 176 } 177 178 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom, 179 const uint8_t *eeprom_spd, int eeprom_spd_size) 180 { 181 int i; 182 /* XXX: make this persistent */ 183 184 assert(nb_eeprom <= 8); 185 uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE); 186 if (eeprom_spd_size > 0) { 187 memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size); 188 } 189 190 for (i = 0; i < nb_eeprom; i++) { 191 smbus_eeprom_init_one(smbus, 0x50 + i, 192 eeprom_buf + (i * SMBUS_EEPROM_SIZE)); 193 } 194 } 195 196 /* Generate SDRAM SPD EEPROM data describing a module of type and size */ 197 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size, 198 Error **errp) 199 { 200 uint8_t *spd; 201 uint8_t nbanks; 202 uint16_t density; 203 uint32_t size; 204 int min_log2, max_log2, sz_log2; 205 int i; 206 207 switch (type) { 208 case SDR: 209 min_log2 = 2; 210 max_log2 = 9; 211 break; 212 case DDR: 213 min_log2 = 5; 214 max_log2 = 12; 215 break; 216 case DDR2: 217 min_log2 = 7; 218 max_log2 = 14; 219 break; 220 default: 221 g_assert_not_reached(); 222 } 223 size = ram_size >> 20; /* work in terms of megabytes */ 224 if (size < 4) { 225 error_setg(errp, "SDRAM size is too small"); 226 return NULL; 227 } 228 sz_log2 = 31 - clz32(size); 229 size = 1U << sz_log2; 230 if (ram_size > size * MiB) { 231 error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, " 232 "truncating to %u MB", ram_size, size); 233 } 234 if (sz_log2 < min_log2) { 235 error_setg(errp, 236 "Memory size is too small for SDRAM type, adjusting type"); 237 if (size >= 32) { 238 type = DDR; 239 min_log2 = 5; 240 max_log2 = 12; 241 } else { 242 type = SDR; 243 min_log2 = 2; 244 max_log2 = 9; 245 } 246 } 247 248 nbanks = 1; 249 while (sz_log2 > max_log2 && nbanks < 8) { 250 sz_log2--; 251 nbanks++; 252 } 253 254 if (size > (1ULL << sz_log2) * nbanks) { 255 error_setg(errp, "Memory size is too big for SDRAM, truncating"); 256 } 257 258 /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */ 259 if (nbanks == 1 && sz_log2 > min_log2) { 260 sz_log2--; 261 nbanks++; 262 } 263 264 density = 1ULL << (sz_log2 - 2); 265 switch (type) { 266 case DDR2: 267 density = (density & 0xe0) | (density >> 8 & 0x1f); 268 break; 269 case DDR: 270 density = (density & 0xf8) | (density >> 8 & 0x07); 271 break; 272 case SDR: 273 default: 274 density &= 0xff; 275 break; 276 } 277 278 spd = g_malloc0(256); 279 spd[0] = 128; /* data bytes in EEPROM */ 280 spd[1] = 8; /* log2 size of EEPROM */ 281 spd[2] = type; 282 spd[3] = 13; /* row address bits */ 283 spd[4] = 10; /* column address bits */ 284 spd[5] = (type == DDR2 ? nbanks - 1 : nbanks); 285 spd[6] = 64; /* module data width */ 286 /* reserved / data width high */ 287 spd[8] = 4; /* interface voltage level */ 288 spd[9] = 0x25; /* highest CAS latency */ 289 spd[10] = 1; /* access time */ 290 /* DIMM configuration 0 = non-ECC */ 291 spd[12] = 0x82; /* refresh requirements */ 292 spd[13] = 8; /* primary SDRAM width */ 293 /* ECC SDRAM width */ 294 spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */ 295 spd[16] = 12; /* burst lengths supported */ 296 spd[17] = 4; /* banks per SDRAM device */ 297 spd[18] = 12; /* ~CAS latencies supported */ 298 spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */ 299 spd[20] = 2; /* DIMM type / ~WE latencies */ 300 /* module features */ 301 /* memory chip features */ 302 spd[23] = 0x12; /* clock cycle time @ medium CAS latency */ 303 /* data access time */ 304 /* clock cycle time @ short CAS latency */ 305 /* data access time */ 306 spd[27] = 20; /* min. row precharge time */ 307 spd[28] = 15; /* min. row active row delay */ 308 spd[29] = 20; /* min. ~RAS to ~CAS delay */ 309 spd[30] = 45; /* min. active to precharge time */ 310 spd[31] = density; 311 spd[32] = 20; /* addr/cmd setup time */ 312 spd[33] = 8; /* addr/cmd hold time */ 313 spd[34] = 20; /* data input setup time */ 314 spd[35] = 8; /* data input hold time */ 315 316 /* checksum */ 317 for (i = 0; i < 63; i++) { 318 spd[63] += spd[i]; 319 } 320 return spd; 321 } 322