1 /* 2 * QEMU SMBus EEPROM device 3 * 4 * Copyright (c) 2007 Arastra, Inc. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qapi/error.h" 28 #include "hw/boards.h" 29 #include "hw/i2c/i2c.h" 30 #include "hw/i2c/smbus_slave.h" 31 #include "hw/qdev-properties.h" 32 #include "migration/vmstate.h" 33 #include "hw/i2c/smbus_eeprom.h" 34 #include "qom/object.h" 35 36 //#define DEBUG 37 38 #define TYPE_SMBUS_EEPROM "smbus-eeprom" 39 40 typedef struct SMBusEEPROMDevice SMBusEEPROMDevice; 41 DECLARE_INSTANCE_CHECKER(SMBusEEPROMDevice, SMBUS_EEPROM, 42 TYPE_SMBUS_EEPROM) 43 44 #define SMBUS_EEPROM_SIZE 256 45 46 struct SMBusEEPROMDevice { 47 SMBusDevice smbusdev; 48 uint8_t data[SMBUS_EEPROM_SIZE]; 49 uint8_t *init_data; 50 uint8_t offset; 51 bool accessed; 52 }; 53 54 static uint8_t eeprom_receive_byte(SMBusDevice *dev) 55 { 56 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 57 uint8_t *data = eeprom->data; 58 uint8_t val = data[eeprom->offset++]; 59 60 eeprom->accessed = true; 61 #ifdef DEBUG 62 printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n", 63 dev->i2c.address, val); 64 #endif 65 return val; 66 } 67 68 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len) 69 { 70 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 71 uint8_t *data = eeprom->data; 72 73 eeprom->accessed = true; 74 #ifdef DEBUG 75 printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n", 76 dev->i2c.address, buf[0], buf[1]); 77 #endif 78 /* len is guaranteed to be > 0 */ 79 eeprom->offset = buf[0]; 80 buf++; 81 len--; 82 83 for (; len > 0; len--) { 84 data[eeprom->offset] = *buf++; 85 eeprom->offset = (eeprom->offset + 1) % SMBUS_EEPROM_SIZE; 86 } 87 88 return 0; 89 } 90 91 static bool smbus_eeprom_vmstate_needed(void *opaque) 92 { 93 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 94 SMBusEEPROMDevice *eeprom = opaque; 95 96 return (eeprom->accessed || smbus_vmstate_needed(&eeprom->smbusdev)) && 97 !mc->smbus_no_migration_support; 98 } 99 100 static const VMStateDescription vmstate_smbus_eeprom = { 101 .name = "smbus-eeprom", 102 .version_id = 1, 103 .minimum_version_id = 1, 104 .needed = smbus_eeprom_vmstate_needed, 105 .fields = (VMStateField[]) { 106 VMSTATE_SMBUS_DEVICE(smbusdev, SMBusEEPROMDevice), 107 VMSTATE_UINT8_ARRAY(data, SMBusEEPROMDevice, SMBUS_EEPROM_SIZE), 108 VMSTATE_UINT8(offset, SMBusEEPROMDevice), 109 VMSTATE_BOOL(accessed, SMBusEEPROMDevice), 110 VMSTATE_END_OF_LIST() 111 } 112 }; 113 114 /* 115 * Reset the EEPROM contents to the initial state on a reset. This 116 * isn't really how an EEPROM works, of course, but the general 117 * principle of QEMU is to restore function on reset to what it would 118 * be if QEMU was stopped and started. 119 * 120 * The proper thing to do would be to have a backing blockdev to hold 121 * the contents and restore that on startup, and not do this on reset. 122 * But until that time, act as if we had been stopped and restarted. 123 */ 124 static void smbus_eeprom_reset(DeviceState *dev) 125 { 126 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 127 128 memcpy(eeprom->data, eeprom->init_data, SMBUS_EEPROM_SIZE); 129 eeprom->offset = 0; 130 } 131 132 static void smbus_eeprom_realize(DeviceState *dev, Error **errp) 133 { 134 SMBusEEPROMDevice *eeprom = SMBUS_EEPROM(dev); 135 136 smbus_eeprom_reset(dev); 137 if (eeprom->init_data == NULL) { 138 error_setg(errp, "init_data cannot be NULL"); 139 } 140 } 141 142 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data) 143 { 144 DeviceClass *dc = DEVICE_CLASS(klass); 145 SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass); 146 147 dc->realize = smbus_eeprom_realize; 148 dc->reset = smbus_eeprom_reset; 149 sc->receive_byte = eeprom_receive_byte; 150 sc->write_data = eeprom_write_data; 151 dc->vmsd = &vmstate_smbus_eeprom; 152 /* Reason: init_data */ 153 dc->user_creatable = false; 154 } 155 156 static const TypeInfo smbus_eeprom_info = { 157 .name = TYPE_SMBUS_EEPROM, 158 .parent = TYPE_SMBUS_DEVICE, 159 .instance_size = sizeof(SMBusEEPROMDevice), 160 .class_init = smbus_eeprom_class_initfn, 161 }; 162 163 static void smbus_eeprom_register_types(void) 164 { 165 type_register_static(&smbus_eeprom_info); 166 } 167 168 type_init(smbus_eeprom_register_types) 169 170 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf) 171 { 172 DeviceState *dev; 173 174 dev = qdev_new(TYPE_SMBUS_EEPROM); 175 qdev_prop_set_uint8(dev, "address", address); 176 /* FIXME: use an array of byte or block backend property? */ 177 SMBUS_EEPROM(dev)->init_data = eeprom_buf; 178 qdev_realize_and_unref(dev, (BusState *)smbus, &error_fatal); 179 } 180 181 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom, 182 const uint8_t *eeprom_spd, int eeprom_spd_size) 183 { 184 int i; 185 /* XXX: make this persistent */ 186 187 assert(nb_eeprom <= 8); 188 uint8_t *eeprom_buf = g_malloc0(8 * SMBUS_EEPROM_SIZE); 189 if (eeprom_spd_size > 0) { 190 memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size); 191 } 192 193 for (i = 0; i < nb_eeprom; i++) { 194 smbus_eeprom_init_one(smbus, 0x50 + i, 195 eeprom_buf + (i * SMBUS_EEPROM_SIZE)); 196 } 197 } 198 199 /* Generate SDRAM SPD EEPROM data describing a module of type and size */ 200 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size) 201 { 202 uint8_t *spd; 203 uint8_t nbanks; 204 uint16_t density; 205 uint32_t size; 206 int min_log2, max_log2, sz_log2; 207 int i; 208 209 switch (type) { 210 case SDR: 211 min_log2 = 2; 212 max_log2 = 9; 213 break; 214 case DDR: 215 min_log2 = 5; 216 max_log2 = 12; 217 break; 218 case DDR2: 219 min_log2 = 7; 220 max_log2 = 14; 221 break; 222 default: 223 g_assert_not_reached(); 224 } 225 size = ram_size >> 20; /* work in terms of megabytes */ 226 sz_log2 = 31 - clz32(size); 227 size = 1U << sz_log2; 228 assert(ram_size == size * MiB); 229 assert(sz_log2 >= min_log2); 230 231 nbanks = 1; 232 while (sz_log2 > max_log2 && nbanks < 8) { 233 sz_log2--; 234 nbanks *= 2; 235 } 236 237 assert(size == (1ULL << sz_log2) * nbanks); 238 239 /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */ 240 if (nbanks == 1 && sz_log2 > min_log2) { 241 sz_log2--; 242 nbanks++; 243 } 244 245 density = 1ULL << (sz_log2 - 2); 246 switch (type) { 247 case DDR2: 248 density = (density & 0xe0) | (density >> 8 & 0x1f); 249 break; 250 case DDR: 251 density = (density & 0xf8) | (density >> 8 & 0x07); 252 break; 253 case SDR: 254 default: 255 density &= 0xff; 256 break; 257 } 258 259 spd = g_malloc0(256); 260 spd[0] = 128; /* data bytes in EEPROM */ 261 spd[1] = 8; /* log2 size of EEPROM */ 262 spd[2] = type; 263 spd[3] = 13; /* row address bits */ 264 spd[4] = 10; /* column address bits */ 265 spd[5] = (type == DDR2 ? nbanks - 1 : nbanks); 266 spd[6] = 64; /* module data width */ 267 /* reserved / data width high */ 268 spd[8] = 4; /* interface voltage level */ 269 spd[9] = 0x25; /* highest CAS latency */ 270 spd[10] = 1; /* access time */ 271 /* DIMM configuration 0 = non-ECC */ 272 spd[12] = 0x82; /* refresh requirements */ 273 spd[13] = 8; /* primary SDRAM width */ 274 /* ECC SDRAM width */ 275 spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */ 276 spd[16] = 12; /* burst lengths supported */ 277 spd[17] = 4; /* banks per SDRAM device */ 278 spd[18] = 12; /* ~CAS latencies supported */ 279 spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */ 280 spd[20] = 2; /* DIMM type / ~WE latencies */ 281 /* module features */ 282 /* memory chip features */ 283 spd[23] = 0x12; /* clock cycle time @ medium CAS latency */ 284 /* data access time */ 285 /* clock cycle time @ short CAS latency */ 286 /* data access time */ 287 spd[27] = 20; /* min. row precharge time */ 288 spd[28] = 15; /* min. row active row delay */ 289 spd[29] = 20; /* min. ~RAS to ~CAS delay */ 290 spd[30] = 45; /* min. active to precharge time */ 291 spd[31] = density; 292 spd[32] = 20; /* addr/cmd setup time */ 293 spd[33] = 8; /* addr/cmd hold time */ 294 spd[34] = 20; /* data input setup time */ 295 spd[35] = 8; /* data input hold time */ 296 297 /* checksum */ 298 for (i = 0; i < 63; i++) { 299 spd[63] += spd[i]; 300 } 301 return spd; 302 } 303