xref: /openbmc/qemu/hw/i2c/smbus_eeprom.c (revision 9cf27d74a829f651c0da5d80c014a6cef9d4cbd8)
1 /*
2  * QEMU SMBus EEPROM device
3  *
4  * Copyright (c) 2007 Arastra, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus_slave.h"
31 #include "hw/i2c/smbus_eeprom.h"
32 
33 //#define DEBUG
34 
35 typedef struct SMBusEEPROMDevice {
36     SMBusDevice smbusdev;
37     void *data;
38     uint8_t offset;
39 } SMBusEEPROMDevice;
40 
41 static void eeprom_quick_cmd(SMBusDevice *dev, uint8_t read)
42 {
43 #ifdef DEBUG
44     printf("eeprom_quick_cmd: addr=0x%02x read=%d\n", dev->i2c.address, read);
45 #endif
46 }
47 
48 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
49 {
50     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *) dev;
51     uint8_t *data = eeprom->data;
52     uint8_t val = data[eeprom->offset++];
53 #ifdef DEBUG
54     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
55            dev->i2c.address, val);
56 #endif
57     return val;
58 }
59 
60 static int eeprom_write_data(SMBusDevice *dev, uint8_t *buf, uint8_t len)
61 {
62     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *) dev;
63     uint8_t *data = eeprom->data;
64 
65 #ifdef DEBUG
66     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
67            dev->i2c.address, buf[0], buf[1]);
68 #endif
69     /* len is guaranteed to be > 0 */
70     eeprom->offset = buf[0];
71     buf++;
72     len--;
73 
74     for (; len > 0; len--) {
75         data[eeprom->offset] = *buf++;
76         eeprom->offset = (eeprom->offset + 1) % 256;
77     }
78 
79     return 0;
80 }
81 
82 static uint8_t eeprom_read_data(SMBusDevice *dev, int n)
83 {
84     /* As with writes, we implement block reads without the
85        SMBus length byte.  */
86     return eeprom_receive_byte(dev);
87 }
88 
89 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
90 {
91     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *)dev;
92 
93     eeprom->offset = 0;
94 }
95 
96 static Property smbus_eeprom_properties[] = {
97     DEFINE_PROP_PTR("data", SMBusEEPROMDevice, data),
98     DEFINE_PROP_END_OF_LIST(),
99 };
100 
101 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
102 {
103     DeviceClass *dc = DEVICE_CLASS(klass);
104     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
105 
106     dc->realize = smbus_eeprom_realize;
107     sc->quick_cmd = eeprom_quick_cmd;
108     sc->receive_byte = eeprom_receive_byte;
109     sc->write_data = eeprom_write_data;
110     sc->read_data = eeprom_read_data;
111     dc->props = smbus_eeprom_properties;
112     /* Reason: pointer property "data" */
113     dc->user_creatable = false;
114 }
115 
116 static const TypeInfo smbus_eeprom_info = {
117     .name          = "smbus-eeprom",
118     .parent        = TYPE_SMBUS_DEVICE,
119     .instance_size = sizeof(SMBusEEPROMDevice),
120     .class_init    = smbus_eeprom_class_initfn,
121 };
122 
123 static void smbus_eeprom_register_types(void)
124 {
125     type_register_static(&smbus_eeprom_info);
126 }
127 
128 type_init(smbus_eeprom_register_types)
129 
130 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
131 {
132     DeviceState *dev;
133 
134     dev = qdev_create((BusState *) smbus, "smbus-eeprom");
135     qdev_prop_set_uint8(dev, "address", address);
136     qdev_prop_set_ptr(dev, "data", eeprom_buf);
137     qdev_init_nofail(dev);
138 }
139 
140 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
141                        const uint8_t *eeprom_spd, int eeprom_spd_size)
142 {
143     int i;
144     uint8_t *eeprom_buf = g_malloc0(8 * 256); /* XXX: make this persistent */
145     if (eeprom_spd_size > 0) {
146         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
147     }
148 
149     for (i = 0; i < nb_eeprom; i++) {
150         smbus_eeprom_init_one(smbus, 0x50 + i, eeprom_buf + (i * 256));
151     }
152 }
153 
154 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
155 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
156                            Error **errp)
157 {
158     uint8_t *spd;
159     uint8_t nbanks;
160     uint16_t density;
161     uint32_t size;
162     int min_log2, max_log2, sz_log2;
163     int i;
164 
165     switch (type) {
166     case SDR:
167         min_log2 = 2;
168         max_log2 = 9;
169         break;
170     case DDR:
171         min_log2 = 5;
172         max_log2 = 12;
173         break;
174     case DDR2:
175         min_log2 = 7;
176         max_log2 = 14;
177         break;
178     default:
179         g_assert_not_reached();
180     }
181     size = ram_size >> 20; /* work in terms of megabytes */
182     if (size < 4) {
183         error_setg(errp, "SDRAM size is too small");
184         return NULL;
185     }
186     sz_log2 = 31 - clz32(size);
187     size = 1U << sz_log2;
188     if (ram_size > size * MiB) {
189         error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
190                    "truncating to %u MB", ram_size, size);
191     }
192     if (sz_log2 < min_log2) {
193         error_setg(errp,
194                    "Memory size is too small for SDRAM type, adjusting type");
195         if (size >= 32) {
196             type = DDR;
197             min_log2 = 5;
198             max_log2 = 12;
199         } else {
200             type = SDR;
201             min_log2 = 2;
202             max_log2 = 9;
203         }
204     }
205 
206     nbanks = 1;
207     while (sz_log2 > max_log2 && nbanks < 8) {
208         sz_log2--;
209         nbanks++;
210     }
211 
212     if (size > (1ULL << sz_log2) * nbanks) {
213         error_setg(errp, "Memory size is too big for SDRAM, truncating");
214     }
215 
216     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
217     if (nbanks == 1 && sz_log2 > min_log2) {
218         sz_log2--;
219         nbanks++;
220     }
221 
222     density = 1ULL << (sz_log2 - 2);
223     switch (type) {
224     case DDR2:
225         density = (density & 0xe0) | (density >> 8 & 0x1f);
226         break;
227     case DDR:
228         density = (density & 0xf8) | (density >> 8 & 0x07);
229         break;
230     case SDR:
231     default:
232         density &= 0xff;
233         break;
234     }
235 
236     spd = g_malloc0(256);
237     spd[0] = 128;   /* data bytes in EEPROM */
238     spd[1] = 8;     /* log2 size of EEPROM */
239     spd[2] = type;
240     spd[3] = 13;    /* row address bits */
241     spd[4] = 10;    /* column address bits */
242     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
243     spd[6] = 64;    /* module data width */
244                     /* reserved / data width high */
245     spd[8] = 4;     /* interface voltage level */
246     spd[9] = 0x25;  /* highest CAS latency */
247     spd[10] = 1;    /* access time */
248                     /* DIMM configuration 0 = non-ECC */
249     spd[12] = 0x82; /* refresh requirements */
250     spd[13] = 8;    /* primary SDRAM width */
251                     /* ECC SDRAM width */
252     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
253     spd[16] = 12;   /* burst lengths supported */
254     spd[17] = 4;    /* banks per SDRAM device */
255     spd[18] = 12;   /* ~CAS latencies supported */
256     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
257     spd[20] = 2;    /* DIMM type / ~WE latencies */
258                     /* module features */
259                     /* memory chip features */
260     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
261                     /* data access time */
262                     /* clock cycle time @ short CAS latency */
263                     /* data access time */
264     spd[27] = 20;   /* min. row precharge time */
265     spd[28] = 15;   /* min. row active row delay */
266     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
267     spd[30] = 45;   /* min. active to precharge time */
268     spd[31] = density;
269     spd[32] = 20;   /* addr/cmd setup time */
270     spd[33] = 8;    /* addr/cmd hold time */
271     spd[34] = 20;   /* data input setup time */
272     spd[35] = 8;    /* data input hold time */
273 
274     /* checksum */
275     for (i = 0; i < 63; i++) {
276         spd[63] += spd[i];
277     }
278     return spd;
279 }
280