xref: /openbmc/qemu/hw/i2c/smbus_eeprom.c (revision 520e210c)
1 /*
2  * QEMU SMBus EEPROM device
3  *
4  * Copyright (c) 2007 Arastra, Inc.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "hw/hw.h"
29 #include "hw/i2c/i2c.h"
30 #include "hw/i2c/smbus.h"
31 
32 //#define DEBUG
33 
34 typedef struct SMBusEEPROMDevice {
35     SMBusDevice smbusdev;
36     void *data;
37     uint8_t offset;
38 } SMBusEEPROMDevice;
39 
40 static void eeprom_quick_cmd(SMBusDevice *dev, uint8_t read)
41 {
42 #ifdef DEBUG
43     printf("eeprom_quick_cmd: addr=0x%02x read=%d\n", dev->i2c.address, read);
44 #endif
45 }
46 
47 static void eeprom_send_byte(SMBusDevice *dev, uint8_t val)
48 {
49     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *) dev;
50 #ifdef DEBUG
51     printf("eeprom_send_byte: addr=0x%02x val=0x%02x\n",
52            dev->i2c.address, val);
53 #endif
54     eeprom->offset = val;
55 }
56 
57 static uint8_t eeprom_receive_byte(SMBusDevice *dev)
58 {
59     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *) dev;
60     uint8_t *data = eeprom->data;
61     uint8_t val = data[eeprom->offset++];
62 #ifdef DEBUG
63     printf("eeprom_receive_byte: addr=0x%02x val=0x%02x\n",
64            dev->i2c.address, val);
65 #endif
66     return val;
67 }
68 
69 static void eeprom_write_data(SMBusDevice *dev, uint8_t cmd, uint8_t *buf, int len)
70 {
71     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *) dev;
72     int n;
73 #ifdef DEBUG
74     printf("eeprom_write_byte: addr=0x%02x cmd=0x%02x val=0x%02x\n",
75            dev->i2c.address, cmd, buf[0]);
76 #endif
77     /* A page write operation is not a valid SMBus command.
78        It is a block write without a length byte.  Fortunately we
79        get the full block anyway.  */
80     /* TODO: Should this set the current location?  */
81     if (cmd + len > 256)
82         n = 256 - cmd;
83     else
84         n = len;
85     memcpy(eeprom->data + cmd, buf, n);
86     len -= n;
87     if (len)
88         memcpy(eeprom->data, buf + n, len);
89 }
90 
91 static uint8_t eeprom_read_data(SMBusDevice *dev, uint8_t cmd, int n)
92 {
93     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *) dev;
94     /* If this is the first byte then set the current position.  */
95     if (n == 0)
96         eeprom->offset = cmd;
97     /* As with writes, we implement block reads without the
98        SMBus length byte.  */
99     return eeprom_receive_byte(dev);
100 }
101 
102 static void smbus_eeprom_realize(DeviceState *dev, Error **errp)
103 {
104     SMBusEEPROMDevice *eeprom = (SMBusEEPROMDevice *)dev;
105 
106     eeprom->offset = 0;
107 }
108 
109 static Property smbus_eeprom_properties[] = {
110     DEFINE_PROP_PTR("data", SMBusEEPROMDevice, data),
111     DEFINE_PROP_END_OF_LIST(),
112 };
113 
114 static void smbus_eeprom_class_initfn(ObjectClass *klass, void *data)
115 {
116     DeviceClass *dc = DEVICE_CLASS(klass);
117     SMBusDeviceClass *sc = SMBUS_DEVICE_CLASS(klass);
118 
119     dc->realize = smbus_eeprom_realize;
120     sc->quick_cmd = eeprom_quick_cmd;
121     sc->send_byte = eeprom_send_byte;
122     sc->receive_byte = eeprom_receive_byte;
123     sc->write_data = eeprom_write_data;
124     sc->read_data = eeprom_read_data;
125     dc->props = smbus_eeprom_properties;
126     /* Reason: pointer property "data" */
127     dc->user_creatable = false;
128 }
129 
130 static const TypeInfo smbus_eeprom_info = {
131     .name          = "smbus-eeprom",
132     .parent        = TYPE_SMBUS_DEVICE,
133     .instance_size = sizeof(SMBusEEPROMDevice),
134     .class_init    = smbus_eeprom_class_initfn,
135 };
136 
137 static void smbus_eeprom_register_types(void)
138 {
139     type_register_static(&smbus_eeprom_info);
140 }
141 
142 type_init(smbus_eeprom_register_types)
143 
144 void smbus_eeprom_init_one(I2CBus *smbus, uint8_t address, uint8_t *eeprom_buf)
145 {
146     DeviceState *dev;
147 
148     dev = qdev_create((BusState *) smbus, "smbus-eeprom");
149     qdev_prop_set_uint8(dev, "address", address);
150     qdev_prop_set_ptr(dev, "data", eeprom_buf);
151     qdev_init_nofail(dev);
152 }
153 
154 void smbus_eeprom_init(I2CBus *smbus, int nb_eeprom,
155                        const uint8_t *eeprom_spd, int eeprom_spd_size)
156 {
157     int i;
158     uint8_t *eeprom_buf = g_malloc0(8 * 256); /* XXX: make this persistent */
159     if (eeprom_spd_size > 0) {
160         memcpy(eeprom_buf, eeprom_spd, eeprom_spd_size);
161     }
162 
163     for (i = 0; i < nb_eeprom; i++) {
164         smbus_eeprom_init_one(smbus, 0x50 + i, eeprom_buf + (i * 256));
165     }
166 }
167 
168 /* Generate SDRAM SPD EEPROM data describing a module of type and size */
169 uint8_t *spd_data_generate(enum sdram_type type, ram_addr_t ram_size,
170                            Error **errp)
171 {
172     uint8_t *spd;
173     uint8_t nbanks;
174     uint16_t density;
175     uint32_t size;
176     int min_log2, max_log2, sz_log2;
177     int i;
178 
179     switch (type) {
180     case SDR:
181         min_log2 = 2;
182         max_log2 = 9;
183         break;
184     case DDR:
185         min_log2 = 5;
186         max_log2 = 12;
187         break;
188     case DDR2:
189         min_log2 = 7;
190         max_log2 = 14;
191         break;
192     default:
193         g_assert_not_reached();
194     }
195     size = ram_size >> 20; /* work in terms of megabytes */
196     if (size < 4) {
197         error_setg(errp, "SDRAM size is too small");
198         return NULL;
199     }
200     sz_log2 = 31 - clz32(size);
201     size = 1U << sz_log2;
202     if (ram_size > size * MiB) {
203         error_setg(errp, "SDRAM size 0x"RAM_ADDR_FMT" is not a power of 2, "
204                    "truncating to %u MB", ram_size, size);
205     }
206     if (sz_log2 < min_log2) {
207         error_setg(errp,
208                    "Memory size is too small for SDRAM type, adjusting type");
209         if (size >= 32) {
210             type = DDR;
211             min_log2 = 5;
212             max_log2 = 12;
213         } else {
214             type = SDR;
215             min_log2 = 2;
216             max_log2 = 9;
217         }
218     }
219 
220     nbanks = 1;
221     while (sz_log2 > max_log2 && nbanks < 8) {
222         sz_log2--;
223         nbanks++;
224     }
225 
226     if (size > (1ULL << sz_log2) * nbanks) {
227         error_setg(errp, "Memory size is too big for SDRAM, truncating");
228     }
229 
230     /* split to 2 banks if possible to avoid a bug in MIPS Malta firmware */
231     if (nbanks == 1 && sz_log2 > min_log2) {
232         sz_log2--;
233         nbanks++;
234     }
235 
236     density = 1ULL << (sz_log2 - 2);
237     switch (type) {
238     case DDR2:
239         density = (density & 0xe0) | (density >> 8 & 0x1f);
240         break;
241     case DDR:
242         density = (density & 0xf8) | (density >> 8 & 0x07);
243         break;
244     case SDR:
245     default:
246         density &= 0xff;
247         break;
248     }
249 
250     spd = g_malloc0(256);
251     spd[0] = 128;   /* data bytes in EEPROM */
252     spd[1] = 8;     /* log2 size of EEPROM */
253     spd[2] = type;
254     spd[3] = 13;    /* row address bits */
255     spd[4] = 10;    /* column address bits */
256     spd[5] = (type == DDR2 ? nbanks - 1 : nbanks);
257     spd[6] = 64;    /* module data width */
258                     /* reserved / data width high */
259     spd[8] = 4;     /* interface voltage level */
260     spd[9] = 0x25;  /* highest CAS latency */
261     spd[10] = 1;    /* access time */
262                     /* DIMM configuration 0 = non-ECC */
263     spd[12] = 0x82; /* refresh requirements */
264     spd[13] = 8;    /* primary SDRAM width */
265                     /* ECC SDRAM width */
266     spd[15] = (type == DDR2 ? 0 : 1); /* reserved / delay for random col rd */
267     spd[16] = 12;   /* burst lengths supported */
268     spd[17] = 4;    /* banks per SDRAM device */
269     spd[18] = 12;   /* ~CAS latencies supported */
270     spd[19] = (type == DDR2 ? 0 : 1); /* reserved / ~CS latencies supported */
271     spd[20] = 2;    /* DIMM type / ~WE latencies */
272                     /* module features */
273                     /* memory chip features */
274     spd[23] = 0x12; /* clock cycle time @ medium CAS latency */
275                     /* data access time */
276                     /* clock cycle time @ short CAS latency */
277                     /* data access time */
278     spd[27] = 20;   /* min. row precharge time */
279     spd[28] = 15;   /* min. row active row delay */
280     spd[29] = 20;   /* min. ~RAS to ~CAS delay */
281     spd[30] = 45;   /* min. active to precharge time */
282     spd[31] = density;
283     spd[32] = 20;   /* addr/cmd setup time */
284     spd[33] = 8;    /* addr/cmd hold time */
285     spd[34] = 20;   /* data input setup time */
286     spd[35] = 8;    /* data input hold time */
287 
288     /* checksum */
289     for (i = 0; i < 63; i++) {
290         spd[63] += spd[i];
291     }
292     return spd;
293 }
294