xref: /openbmc/qemu/hw/hppa/machine.c (revision 77d361b1)
1 /*
2  * QEMU HPPA hardware system emulator.
3  * Copyright 2018 Helge Deller <deller@gmx.de>
4  */
5 
6 #include "qemu/osdep.h"
7 #include "qemu-common.h"
8 #include "cpu.h"
9 #include "hw/hw.h"
10 #include "elf.h"
11 #include "hw/loader.h"
12 #include "hw/boards.h"
13 #include "qemu/error-report.h"
14 #include "sysemu/sysemu.h"
15 #include "hw/timer/mc146818rtc.h"
16 #include "hw/ide.h"
17 #include "hw/timer/i8254.h"
18 #include "hw/char/serial.h"
19 #include "hppa_sys.h"
20 #include "qemu/cutils.h"
21 #include "qapi/error.h"
22 #include "qemu/log.h"
23 
24 #define MAX_IDE_BUS 2
25 
26 static ISABus *hppa_isa_bus(void)
27 {
28     ISABus *isa_bus;
29     qemu_irq *isa_irqs;
30     MemoryRegion *isa_region;
31 
32     isa_region = g_new(MemoryRegion, 1);
33     memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
34                           NULL, "isa-io", 0x800);
35     memory_region_add_subregion(get_system_memory(), IDE_HPA,
36                                 isa_region);
37 
38     isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
39                           &error_abort);
40     isa_irqs = i8259_init(isa_bus,
41                           /* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
42                           NULL);
43     isa_bus_irqs(isa_bus, isa_irqs);
44 
45     return isa_bus;
46 }
47 
48 static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
49 {
50     addr &= (0x10000000 - 1);
51     return addr;
52 }
53 
54 static HPPACPU *cpu[HPPA_MAX_CPUS];
55 static uint64_t firmware_entry;
56 
57 static void machine_hppa_init(MachineState *machine)
58 {
59     const char *kernel_filename = machine->kernel_filename;
60     const char *kernel_cmdline = machine->kernel_cmdline;
61     const char *initrd_filename = machine->initrd_filename;
62     PCIBus *pci_bus;
63     ISABus *isa_bus;
64     qemu_irq rtc_irq, serial_irq;
65     char *firmware_filename;
66     uint64_t firmware_low, firmware_high;
67     long size;
68     uint64_t kernel_entry = 0, kernel_low, kernel_high;
69     MemoryRegion *addr_space = get_system_memory();
70     MemoryRegion *rom_region;
71     MemoryRegion *ram_region;
72     MemoryRegion *cpu_region;
73     long i;
74 
75     ram_size = machine->ram_size;
76 
77     /* Create CPUs.  */
78     for (i = 0; i < smp_cpus; i++) {
79         cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
80 
81         cpu_region = g_new(MemoryRegion, 1);
82         memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
83                               cpu[i], g_strdup_printf("cpu%ld-io-eir", i), 4);
84         memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
85                                     cpu_region);
86     }
87 
88     /* Limit main memory. */
89     if (ram_size > FIRMWARE_START) {
90         machine->ram_size = ram_size = FIRMWARE_START;
91     }
92 
93     /* Main memory region. */
94     ram_region = g_new(MemoryRegion, 1);
95     memory_region_allocate_system_memory(ram_region, OBJECT(machine),
96                                          "ram", ram_size);
97     memory_region_add_subregion(addr_space, 0, ram_region);
98 
99     /* Init Dino (PCI host bus chip).  */
100     pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq);
101     assert(pci_bus);
102 
103     /* Create ISA bus. */
104     isa_bus = hppa_isa_bus();
105     assert(isa_bus);
106 
107     /* Realtime clock, used by firmware for PDC_TOD call. */
108     mc146818_rtc_init(isa_bus, 2000, rtc_irq);
109 
110     /* Serial code setup.  */
111     if (serial_hd(0)) {
112         uint32_t addr = DINO_UART_HPA + 0x800;
113         serial_mm_init(addr_space, addr, 0, serial_irq,
114                        115200, serial_hd(0), DEVICE_BIG_ENDIAN);
115     }
116 
117     /* SCSI disk setup. */
118     lsi53c895a_create(pci_bus);
119 
120     /* Network setup.  e1000 is good enough, failing Tulip support.  */
121     for (i = 0; i < nb_nics; i++) {
122         pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL);
123     }
124 
125     /* Load firmware.  Given that this is not "real" firmware,
126        but one explicitly written for the emulation, we might as
127        well load it directly from an ELF image.  */
128     firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
129                                        bios_name ? bios_name :
130                                        "hppa-firmware.img");
131     if (firmware_filename == NULL) {
132         error_report("no firmware provided");
133         exit(1);
134     }
135 
136     size = load_elf(firmware_filename, NULL,
137                     NULL, &firmware_entry, &firmware_low, &firmware_high,
138                     true, EM_PARISC, 0, 0);
139 
140     /* Unfortunately, load_elf sign-extends reading elf32.  */
141     firmware_entry = (target_ureg)firmware_entry;
142     firmware_low = (target_ureg)firmware_low;
143     firmware_high = (target_ureg)firmware_high;
144 
145     if (size < 0) {
146         error_report("could not load firmware '%s'", firmware_filename);
147         exit(1);
148     }
149     qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
150                   "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
151                   firmware_low, firmware_high, firmware_entry);
152     if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) {
153         error_report("Firmware overlaps with memory or IO space");
154         exit(1);
155     }
156     g_free(firmware_filename);
157 
158     rom_region = g_new(MemoryRegion, 1);
159     memory_region_allocate_system_memory(rom_region, OBJECT(machine),
160                                          "firmware",
161                                          (FIRMWARE_END - FIRMWARE_START));
162     memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
163 
164     /* Load kernel */
165     if (kernel_filename) {
166         size = load_elf(kernel_filename, &cpu_hppa_to_phys,
167                         NULL, &kernel_entry, &kernel_low, &kernel_high,
168                         true, EM_PARISC, 0, 0);
169 
170         /* Unfortunately, load_elf sign-extends reading elf32.  */
171         kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
172         kernel_low = (target_ureg)kernel_low;
173         kernel_high = (target_ureg)kernel_high;
174 
175         if (size < 0) {
176             error_report("could not load kernel '%s'", kernel_filename);
177             exit(1);
178         }
179         qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
180                       "-0x%08" PRIx64 ", entry at 0x%08" PRIx64
181                       ", size %ld kB.\n",
182                       kernel_low, kernel_high, kernel_entry, size / 1024);
183 
184         if (kernel_cmdline) {
185             cpu[0]->env.gr[24] = 0x4000;
186             pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
187                              TARGET_PAGE_SIZE, kernel_cmdline);
188         }
189 
190         if (initrd_filename) {
191             ram_addr_t initrd_base;
192             long initrd_size;
193 
194             initrd_size = get_image_size(initrd_filename);
195             if (initrd_size < 0) {
196                 error_report("could not load initial ram disk '%s'",
197                              initrd_filename);
198                 exit(1);
199             }
200 
201             /* Load the initrd image high in memory.
202                Mirror the algorithm used by palo:
203                (1) Due to sign-extension problems and PDC,
204                put the initrd no higher than 1G.
205                (2) Reserve 64k for stack.  */
206             initrd_base = MIN(ram_size, 1024 * 1024 * 1024);
207             initrd_base = initrd_base - 64 * 1024;
208             initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
209 
210             if (initrd_base < kernel_high) {
211                 error_report("kernel and initial ram disk too large!");
212                 exit(1);
213             }
214 
215             load_image_targphys(initrd_filename, initrd_base, initrd_size);
216             cpu[0]->env.gr[23] = initrd_base;
217             cpu[0]->env.gr[22] = initrd_base + initrd_size;
218         }
219     }
220 
221     if (!kernel_entry) {
222         /* When booting via firmware, tell firmware if we want interactive
223          * mode (kernel_entry=1), and to boot from CD (gr[24]='d')
224          * or hard disc * (gr[24]='c').
225          */
226         kernel_entry = boot_menu ? 1 : 0;
227         cpu[0]->env.gr[24] = machine->boot_order[0];
228     }
229 
230     /* We jump to the firmware entry routine and pass the
231      * various parameters in registers. After firmware initialization,
232      * firmware will start the Linux kernel with ramdisk and cmdline.
233      */
234     cpu[0]->env.gr[26] = ram_size;
235     cpu[0]->env.gr[25] = kernel_entry;
236 
237     /* tell firmware how many SMP CPUs to present in inventory table */
238     cpu[0]->env.gr[21] = smp_cpus;
239 }
240 
241 static void hppa_machine_reset(void)
242 {
243     int i;
244 
245     qemu_devices_reset();
246 
247     /* Start all CPUs at the firmware entry point.
248      *  Monarch CPU will initialize firmware, secondary CPUs
249      *  will enter a small idle look and wait for rendevouz. */
250     for (i = 0; i < smp_cpus; i++) {
251         cpu_set_pc(CPU(cpu[i]), firmware_entry);
252         cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
253     }
254 
255     /* already initialized by machine_hppa_init()? */
256     if (cpu[0]->env.gr[26] == ram_size) {
257         return;
258     }
259 
260     cpu[0]->env.gr[26] = ram_size;
261     cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
262     cpu[0]->env.gr[24] = 'c';
263     /* gr22/gr23 unused, no initrd while reboot. */
264     cpu[0]->env.gr[21] = smp_cpus;
265 }
266 
267 
268 static void machine_hppa_machine_init(MachineClass *mc)
269 {
270     mc->desc = "HPPA generic machine";
271     mc->default_cpu_type = TYPE_HPPA_CPU;
272     mc->init = machine_hppa_init;
273     mc->reset = hppa_machine_reset;
274     mc->block_default_type = IF_SCSI;
275     mc->max_cpus = HPPA_MAX_CPUS;
276     mc->default_cpus = 1;
277     mc->is_default = 1;
278     mc->default_ram_size = 512 * M_BYTE;
279     mc->default_boot_order = "cd";
280 }
281 
282 DEFINE_MACHINE("hppa", machine_hppa_machine_init)
283