xref: /openbmc/qemu/hw/hppa/machine.c (revision 0e660142)
1 /*
2  * QEMU HPPA hardware system emulator.
3  * Copyright 2018 Helge Deller <deller@gmx.de>
4  */
5 
6 #include "qemu/osdep.h"
7 #include "qemu/datadir.h"
8 #include "cpu.h"
9 #include "elf.h"
10 #include "hw/loader.h"
11 #include "qemu/error-report.h"
12 #include "sysemu/reset.h"
13 #include "sysemu/sysemu.h"
14 #include "sysemu/runstate.h"
15 #include "hw/rtc/mc146818rtc.h"
16 #include "hw/timer/i8254.h"
17 #include "hw/char/serial.h"
18 #include "hw/char/parallel.h"
19 #include "hw/intc/i8259.h"
20 #include "hw/input/lasips2.h"
21 #include "hw/net/lasi_82596.h"
22 #include "hw/nmi.h"
23 #include "hw/pci/pci.h"
24 #include "hw/pci-host/dino.h"
25 #include "hw/misc/lasi.h"
26 #include "hppa_hardware.h"
27 #include "qemu/units.h"
28 #include "qapi/error.h"
29 #include "net/net.h"
30 #include "qemu/log.h"
31 
32 #define MIN_SEABIOS_HPPA_VERSION 6 /* require at least this fw version */
33 
34 #define HPA_POWER_BUTTON (FIRMWARE_END - 0x10)
35 
36 #define enable_lasi_lan()       0
37 
38 
39 static void hppa_powerdown_req(Notifier *n, void *opaque)
40 {
41     hwaddr soft_power_reg = HPA_POWER_BUTTON;
42     uint32_t val;
43 
44     val = ldl_be_phys(&address_space_memory, soft_power_reg);
45     if ((val >> 8) == 0) {
46         /* immediately shut down when under hardware control */
47         qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
48         return;
49     }
50 
51     /* clear bit 31 to indicate that the power switch was pressed. */
52     val &= ~1;
53     stl_be_phys(&address_space_memory, soft_power_reg, val);
54 }
55 
56 static Notifier hppa_system_powerdown_notifier = {
57     .notify = hppa_powerdown_req
58 };
59 
60 /* Fallback for unassigned PCI I/O operations.  Avoids MCHK.  */
61 static uint64_t ignore_read(void *opaque, hwaddr addr, unsigned size)
62 {
63     return 0;
64 }
65 
66 static void ignore_write(void *opaque, hwaddr addr, uint64_t v, unsigned size)
67 {
68 }
69 
70 static const MemoryRegionOps hppa_pci_ignore_ops = {
71     .read = ignore_read,
72     .write = ignore_write,
73     .endianness = DEVICE_BIG_ENDIAN,
74     .valid = {
75         .min_access_size = 1,
76         .max_access_size = 8,
77     },
78     .impl = {
79         .min_access_size = 1,
80         .max_access_size = 8,
81     },
82 };
83 
84 static ISABus *hppa_isa_bus(void)
85 {
86     ISABus *isa_bus;
87     qemu_irq *isa_irqs;
88     MemoryRegion *isa_region;
89 
90     isa_region = g_new(MemoryRegion, 1);
91     memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
92                           NULL, "isa-io", 0x800);
93     memory_region_add_subregion(get_system_memory(), IDE_HPA,
94                                 isa_region);
95 
96     isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
97                           &error_abort);
98     isa_irqs = i8259_init(isa_bus,
99                           /* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
100                           NULL);
101     isa_bus_irqs(isa_bus, isa_irqs);
102 
103     return isa_bus;
104 }
105 
106 static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
107 {
108     addr &= (0x10000000 - 1);
109     return addr;
110 }
111 
112 static HPPACPU *cpu[HPPA_MAX_CPUS];
113 static uint64_t firmware_entry;
114 
115 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
116                             Error **errp)
117 {
118     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
119 }
120 
121 static FWCfgState *create_fw_cfg(MachineState *ms)
122 {
123     FWCfgState *fw_cfg;
124     uint64_t val;
125 
126     fw_cfg = fw_cfg_init_mem(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4);
127     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, ms->smp.cpus);
128     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, HPPA_MAX_CPUS);
129     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size);
130 
131     val = cpu_to_le64(MIN_SEABIOS_HPPA_VERSION);
132     fw_cfg_add_file(fw_cfg, "/etc/firmware-min-version",
133                     g_memdup(&val, sizeof(val)), sizeof(val));
134 
135     val = cpu_to_le64(HPPA_TLB_ENTRIES);
136     fw_cfg_add_file(fw_cfg, "/etc/cpu/tlb_entries",
137                     g_memdup(&val, sizeof(val)), sizeof(val));
138 
139     val = cpu_to_le64(HPPA_BTLB_ENTRIES);
140     fw_cfg_add_file(fw_cfg, "/etc/cpu/btlb_entries",
141                     g_memdup(&val, sizeof(val)), sizeof(val));
142 
143     val = cpu_to_le64(HPA_POWER_BUTTON);
144     fw_cfg_add_file(fw_cfg, "/etc/power-button-addr",
145                     g_memdup(&val, sizeof(val)), sizeof(val));
146 
147     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ms->boot_config.order[0]);
148     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
149 
150     return fw_cfg;
151 }
152 
153 static LasiState *lasi_init(void)
154 {
155     DeviceState *dev;
156 
157     dev = qdev_new(TYPE_LASI_CHIP);
158     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
159 
160     return LASI_CHIP(dev);
161 }
162 
163 static DinoState *dino_init(MemoryRegion *addr_space)
164 {
165     DeviceState *dev;
166 
167     dev = qdev_new(TYPE_DINO_PCI_HOST_BRIDGE);
168     object_property_set_link(OBJECT(dev), "memory-as", OBJECT(addr_space),
169                              &error_fatal);
170     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
171 
172     return DINO_PCI_HOST_BRIDGE(dev);
173 }
174 
175 static void machine_hppa_init(MachineState *machine)
176 {
177     const char *kernel_filename = machine->kernel_filename;
178     const char *kernel_cmdline = machine->kernel_cmdline;
179     const char *initrd_filename = machine->initrd_filename;
180     DeviceState *dev, *dino_dev, *lasi_dev;
181     PCIBus *pci_bus;
182     ISABus *isa_bus;
183     char *firmware_filename;
184     uint64_t firmware_low, firmware_high;
185     long size;
186     uint64_t kernel_entry = 0, kernel_low, kernel_high;
187     MemoryRegion *addr_space = get_system_memory();
188     MemoryRegion *rom_region;
189     MemoryRegion *cpu_region;
190     long i;
191     unsigned int smp_cpus = machine->smp.cpus;
192     SysBusDevice *s;
193 
194     /* Create CPUs.  */
195     for (i = 0; i < smp_cpus; i++) {
196         char *name = g_strdup_printf("cpu%ld-io-eir", i);
197         cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
198 
199         cpu_region = g_new(MemoryRegion, 1);
200         memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
201                               cpu[i], name, 4);
202         memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
203                                     cpu_region);
204         g_free(name);
205     }
206 
207     /* Main memory region. */
208     if (machine->ram_size > 3 * GiB) {
209         error_report("RAM size is currently restricted to 3GB");
210         exit(EXIT_FAILURE);
211     }
212     memory_region_add_subregion_overlap(addr_space, 0, machine->ram, -1);
213 
214 
215     /* Init Lasi chip */
216     lasi_dev = DEVICE(lasi_init());
217     memory_region_add_subregion(addr_space, LASI_HPA,
218                                 sysbus_mmio_get_region(
219                                     SYS_BUS_DEVICE(lasi_dev), 0));
220 
221     /* Init Dino (PCI host bus chip).  */
222     dino_dev = DEVICE(dino_init(addr_space));
223     memory_region_add_subregion(addr_space, DINO_HPA,
224                                 sysbus_mmio_get_region(
225                                     SYS_BUS_DEVICE(dino_dev), 0));
226     pci_bus = PCI_BUS(qdev_get_child_bus(dino_dev, "pci"));
227     assert(pci_bus);
228 
229     /* Create ISA bus. */
230     isa_bus = hppa_isa_bus();
231     assert(isa_bus);
232 
233     /* Realtime clock, used by firmware for PDC_TOD call. */
234     mc146818_rtc_init(isa_bus, 2000, NULL);
235 
236     /* Serial ports: Lasi and Dino use a 7.272727 MHz clock. */
237     serial_mm_init(addr_space, LASI_UART_HPA + 0x800, 0,
238         qdev_get_gpio_in(lasi_dev, LASI_IRQ_UART_HPA), 7272727 / 16,
239         serial_hd(0), DEVICE_BIG_ENDIAN);
240 
241     serial_mm_init(addr_space, DINO_UART_HPA + 0x800, 0,
242         qdev_get_gpio_in(dino_dev, DINO_IRQ_RS232INT), 7272727 / 16,
243         serial_hd(1), DEVICE_BIG_ENDIAN);
244 
245     /* Parallel port */
246     parallel_mm_init(addr_space, LASI_LPT_HPA + 0x800, 0,
247                      qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA),
248                      parallel_hds[0]);
249 
250     /* fw_cfg configuration interface */
251     create_fw_cfg(machine);
252 
253     /* SCSI disk setup. */
254     dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a"));
255     lsi53c8xx_handle_legacy_cmdline(dev);
256 
257     /* Graphics setup. */
258     if (machine->enable_graphics && vga_interface_type != VGA_NONE) {
259         vga_interface_created = true;
260         dev = qdev_new("artist");
261         s = SYS_BUS_DEVICE(dev);
262         sysbus_realize_and_unref(s, &error_fatal);
263         sysbus_mmio_map(s, 0, LASI_GFX_HPA);
264         sysbus_mmio_map(s, 1, ARTIST_FB_ADDR);
265     }
266 
267     /* Network setup. */
268     if (enable_lasi_lan()) {
269         lasi_82596_init(addr_space, LASI_LAN_HPA,
270                         qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA));
271     }
272 
273     for (i = 0; i < nb_nics; i++) {
274         if (!enable_lasi_lan()) {
275             pci_nic_init_nofail(&nd_table[i], pci_bus, "tulip", NULL);
276         }
277     }
278 
279     /* PS/2 Keyboard/Mouse */
280     dev = qdev_new(TYPE_LASIPS2);
281     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
282     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
283                        qdev_get_gpio_in(lasi_dev, LASI_IRQ_PS2KBD_HPA));
284     memory_region_add_subregion(addr_space, LASI_PS2KBD_HPA,
285                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
286                                                        0));
287     memory_region_add_subregion(addr_space, LASI_PS2KBD_HPA + 0x100,
288                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
289                                                        1));
290 
291     /* register power switch emulation */
292     qemu_register_powerdown_notifier(&hppa_system_powerdown_notifier);
293 
294     /* Load firmware.  Given that this is not "real" firmware,
295        but one explicitly written for the emulation, we might as
296        well load it directly from an ELF image.  */
297     firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
298                                        machine->firmware ?: "hppa-firmware.img");
299     if (firmware_filename == NULL) {
300         error_report("no firmware provided");
301         exit(1);
302     }
303 
304     size = load_elf(firmware_filename, NULL, NULL, NULL,
305                     &firmware_entry, &firmware_low, &firmware_high, NULL,
306                     true, EM_PARISC, 0, 0);
307 
308     /* Unfortunately, load_elf sign-extends reading elf32.  */
309     firmware_entry = (target_ureg)firmware_entry;
310     firmware_low = (target_ureg)firmware_low;
311     firmware_high = (target_ureg)firmware_high;
312 
313     if (size < 0) {
314         error_report("could not load firmware '%s'", firmware_filename);
315         exit(1);
316     }
317     qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
318                   "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
319                   firmware_low, firmware_high, firmware_entry);
320     if (firmware_low < FIRMWARE_START || firmware_high >= FIRMWARE_END) {
321         error_report("Firmware overlaps with memory or IO space");
322         exit(1);
323     }
324     g_free(firmware_filename);
325 
326     rom_region = g_new(MemoryRegion, 1);
327     memory_region_init_ram(rom_region, NULL, "firmware",
328                            (FIRMWARE_END - FIRMWARE_START), &error_fatal);
329     memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
330 
331     /* Load kernel */
332     if (kernel_filename) {
333         size = load_elf(kernel_filename, NULL, &cpu_hppa_to_phys,
334                         NULL, &kernel_entry, &kernel_low, &kernel_high, NULL,
335                         true, EM_PARISC, 0, 0);
336 
337         /* Unfortunately, load_elf sign-extends reading elf32.  */
338         kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
339         kernel_low = (target_ureg)kernel_low;
340         kernel_high = (target_ureg)kernel_high;
341 
342         if (size < 0) {
343             error_report("could not load kernel '%s'", kernel_filename);
344             exit(1);
345         }
346         qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
347                       "-0x%08" PRIx64 ", entry at 0x%08" PRIx64
348                       ", size %" PRIu64 " kB\n",
349                       kernel_low, kernel_high, kernel_entry, size / KiB);
350 
351         if (kernel_cmdline) {
352             cpu[0]->env.gr[24] = 0x4000;
353             pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
354                              TARGET_PAGE_SIZE, kernel_cmdline);
355         }
356 
357         if (initrd_filename) {
358             ram_addr_t initrd_base;
359             int64_t initrd_size;
360 
361             initrd_size = get_image_size(initrd_filename);
362             if (initrd_size < 0) {
363                 error_report("could not load initial ram disk '%s'",
364                              initrd_filename);
365                 exit(1);
366             }
367 
368             /* Load the initrd image high in memory.
369                Mirror the algorithm used by palo:
370                (1) Due to sign-extension problems and PDC,
371                put the initrd no higher than 1G.
372                (2) Reserve 64k for stack.  */
373             initrd_base = MIN(machine->ram_size, 1 * GiB);
374             initrd_base = initrd_base - 64 * KiB;
375             initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
376 
377             if (initrd_base < kernel_high) {
378                 error_report("kernel and initial ram disk too large!");
379                 exit(1);
380             }
381 
382             load_image_targphys(initrd_filename, initrd_base, initrd_size);
383             cpu[0]->env.gr[23] = initrd_base;
384             cpu[0]->env.gr[22] = initrd_base + initrd_size;
385         }
386     }
387 
388     if (!kernel_entry) {
389         /* When booting via firmware, tell firmware if we want interactive
390          * mode (kernel_entry=1), and to boot from CD (gr[24]='d')
391          * or hard disc * (gr[24]='c').
392          */
393         kernel_entry = machine->boot_config.has_menu ? machine->boot_config.menu : 0;
394         cpu[0]->env.gr[24] = machine->boot_config.order[0];
395     }
396 
397     /* We jump to the firmware entry routine and pass the
398      * various parameters in registers. After firmware initialization,
399      * firmware will start the Linux kernel with ramdisk and cmdline.
400      */
401     cpu[0]->env.gr[26] = machine->ram_size;
402     cpu[0]->env.gr[25] = kernel_entry;
403 
404     /* tell firmware how many SMP CPUs to present in inventory table */
405     cpu[0]->env.gr[21] = smp_cpus;
406 
407     /* tell firmware fw_cfg port */
408     cpu[0]->env.gr[19] = FW_CFG_IO_BASE;
409 }
410 
411 static void hppa_machine_reset(MachineState *ms, ShutdownCause reason)
412 {
413     unsigned int smp_cpus = ms->smp.cpus;
414     int i;
415 
416     qemu_devices_reset(reason);
417 
418     /* Start all CPUs at the firmware entry point.
419      *  Monarch CPU will initialize firmware, secondary CPUs
420      *  will enter a small idle look and wait for rendevouz. */
421     for (i = 0; i < smp_cpus; i++) {
422         cpu_set_pc(CPU(cpu[i]), firmware_entry);
423         cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
424     }
425 
426     /* already initialized by machine_hppa_init()? */
427     if (cpu[0]->env.gr[26] == ms->ram_size) {
428         return;
429     }
430 
431     cpu[0]->env.gr[26] = ms->ram_size;
432     cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
433     cpu[0]->env.gr[24] = 'c';
434     /* gr22/gr23 unused, no initrd while reboot. */
435     cpu[0]->env.gr[21] = smp_cpus;
436     /* tell firmware fw_cfg port */
437     cpu[0]->env.gr[19] = FW_CFG_IO_BASE;
438 }
439 
440 static void hppa_nmi(NMIState *n, int cpu_index, Error **errp)
441 {
442     CPUState *cs;
443 
444     CPU_FOREACH(cs) {
445         cpu_interrupt(cs, CPU_INTERRUPT_NMI);
446     }
447 }
448 
449 static void hppa_machine_init_class_init(ObjectClass *oc, void *data)
450 {
451     MachineClass *mc = MACHINE_CLASS(oc);
452     NMIClass *nc = NMI_CLASS(oc);
453 
454     mc->desc = "HPPA B160L machine";
455     mc->default_cpu_type = TYPE_HPPA_CPU;
456     mc->init = machine_hppa_init;
457     mc->reset = hppa_machine_reset;
458     mc->block_default_type = IF_SCSI;
459     mc->max_cpus = HPPA_MAX_CPUS;
460     mc->default_cpus = 1;
461     mc->is_default = true;
462     mc->default_ram_size = 512 * MiB;
463     mc->default_boot_order = "cd";
464     mc->default_ram_id = "ram";
465 
466     nc->nmi_monitor_handler = hppa_nmi;
467 }
468 
469 static const TypeInfo hppa_machine_init_typeinfo = {
470     .name = MACHINE_TYPE_NAME("hppa"),
471     .parent = TYPE_MACHINE,
472     .class_init = hppa_machine_init_class_init,
473     .interfaces = (InterfaceInfo[]) {
474         { TYPE_NMI },
475         { }
476     },
477 };
478 
479 static void hppa_machine_init_register_types(void)
480 {
481     type_register_static(&hppa_machine_init_typeinfo);
482 }
483 
484 type_init(hppa_machine_init_register_types)
485