1 /* 2 * xlnx_dpdma.c 3 * 4 * Copyright (C) 2015 : GreenSocs Ltd 5 * http://www.greensocs.com/ , email: info@greensocs.com 6 * 7 * Developed by : 8 * Frederic Konrad <fred.konrad@greensocs.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 * 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/cutils.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "hw/dma/xlnx_dpdma.h" 30 #include "hw/irq.h" 31 #include "migration/vmstate.h" 32 33 #ifndef DEBUG_DPDMA 34 #define DEBUG_DPDMA 0 35 #endif 36 37 #define DPRINTF(fmt, ...) do { \ 38 if (DEBUG_DPDMA) { \ 39 qemu_log("xlnx_dpdma: " fmt , ## __VA_ARGS__); \ 40 } \ 41 } while (0) 42 43 /* 44 * Registers offset for DPDMA. 45 */ 46 #define DPDMA_ERR_CTRL (0x0000) 47 #define DPDMA_ISR (0x0004 >> 2) 48 #define DPDMA_IMR (0x0008 >> 2) 49 #define DPDMA_IEN (0x000C >> 2) 50 #define DPDMA_IDS (0x0010 >> 2) 51 #define DPDMA_EISR (0x0014 >> 2) 52 #define DPDMA_EIMR (0x0018 >> 2) 53 #define DPDMA_EIEN (0x001C >> 2) 54 #define DPDMA_EIDS (0x0020 >> 2) 55 #define DPDMA_CNTL (0x0100 >> 2) 56 57 #define DPDMA_GBL (0x0104 >> 2) 58 #define DPDMA_GBL_TRG_CH(n) (1 << n) 59 #define DPDMA_GBL_RTRG_CH(n) (1 << 6 << n) 60 61 #define DPDMA_ALC0_CNTL (0x0108 >> 2) 62 #define DPDMA_ALC0_STATUS (0x010C >> 2) 63 #define DPDMA_ALC0_MAX (0x0110 >> 2) 64 #define DPDMA_ALC0_MIN (0x0114 >> 2) 65 #define DPDMA_ALC0_ACC (0x0118 >> 2) 66 #define DPDMA_ALC0_ACC_TRAN (0x011C >> 2) 67 #define DPDMA_ALC1_CNTL (0x0120 >> 2) 68 #define DPDMA_ALC1_STATUS (0x0124 >> 2) 69 #define DPDMA_ALC1_MAX (0x0128 >> 2) 70 #define DPDMA_ALC1_MIN (0x012C >> 2) 71 #define DPDMA_ALC1_ACC (0x0130 >> 2) 72 #define DPDMA_ALC1_ACC_TRAN (0x0134 >> 2) 73 74 #define DPDMA_DSCR_STRT_ADDRE_CH(n) ((0x0200 + n * 0x100) >> 2) 75 #define DPDMA_DSCR_STRT_ADDR_CH(n) ((0x0204 + n * 0x100) >> 2) 76 #define DPDMA_DSCR_NEXT_ADDRE_CH(n) ((0x0208 + n * 0x100) >> 2) 77 #define DPDMA_DSCR_NEXT_ADDR_CH(n) ((0x020C + n * 0x100) >> 2) 78 #define DPDMA_PYLD_CUR_ADDRE_CH(n) ((0x0210 + n * 0x100) >> 2) 79 #define DPDMA_PYLD_CUR_ADDR_CH(n) ((0x0214 + n * 0x100) >> 2) 80 81 #define DPDMA_CNTL_CH(n) ((0x0218 + n * 0x100) >> 2) 82 #define DPDMA_CNTL_CH_EN (1) 83 #define DPDMA_CNTL_CH_PAUSED (1 << 1) 84 85 #define DPDMA_STATUS_CH(n) ((0x021C + n * 0x100) >> 2) 86 #define DPDMA_STATUS_BURST_TYPE (1 << 4) 87 #define DPDMA_STATUS_MODE (1 << 5) 88 #define DPDMA_STATUS_EN_CRC (1 << 6) 89 #define DPDMA_STATUS_LAST_DSCR (1 << 7) 90 #define DPDMA_STATUS_LDSCR_FRAME (1 << 8) 91 #define DPDMA_STATUS_IGNR_DONE (1 << 9) 92 #define DPDMA_STATUS_DSCR_DONE (1 << 10) 93 #define DPDMA_STATUS_EN_DSCR_UP (1 << 11) 94 #define DPDMA_STATUS_EN_DSCR_INTR (1 << 12) 95 #define DPDMA_STATUS_PREAMBLE_OFF (13) 96 97 #define DPDMA_VDO_CH(n) ((0x0220 + n * 0x100) >> 2) 98 #define DPDMA_PYLD_SZ_CH(n) ((0x0224 + n * 0x100) >> 2) 99 #define DPDMA_DSCR_ID_CH(n) ((0x0228 + n * 0x100) >> 2) 100 101 /* 102 * Descriptor control field. 103 */ 104 #define CONTROL_PREAMBLE_VALUE 0xA5 105 106 #define DSCR_CTRL_PREAMBLE 0xFF 107 #define DSCR_CTRL_EN_DSCR_DONE_INTR (1 << 8) 108 #define DSCR_CTRL_EN_DSCR_UPDATE (1 << 9) 109 #define DSCR_CTRL_IGNORE_DONE (1 << 10) 110 #define DSCR_CTRL_AXI_BURST_TYPE (1 << 11) 111 #define DSCR_CTRL_AXCACHE (0x0F << 12) 112 #define DSCR_CTRL_AXPROT (0x2 << 16) 113 #define DSCR_CTRL_DESCRIPTOR_MODE (1 << 18) 114 #define DSCR_CTRL_LAST_DESCRIPTOR (1 << 19) 115 #define DSCR_CTRL_ENABLE_CRC (1 << 20) 116 #define DSCR_CTRL_LAST_DESCRIPTOR_OF_FRAME (1 << 21) 117 118 /* 119 * Descriptor timestamp field. 120 */ 121 #define STATUS_DONE (1 << 31) 122 123 #define DPDMA_FRAG_MAX_SZ (4096) 124 125 enum DPDMABurstType { 126 DPDMA_INCR = 0, 127 DPDMA_FIXED = 1 128 }; 129 130 enum DPDMAMode { 131 DPDMA_CONTIGOUS = 0, 132 DPDMA_FRAGMENTED = 1 133 }; 134 135 struct DPDMADescriptor { 136 uint32_t control; 137 uint32_t descriptor_id; 138 /* transfer size in byte. */ 139 uint32_t xfer_size; 140 uint32_t line_size_stride; 141 uint32_t timestamp_lsb; 142 uint32_t timestamp_msb; 143 /* contains extension for both descriptor and source. */ 144 uint32_t address_extension; 145 uint32_t next_descriptor; 146 uint32_t source_address; 147 uint32_t address_extension_23; 148 uint32_t address_extension_45; 149 uint32_t source_address2; 150 uint32_t source_address3; 151 uint32_t source_address4; 152 uint32_t source_address5; 153 uint32_t crc; 154 }; 155 156 typedef enum DPDMABurstType DPDMABurstType; 157 typedef enum DPDMAMode DPDMAMode; 158 typedef struct DPDMADescriptor DPDMADescriptor; 159 160 static bool xlnx_dpdma_desc_is_last(DPDMADescriptor *desc) 161 { 162 return ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR) != 0); 163 } 164 165 static bool xlnx_dpdma_desc_is_last_of_frame(DPDMADescriptor *desc) 166 { 167 return ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR_OF_FRAME) != 0); 168 } 169 170 static uint64_t xlnx_dpdma_desc_get_source_address(DPDMADescriptor *desc, 171 uint8_t frag) 172 { 173 uint64_t addr = 0; 174 assert(frag < 5); 175 176 switch (frag) { 177 case 0: 178 addr = (uint64_t)desc->source_address 179 + (extract64(desc->address_extension, 16, 16) << 32); 180 break; 181 case 1: 182 addr = (uint64_t)desc->source_address2 183 + (extract64(desc->address_extension_23, 0, 16) << 32); 184 break; 185 case 2: 186 addr = (uint64_t)desc->source_address3 187 + (extract64(desc->address_extension_23, 16, 16) << 32); 188 break; 189 case 3: 190 addr = (uint64_t)desc->source_address4 191 + (extract64(desc->address_extension_45, 0, 16) << 32); 192 break; 193 case 4: 194 addr = (uint64_t)desc->source_address5 195 + (extract64(desc->address_extension_45, 16, 16) << 32); 196 break; 197 default: 198 addr = 0; 199 break; 200 } 201 202 return addr; 203 } 204 205 static uint32_t xlnx_dpdma_desc_get_transfer_size(DPDMADescriptor *desc) 206 { 207 return desc->xfer_size; 208 } 209 210 static uint32_t xlnx_dpdma_desc_get_line_size(DPDMADescriptor *desc) 211 { 212 return extract32(desc->line_size_stride, 0, 18); 213 } 214 215 static uint32_t xlnx_dpdma_desc_get_line_stride(DPDMADescriptor *desc) 216 { 217 return extract32(desc->line_size_stride, 18, 14) * 16; 218 } 219 220 static inline bool xlnx_dpdma_desc_crc_enabled(DPDMADescriptor *desc) 221 { 222 return (desc->control & DSCR_CTRL_ENABLE_CRC) != 0; 223 } 224 225 static inline bool xlnx_dpdma_desc_check_crc(DPDMADescriptor *desc) 226 { 227 uint32_t *p = (uint32_t *)desc; 228 uint32_t crc = 0; 229 uint8_t i; 230 231 /* 232 * CRC is calculated on the whole descriptor except the last 32bits word 233 * using 32bits addition. 234 */ 235 for (i = 0; i < 15; i++) { 236 crc += p[i]; 237 } 238 239 return crc == desc->crc; 240 } 241 242 static inline bool xlnx_dpdma_desc_completion_interrupt(DPDMADescriptor *desc) 243 { 244 return (desc->control & DSCR_CTRL_EN_DSCR_DONE_INTR) != 0; 245 } 246 247 static inline bool xlnx_dpdma_desc_is_valid(DPDMADescriptor *desc) 248 { 249 return (desc->control & DSCR_CTRL_PREAMBLE) == CONTROL_PREAMBLE_VALUE; 250 } 251 252 static inline bool xlnx_dpdma_desc_is_contiguous(DPDMADescriptor *desc) 253 { 254 return (desc->control & DSCR_CTRL_DESCRIPTOR_MODE) == 0; 255 } 256 257 static inline bool xlnx_dpdma_desc_update_enabled(DPDMADescriptor *desc) 258 { 259 return (desc->control & DSCR_CTRL_EN_DSCR_UPDATE) != 0; 260 } 261 262 static inline void xlnx_dpdma_desc_set_done(DPDMADescriptor *desc) 263 { 264 desc->timestamp_msb |= STATUS_DONE; 265 } 266 267 static inline bool xlnx_dpdma_desc_is_already_done(DPDMADescriptor *desc) 268 { 269 return (desc->timestamp_msb & STATUS_DONE) != 0; 270 } 271 272 static inline bool xlnx_dpdma_desc_ignore_done_bit(DPDMADescriptor *desc) 273 { 274 return (desc->control & DSCR_CTRL_IGNORE_DONE) != 0; 275 } 276 277 static const VMStateDescription vmstate_xlnx_dpdma = { 278 .name = TYPE_XLNX_DPDMA, 279 .version_id = 1, 280 .fields = (const VMStateField[]) { 281 VMSTATE_UINT32_ARRAY(registers, XlnxDPDMAState, 282 XLNX_DPDMA_REG_ARRAY_SIZE), 283 VMSTATE_BOOL_ARRAY(operation_finished, XlnxDPDMAState, 6), 284 VMSTATE_END_OF_LIST() 285 } 286 }; 287 288 static void xlnx_dpdma_update_irq(XlnxDPDMAState *s) 289 { 290 bool flags; 291 292 flags = ((s->registers[DPDMA_ISR] & (~s->registers[DPDMA_IMR])) 293 || (s->registers[DPDMA_EISR] & (~s->registers[DPDMA_EIMR]))); 294 qemu_set_irq(s->irq, flags); 295 } 296 297 static uint64_t xlnx_dpdma_descriptor_start_address(XlnxDPDMAState *s, 298 uint8_t channel) 299 { 300 return (s->registers[DPDMA_DSCR_STRT_ADDRE_CH(channel)] << 16) 301 + s->registers[DPDMA_DSCR_STRT_ADDR_CH(channel)]; 302 } 303 304 static uint64_t xlnx_dpdma_descriptor_next_address(XlnxDPDMAState *s, 305 uint8_t channel) 306 { 307 return ((uint64_t)s->registers[DPDMA_DSCR_NEXT_ADDRE_CH(channel)] << 32) 308 + s->registers[DPDMA_DSCR_NEXT_ADDR_CH(channel)]; 309 } 310 311 static bool xlnx_dpdma_is_channel_enabled(XlnxDPDMAState *s, 312 uint8_t channel) 313 { 314 return (s->registers[DPDMA_CNTL_CH(channel)] & DPDMA_CNTL_CH_EN) != 0; 315 } 316 317 static bool xlnx_dpdma_is_channel_paused(XlnxDPDMAState *s, 318 uint8_t channel) 319 { 320 return (s->registers[DPDMA_CNTL_CH(channel)] & DPDMA_CNTL_CH_PAUSED) != 0; 321 } 322 323 static inline bool xlnx_dpdma_is_channel_retriggered(XlnxDPDMAState *s, 324 uint8_t channel) 325 { 326 /* Clear the retriggered bit after reading it. */ 327 bool channel_is_retriggered = s->registers[DPDMA_GBL] 328 & DPDMA_GBL_RTRG_CH(channel); 329 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_RTRG_CH(channel); 330 return channel_is_retriggered; 331 } 332 333 static inline bool xlnx_dpdma_is_channel_triggered(XlnxDPDMAState *s, 334 uint8_t channel) 335 { 336 return s->registers[DPDMA_GBL] & DPDMA_GBL_TRG_CH(channel); 337 } 338 339 static void xlnx_dpdma_update_desc_info(XlnxDPDMAState *s, uint8_t channel, 340 DPDMADescriptor *desc) 341 { 342 s->registers[DPDMA_DSCR_NEXT_ADDRE_CH(channel)] = 343 extract32(desc->address_extension, 0, 16); 344 s->registers[DPDMA_DSCR_NEXT_ADDR_CH(channel)] = desc->next_descriptor; 345 s->registers[DPDMA_PYLD_CUR_ADDRE_CH(channel)] = 346 extract32(desc->address_extension, 16, 16); 347 s->registers[DPDMA_PYLD_CUR_ADDR_CH(channel)] = desc->source_address; 348 s->registers[DPDMA_VDO_CH(channel)] = 349 extract32(desc->line_size_stride, 18, 14) 350 + (extract32(desc->line_size_stride, 0, 18) 351 << 14); 352 s->registers[DPDMA_PYLD_SZ_CH(channel)] = desc->xfer_size; 353 s->registers[DPDMA_DSCR_ID_CH(channel)] = desc->descriptor_id; 354 355 /* Compute the status register with the descriptor information. */ 356 s->registers[DPDMA_STATUS_CH(channel)] = 357 extract32(desc->control, 0, 8) << 13; 358 if ((desc->control & DSCR_CTRL_EN_DSCR_DONE_INTR) != 0) { 359 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_EN_DSCR_INTR; 360 } 361 if ((desc->control & DSCR_CTRL_EN_DSCR_UPDATE) != 0) { 362 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_EN_DSCR_UP; 363 } 364 if ((desc->timestamp_msb & STATUS_DONE) != 0) { 365 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_DSCR_DONE; 366 } 367 if ((desc->control & DSCR_CTRL_IGNORE_DONE) != 0) { 368 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_IGNR_DONE; 369 } 370 if ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR_OF_FRAME) != 0) { 371 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_LDSCR_FRAME; 372 } 373 if ((desc->control & DSCR_CTRL_LAST_DESCRIPTOR) != 0) { 374 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_LAST_DSCR; 375 } 376 if ((desc->control & DSCR_CTRL_ENABLE_CRC) != 0) { 377 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_EN_CRC; 378 } 379 if ((desc->control & DSCR_CTRL_DESCRIPTOR_MODE) != 0) { 380 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_MODE; 381 } 382 if ((desc->control & DSCR_CTRL_AXI_BURST_TYPE) != 0) { 383 s->registers[DPDMA_STATUS_CH(channel)] |= DPDMA_STATUS_BURST_TYPE; 384 } 385 } 386 387 static void xlnx_dpdma_dump_descriptor(DPDMADescriptor *desc) 388 { 389 if (DEBUG_DPDMA) { 390 qemu_log("DUMP DESCRIPTOR:\n"); 391 qemu_hexdump(stdout, "", desc, sizeof(DPDMADescriptor)); 392 } 393 } 394 395 static uint64_t xlnx_dpdma_read(void *opaque, hwaddr offset, 396 unsigned size) 397 { 398 XlnxDPDMAState *s = XLNX_DPDMA(opaque); 399 400 DPRINTF("read @%" HWADDR_PRIx "\n", offset); 401 offset = offset >> 2; 402 403 switch (offset) { 404 /* 405 * Trying to read a write only register. 406 */ 407 case DPDMA_GBL: 408 return 0; 409 default: 410 assert(offset <= (0xFFC >> 2)); 411 return s->registers[offset]; 412 } 413 return 0; 414 } 415 416 static void xlnx_dpdma_write(void *opaque, hwaddr offset, 417 uint64_t value, unsigned size) 418 { 419 XlnxDPDMAState *s = XLNX_DPDMA(opaque); 420 421 DPRINTF("write @%" HWADDR_PRIx " = %" PRIx64 "\n", offset, value); 422 offset = offset >> 2; 423 424 switch (offset) { 425 case DPDMA_ISR: 426 s->registers[DPDMA_ISR] &= ~value; 427 xlnx_dpdma_update_irq(s); 428 break; 429 case DPDMA_IEN: 430 s->registers[DPDMA_IMR] &= ~value; 431 break; 432 case DPDMA_IDS: 433 s->registers[DPDMA_IMR] |= value; 434 break; 435 case DPDMA_EISR: 436 s->registers[DPDMA_EISR] &= ~value; 437 xlnx_dpdma_update_irq(s); 438 break; 439 case DPDMA_EIEN: 440 s->registers[DPDMA_EIMR] &= ~value; 441 break; 442 case DPDMA_EIDS: 443 s->registers[DPDMA_EIMR] |= value; 444 break; 445 case DPDMA_IMR: 446 case DPDMA_EIMR: 447 case DPDMA_DSCR_NEXT_ADDRE_CH(0): 448 case DPDMA_DSCR_NEXT_ADDRE_CH(1): 449 case DPDMA_DSCR_NEXT_ADDRE_CH(2): 450 case DPDMA_DSCR_NEXT_ADDRE_CH(3): 451 case DPDMA_DSCR_NEXT_ADDRE_CH(4): 452 case DPDMA_DSCR_NEXT_ADDRE_CH(5): 453 case DPDMA_DSCR_NEXT_ADDR_CH(0): 454 case DPDMA_DSCR_NEXT_ADDR_CH(1): 455 case DPDMA_DSCR_NEXT_ADDR_CH(2): 456 case DPDMA_DSCR_NEXT_ADDR_CH(3): 457 case DPDMA_DSCR_NEXT_ADDR_CH(4): 458 case DPDMA_DSCR_NEXT_ADDR_CH(5): 459 case DPDMA_PYLD_CUR_ADDRE_CH(0): 460 case DPDMA_PYLD_CUR_ADDRE_CH(1): 461 case DPDMA_PYLD_CUR_ADDRE_CH(2): 462 case DPDMA_PYLD_CUR_ADDRE_CH(3): 463 case DPDMA_PYLD_CUR_ADDRE_CH(4): 464 case DPDMA_PYLD_CUR_ADDRE_CH(5): 465 case DPDMA_PYLD_CUR_ADDR_CH(0): 466 case DPDMA_PYLD_CUR_ADDR_CH(1): 467 case DPDMA_PYLD_CUR_ADDR_CH(2): 468 case DPDMA_PYLD_CUR_ADDR_CH(3): 469 case DPDMA_PYLD_CUR_ADDR_CH(4): 470 case DPDMA_PYLD_CUR_ADDR_CH(5): 471 case DPDMA_STATUS_CH(0): 472 case DPDMA_STATUS_CH(1): 473 case DPDMA_STATUS_CH(2): 474 case DPDMA_STATUS_CH(3): 475 case DPDMA_STATUS_CH(4): 476 case DPDMA_STATUS_CH(5): 477 case DPDMA_VDO_CH(0): 478 case DPDMA_VDO_CH(1): 479 case DPDMA_VDO_CH(2): 480 case DPDMA_VDO_CH(3): 481 case DPDMA_VDO_CH(4): 482 case DPDMA_VDO_CH(5): 483 case DPDMA_PYLD_SZ_CH(0): 484 case DPDMA_PYLD_SZ_CH(1): 485 case DPDMA_PYLD_SZ_CH(2): 486 case DPDMA_PYLD_SZ_CH(3): 487 case DPDMA_PYLD_SZ_CH(4): 488 case DPDMA_PYLD_SZ_CH(5): 489 case DPDMA_DSCR_ID_CH(0): 490 case DPDMA_DSCR_ID_CH(1): 491 case DPDMA_DSCR_ID_CH(2): 492 case DPDMA_DSCR_ID_CH(3): 493 case DPDMA_DSCR_ID_CH(4): 494 case DPDMA_DSCR_ID_CH(5): 495 /* 496 * Trying to write to a read only register.. 497 */ 498 break; 499 case DPDMA_GBL: 500 /* 501 * This is a write only register so it's read as zero in the read 502 * callback. 503 * We store the value anyway so we can know if the channel is 504 * enabled. 505 */ 506 s->registers[offset] |= value & 0x00000FFF; 507 break; 508 case DPDMA_DSCR_STRT_ADDRE_CH(0): 509 case DPDMA_DSCR_STRT_ADDRE_CH(1): 510 case DPDMA_DSCR_STRT_ADDRE_CH(2): 511 case DPDMA_DSCR_STRT_ADDRE_CH(3): 512 case DPDMA_DSCR_STRT_ADDRE_CH(4): 513 case DPDMA_DSCR_STRT_ADDRE_CH(5): 514 value &= 0x0000FFFF; 515 s->registers[offset] = value; 516 break; 517 case DPDMA_CNTL_CH(0): 518 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(0); 519 value &= 0x3FFFFFFF; 520 s->registers[offset] = value; 521 break; 522 case DPDMA_CNTL_CH(1): 523 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(1); 524 value &= 0x3FFFFFFF; 525 s->registers[offset] = value; 526 break; 527 case DPDMA_CNTL_CH(2): 528 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(2); 529 value &= 0x3FFFFFFF; 530 s->registers[offset] = value; 531 break; 532 case DPDMA_CNTL_CH(3): 533 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(3); 534 value &= 0x3FFFFFFF; 535 s->registers[offset] = value; 536 break; 537 case DPDMA_CNTL_CH(4): 538 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(4); 539 value &= 0x3FFFFFFF; 540 s->registers[offset] = value; 541 break; 542 case DPDMA_CNTL_CH(5): 543 s->registers[DPDMA_GBL] &= ~DPDMA_GBL_TRG_CH(5); 544 value &= 0x3FFFFFFF; 545 s->registers[offset] = value; 546 break; 547 default: 548 assert(offset <= (0xFFC >> 2)); 549 s->registers[offset] = value; 550 break; 551 } 552 } 553 554 static const MemoryRegionOps dma_ops = { 555 .read = xlnx_dpdma_read, 556 .write = xlnx_dpdma_write, 557 .endianness = DEVICE_NATIVE_ENDIAN, 558 .valid = { 559 .min_access_size = 4, 560 .max_access_size = 4, 561 }, 562 .impl = { 563 .min_access_size = 4, 564 .max_access_size = 4, 565 }, 566 }; 567 568 static void xlnx_dpdma_init(Object *obj) 569 { 570 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 571 XlnxDPDMAState *s = XLNX_DPDMA(obj); 572 573 memory_region_init_io(&s->iomem, obj, &dma_ops, s, 574 TYPE_XLNX_DPDMA, 0x1000); 575 sysbus_init_mmio(sbd, &s->iomem); 576 sysbus_init_irq(sbd, &s->irq); 577 } 578 579 static void xlnx_dpdma_reset(DeviceState *dev) 580 { 581 XlnxDPDMAState *s = XLNX_DPDMA(dev); 582 size_t i; 583 584 memset(s->registers, 0, sizeof(s->registers)); 585 s->registers[DPDMA_IMR] = 0x07FFFFFF; 586 s->registers[DPDMA_EIMR] = 0xFFFFFFFF; 587 s->registers[DPDMA_ALC0_MIN] = 0x0000FFFF; 588 s->registers[DPDMA_ALC1_MIN] = 0x0000FFFF; 589 590 for (i = 0; i < 6; i++) { 591 s->data[i] = NULL; 592 s->operation_finished[i] = true; 593 } 594 } 595 596 static void xlnx_dpdma_class_init(ObjectClass *oc, void *data) 597 { 598 DeviceClass *dc = DEVICE_CLASS(oc); 599 600 dc->vmsd = &vmstate_xlnx_dpdma; 601 dc->reset = xlnx_dpdma_reset; 602 } 603 604 static const TypeInfo xlnx_dpdma_info = { 605 .name = TYPE_XLNX_DPDMA, 606 .parent = TYPE_SYS_BUS_DEVICE, 607 .instance_size = sizeof(XlnxDPDMAState), 608 .instance_init = xlnx_dpdma_init, 609 .class_init = xlnx_dpdma_class_init, 610 }; 611 612 static void xlnx_dpdma_register_types(void) 613 { 614 type_register_static(&xlnx_dpdma_info); 615 } 616 617 static MemTxResult xlnx_dpdma_read_descriptor(XlnxDPDMAState *s, 618 uint64_t desc_addr, 619 DPDMADescriptor *desc) 620 { 621 MemTxResult res = dma_memory_read(&address_space_memory, desc_addr, 622 &desc, sizeof(DPDMADescriptor), 623 MEMTXATTRS_UNSPECIFIED); 624 if (res) { 625 return res; 626 } 627 628 /* Convert from LE into host endianness. */ 629 desc->control = le32_to_cpu(desc->control); 630 desc->descriptor_id = le32_to_cpu(desc->descriptor_id); 631 desc->xfer_size = le32_to_cpu(desc->xfer_size); 632 desc->line_size_stride = le32_to_cpu(desc->line_size_stride); 633 desc->timestamp_lsb = le32_to_cpu(desc->timestamp_lsb); 634 desc->timestamp_msb = le32_to_cpu(desc->timestamp_msb); 635 desc->address_extension = le32_to_cpu(desc->address_extension); 636 desc->next_descriptor = le32_to_cpu(desc->next_descriptor); 637 desc->source_address = le32_to_cpu(desc->source_address); 638 desc->address_extension_23 = le32_to_cpu(desc->address_extension_23); 639 desc->address_extension_45 = le32_to_cpu(desc->address_extension_45); 640 desc->source_address2 = le32_to_cpu(desc->source_address2); 641 desc->source_address3 = le32_to_cpu(desc->source_address3); 642 desc->source_address4 = le32_to_cpu(desc->source_address4); 643 desc->source_address5 = le32_to_cpu(desc->source_address5); 644 desc->crc = le32_to_cpu(desc->crc); 645 646 return res; 647 } 648 649 static MemTxResult xlnx_dpdma_write_descriptor(uint64_t desc_addr, 650 DPDMADescriptor *desc) 651 { 652 DPDMADescriptor tmp_desc = *desc; 653 654 /* Convert from host endianness into LE. */ 655 tmp_desc.control = cpu_to_le32(tmp_desc.control); 656 tmp_desc.descriptor_id = cpu_to_le32(tmp_desc.descriptor_id); 657 tmp_desc.xfer_size = cpu_to_le32(tmp_desc.xfer_size); 658 tmp_desc.line_size_stride = cpu_to_le32(tmp_desc.line_size_stride); 659 tmp_desc.timestamp_lsb = cpu_to_le32(tmp_desc.timestamp_lsb); 660 tmp_desc.timestamp_msb = cpu_to_le32(tmp_desc.timestamp_msb); 661 tmp_desc.address_extension = cpu_to_le32(tmp_desc.address_extension); 662 tmp_desc.next_descriptor = cpu_to_le32(tmp_desc.next_descriptor); 663 tmp_desc.source_address = cpu_to_le32(tmp_desc.source_address); 664 tmp_desc.address_extension_23 = cpu_to_le32(tmp_desc.address_extension_23); 665 tmp_desc.address_extension_45 = cpu_to_le32(tmp_desc.address_extension_45); 666 tmp_desc.source_address2 = cpu_to_le32(tmp_desc.source_address2); 667 tmp_desc.source_address3 = cpu_to_le32(tmp_desc.source_address3); 668 tmp_desc.source_address4 = cpu_to_le32(tmp_desc.source_address4); 669 tmp_desc.source_address5 = cpu_to_le32(tmp_desc.source_address5); 670 tmp_desc.crc = cpu_to_le32(tmp_desc.crc); 671 672 return dma_memory_write(&address_space_memory, desc_addr, &tmp_desc, 673 sizeof(DPDMADescriptor), MEMTXATTRS_UNSPECIFIED); 674 } 675 676 size_t xlnx_dpdma_start_operation(XlnxDPDMAState *s, uint8_t channel, 677 bool one_desc) 678 { 679 uint64_t desc_addr; 680 uint64_t source_addr[6]; 681 DPDMADescriptor desc; 682 bool done = false; 683 size_t ptr = 0; 684 685 assert(channel <= 5); 686 687 DPRINTF("start dpdma channel 0x%" PRIX8 "\n", channel); 688 689 if (!xlnx_dpdma_is_channel_triggered(s, channel)) { 690 DPRINTF("Channel isn't triggered..\n"); 691 return 0; 692 } 693 694 if (!xlnx_dpdma_is_channel_enabled(s, channel)) { 695 DPRINTF("Channel isn't enabled..\n"); 696 return 0; 697 } 698 699 if (xlnx_dpdma_is_channel_paused(s, channel)) { 700 DPRINTF("Channel is paused..\n"); 701 return 0; 702 } 703 704 do { 705 if ((s->operation_finished[channel]) 706 || xlnx_dpdma_is_channel_retriggered(s, channel)) { 707 desc_addr = xlnx_dpdma_descriptor_start_address(s, channel); 708 s->operation_finished[channel] = false; 709 } else { 710 desc_addr = xlnx_dpdma_descriptor_next_address(s, channel); 711 } 712 713 if (xlnx_dpdma_read_descriptor(s, desc_addr, &desc)) { 714 s->registers[DPDMA_EISR] |= ((1 << 1) << channel); 715 xlnx_dpdma_update_irq(s); 716 s->operation_finished[channel] = true; 717 DPRINTF("Can't get the descriptor.\n"); 718 break; 719 } 720 721 xlnx_dpdma_update_desc_info(s, channel, &desc); 722 723 #ifdef DEBUG_DPDMA 724 xlnx_dpdma_dump_descriptor(&desc); 725 #endif 726 727 DPRINTF("location of the descriptor: %" PRIx64 "\n", desc_addr); 728 if (!xlnx_dpdma_desc_is_valid(&desc)) { 729 s->registers[DPDMA_EISR] |= ((1 << 7) << channel); 730 xlnx_dpdma_update_irq(s); 731 s->operation_finished[channel] = true; 732 DPRINTF("Invalid descriptor..\n"); 733 break; 734 } 735 736 if (xlnx_dpdma_desc_crc_enabled(&desc) 737 && !xlnx_dpdma_desc_check_crc(&desc)) { 738 s->registers[DPDMA_EISR] |= ((1 << 13) << channel); 739 xlnx_dpdma_update_irq(s); 740 s->operation_finished[channel] = true; 741 DPRINTF("Bad CRC for descriptor..\n"); 742 break; 743 } 744 745 if (xlnx_dpdma_desc_is_already_done(&desc) 746 && !xlnx_dpdma_desc_ignore_done_bit(&desc)) { 747 /* We are trying to process an already processed descriptor. */ 748 s->registers[DPDMA_EISR] |= ((1 << 25) << channel); 749 xlnx_dpdma_update_irq(s); 750 s->operation_finished[channel] = true; 751 DPRINTF("Already processed descriptor..\n"); 752 break; 753 } 754 755 done = xlnx_dpdma_desc_is_last(&desc) 756 || xlnx_dpdma_desc_is_last_of_frame(&desc); 757 758 s->operation_finished[channel] = done; 759 if (s->data[channel]) { 760 int64_t transfer_len = xlnx_dpdma_desc_get_transfer_size(&desc); 761 uint32_t line_size = xlnx_dpdma_desc_get_line_size(&desc); 762 uint32_t line_stride = xlnx_dpdma_desc_get_line_stride(&desc); 763 if (xlnx_dpdma_desc_is_contiguous(&desc)) { 764 source_addr[0] = xlnx_dpdma_desc_get_source_address(&desc, 0); 765 while (transfer_len != 0) { 766 if (dma_memory_read(&address_space_memory, 767 source_addr[0], 768 &s->data[channel][ptr], 769 line_size, 770 MEMTXATTRS_UNSPECIFIED)) { 771 s->registers[DPDMA_ISR] |= ((1 << 12) << channel); 772 xlnx_dpdma_update_irq(s); 773 DPRINTF("Can't get data.\n"); 774 break; 775 } 776 ptr += line_size; 777 transfer_len -= line_size; 778 source_addr[0] += line_stride; 779 } 780 } else { 781 DPRINTF("Source address:\n"); 782 int frag; 783 for (frag = 0; frag < 5; frag++) { 784 source_addr[frag] = 785 xlnx_dpdma_desc_get_source_address(&desc, frag); 786 DPRINTF("Fragment %u: %" PRIx64 "\n", frag + 1, 787 source_addr[frag]); 788 } 789 790 frag = 0; 791 while ((transfer_len < 0) && (frag < 5)) { 792 size_t fragment_len = DPDMA_FRAG_MAX_SZ 793 - (source_addr[frag] % DPDMA_FRAG_MAX_SZ); 794 795 if (dma_memory_read(&address_space_memory, 796 source_addr[frag], 797 &(s->data[channel][ptr]), 798 fragment_len, 799 MEMTXATTRS_UNSPECIFIED)) { 800 s->registers[DPDMA_ISR] |= ((1 << 12) << channel); 801 xlnx_dpdma_update_irq(s); 802 DPRINTF("Can't get data.\n"); 803 break; 804 } 805 ptr += fragment_len; 806 transfer_len -= fragment_len; 807 frag += 1; 808 } 809 } 810 } 811 812 if (xlnx_dpdma_desc_update_enabled(&desc)) { 813 /* The descriptor need to be updated when it's completed. */ 814 DPRINTF("update the descriptor with the done flag set.\n"); 815 xlnx_dpdma_desc_set_done(&desc); 816 if (xlnx_dpdma_write_descriptor(desc_addr, &desc)) { 817 DPRINTF("Can't write the descriptor.\n"); 818 /* TODO: check hardware behaviour for memory write failure */ 819 } 820 } 821 822 if (xlnx_dpdma_desc_completion_interrupt(&desc)) { 823 DPRINTF("completion interrupt enabled!\n"); 824 s->registers[DPDMA_ISR] |= (1 << channel); 825 xlnx_dpdma_update_irq(s); 826 } 827 828 } while (!done && !one_desc); 829 830 return ptr; 831 } 832 833 void xlnx_dpdma_set_host_data_location(XlnxDPDMAState *s, uint8_t channel, 834 void *p) 835 { 836 if (!s) { 837 qemu_log_mask(LOG_UNIMP, "DPDMA client not attached to valid DPDMA" 838 " instance\n"); 839 return; 840 } 841 842 assert(channel <= 5); 843 s->data[channel] = p; 844 } 845 846 void xlnx_dpdma_trigger_vsync_irq(XlnxDPDMAState *s) 847 { 848 s->registers[DPDMA_ISR] |= (1 << 27); 849 xlnx_dpdma_update_irq(s); 850 } 851 852 type_init(xlnx_dpdma_register_types) 853