1 /* 2 * QEMU Sparc32 DMA controller emulation 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Modifications: 7 * 2010-Feb-14 Artyom Tarasenko : reworked irq generation 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a copy 10 * of this software and associated documentation files (the "Software"), to deal 11 * in the Software without restriction, including without limitation the rights 12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 13 * copies of the Software, and to permit persons to whom the Software is 14 * furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice shall be included in 17 * all copies or substantial portions of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 25 * THE SOFTWARE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "hw/irq.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/sparc/sparc32_dma.h" 32 #include "hw/sparc/sun4m_iommu.h" 33 #include "hw/sysbus.h" 34 #include "migration/vmstate.h" 35 #include "sysemu/dma.h" 36 #include "qapi/error.h" 37 #include "qemu/module.h" 38 #include "trace.h" 39 40 /* 41 * This is the DMA controller part of chip STP2000 (Master I/O), also 42 * produced as NCR89C100. See 43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt 44 * and 45 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt 46 */ 47 48 #define DMA_SIZE (4 * sizeof(uint32_t)) 49 /* We need the mask, because one instance of the device is not page 50 aligned (ledma, start address 0x0010) */ 51 #define DMA_MASK (DMA_SIZE - 1) 52 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */ 53 #define DMA_ETH_SIZE (8 * sizeof(uint32_t)) 54 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1) 55 56 #define DMA_VER 0xa0000000 57 #define DMA_INTR 1 58 #define DMA_INTREN 0x10 59 #define DMA_WRITE_MEM 0x100 60 #define DMA_EN 0x200 61 #define DMA_LOADED 0x04000000 62 #define DMA_DRAIN_FIFO 0x40 63 #define DMA_RESET 0x80 64 65 /* XXX SCSI and ethernet should have different read-only bit masks */ 66 #define DMA_CSR_RO_MASK 0xfe000007 67 68 enum { 69 GPIO_RESET = 0, 70 GPIO_DMA, 71 }; 72 73 /* Note: on sparc, the lance 16 bit bus is swapped */ 74 void ledma_memory_read(void *opaque, hwaddr addr, 75 uint8_t *buf, int len, int do_bswap) 76 { 77 DMADeviceState *s = opaque; 78 IOMMUState *is = (IOMMUState *)s->iommu; 79 int i; 80 81 addr |= s->dmaregs[3]; 82 trace_ledma_memory_read(addr, len); 83 if (do_bswap) { 84 dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED); 85 } else { 86 addr &= ~1; 87 len &= ~1; 88 dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED); 89 for(i = 0; i < len; i += 2) { 90 bswap16s((uint16_t *)(buf + i)); 91 } 92 } 93 } 94 95 void ledma_memory_write(void *opaque, hwaddr addr, 96 uint8_t *buf, int len, int do_bswap) 97 { 98 DMADeviceState *s = opaque; 99 IOMMUState *is = (IOMMUState *)s->iommu; 100 int l, i; 101 uint16_t tmp_buf[32]; 102 103 addr |= s->dmaregs[3]; 104 trace_ledma_memory_write(addr, len); 105 if (do_bswap) { 106 dma_memory_write(&is->iommu_as, addr, buf, len, 107 MEMTXATTRS_UNSPECIFIED); 108 } else { 109 addr &= ~1; 110 len &= ~1; 111 while (len > 0) { 112 l = len; 113 if (l > sizeof(tmp_buf)) 114 l = sizeof(tmp_buf); 115 for(i = 0; i < l; i += 2) { 116 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i)); 117 } 118 dma_memory_write(&is->iommu_as, addr, tmp_buf, l, 119 MEMTXATTRS_UNSPECIFIED); 120 len -= l; 121 buf += l; 122 addr += l; 123 } 124 } 125 } 126 127 static void dma_set_irq(void *opaque, int irq, int level) 128 { 129 DMADeviceState *s = opaque; 130 if (level) { 131 s->dmaregs[0] |= DMA_INTR; 132 if (s->dmaregs[0] & DMA_INTREN) { 133 trace_sparc32_dma_set_irq_raise(); 134 qemu_irq_raise(s->irq); 135 } 136 } else { 137 if (s->dmaregs[0] & DMA_INTR) { 138 s->dmaregs[0] &= ~DMA_INTR; 139 if (s->dmaregs[0] & DMA_INTREN) { 140 trace_sparc32_dma_set_irq_lower(); 141 qemu_irq_lower(s->irq); 142 } 143 } 144 } 145 } 146 147 void espdma_memory_read(void *opaque, uint8_t *buf, int len) 148 { 149 DMADeviceState *s = opaque; 150 IOMMUState *is = (IOMMUState *)s->iommu; 151 152 trace_espdma_memory_read(s->dmaregs[1], len); 153 dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len, 154 MEMTXATTRS_UNSPECIFIED); 155 s->dmaregs[1] += len; 156 } 157 158 void espdma_memory_write(void *opaque, uint8_t *buf, int len) 159 { 160 DMADeviceState *s = opaque; 161 IOMMUState *is = (IOMMUState *)s->iommu; 162 163 trace_espdma_memory_write(s->dmaregs[1], len); 164 dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len, 165 MEMTXATTRS_UNSPECIFIED); 166 s->dmaregs[1] += len; 167 } 168 169 static uint64_t dma_mem_read(void *opaque, hwaddr addr, 170 unsigned size) 171 { 172 DMADeviceState *s = opaque; 173 uint32_t saddr; 174 175 saddr = (addr & DMA_MASK) >> 2; 176 trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]); 177 return s->dmaregs[saddr]; 178 } 179 180 static void dma_mem_write(void *opaque, hwaddr addr, 181 uint64_t val, unsigned size) 182 { 183 DMADeviceState *s = opaque; 184 uint32_t saddr; 185 186 saddr = (addr & DMA_MASK) >> 2; 187 trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val); 188 switch (saddr) { 189 case 0: 190 if (val & DMA_INTREN) { 191 if (s->dmaregs[0] & DMA_INTR) { 192 trace_sparc32_dma_set_irq_raise(); 193 qemu_irq_raise(s->irq); 194 } 195 } else { 196 if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) { 197 trace_sparc32_dma_set_irq_lower(); 198 qemu_irq_lower(s->irq); 199 } 200 } 201 if (val & DMA_RESET) { 202 qemu_irq_raise(s->gpio[GPIO_RESET]); 203 qemu_irq_lower(s->gpio[GPIO_RESET]); 204 } else if (val & DMA_DRAIN_FIFO) { 205 val &= ~DMA_DRAIN_FIFO; 206 } else if (val == 0) 207 val = DMA_DRAIN_FIFO; 208 209 if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) { 210 trace_sparc32_dma_enable_raise(); 211 qemu_irq_raise(s->gpio[GPIO_DMA]); 212 } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) { 213 trace_sparc32_dma_enable_lower(); 214 qemu_irq_lower(s->gpio[GPIO_DMA]); 215 } 216 217 val &= ~DMA_CSR_RO_MASK; 218 val |= DMA_VER; 219 s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val; 220 break; 221 case 1: 222 s->dmaregs[0] |= DMA_LOADED; 223 /* fall through */ 224 default: 225 s->dmaregs[saddr] = val; 226 break; 227 } 228 } 229 230 static const MemoryRegionOps dma_mem_ops = { 231 .read = dma_mem_read, 232 .write = dma_mem_write, 233 .endianness = DEVICE_NATIVE_ENDIAN, 234 .valid = { 235 .min_access_size = 4, 236 .max_access_size = 4, 237 }, 238 }; 239 240 static void sparc32_dma_device_reset(DeviceState *d) 241 { 242 DMADeviceState *s = SPARC32_DMA_DEVICE(d); 243 244 memset(s->dmaregs, 0, DMA_SIZE); 245 s->dmaregs[0] = DMA_VER; 246 } 247 248 static const VMStateDescription vmstate_sparc32_dma_device = { 249 .name ="sparc32_dma", 250 .version_id = 2, 251 .minimum_version_id = 2, 252 .fields = (VMStateField[]) { 253 VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS), 254 VMSTATE_END_OF_LIST() 255 } 256 }; 257 258 static void sparc32_dma_device_init(Object *obj) 259 { 260 DeviceState *dev = DEVICE(obj); 261 DMADeviceState *s = SPARC32_DMA_DEVICE(obj); 262 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 263 264 sysbus_init_irq(sbd, &s->irq); 265 266 sysbus_init_mmio(sbd, &s->iomem); 267 268 object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU, 269 (Object **) &s->iommu, 270 qdev_prop_allow_set_link_before_realize, 271 0); 272 273 qdev_init_gpio_in(dev, dma_set_irq, 1); 274 qdev_init_gpio_out(dev, s->gpio, 2); 275 } 276 277 static void sparc32_dma_device_class_init(ObjectClass *klass, void *data) 278 { 279 DeviceClass *dc = DEVICE_CLASS(klass); 280 281 dc->reset = sparc32_dma_device_reset; 282 dc->vmsd = &vmstate_sparc32_dma_device; 283 } 284 285 static const TypeInfo sparc32_dma_device_info = { 286 .name = TYPE_SPARC32_DMA_DEVICE, 287 .parent = TYPE_SYS_BUS_DEVICE, 288 .abstract = true, 289 .instance_size = sizeof(DMADeviceState), 290 .instance_init = sparc32_dma_device_init, 291 .class_init = sparc32_dma_device_class_init, 292 }; 293 294 static void sparc32_espdma_device_init(Object *obj) 295 { 296 DMADeviceState *s = SPARC32_DMA_DEVICE(obj); 297 ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj); 298 299 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s, 300 "espdma-mmio", DMA_SIZE); 301 302 object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP); 303 } 304 305 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp) 306 { 307 ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev); 308 SysBusESPState *sysbus = SYSBUS_ESP(&es->esp); 309 ESPState *esp = &sysbus->esp; 310 311 esp->dma_memory_read = espdma_memory_read; 312 esp->dma_memory_write = espdma_memory_write; 313 esp->dma_opaque = SPARC32_DMA_DEVICE(dev); 314 sysbus->it_shift = 2; 315 esp->dma_enabled = 1; 316 sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal); 317 } 318 319 static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data) 320 { 321 DeviceClass *dc = DEVICE_CLASS(klass); 322 323 dc->realize = sparc32_espdma_device_realize; 324 } 325 326 static const TypeInfo sparc32_espdma_device_info = { 327 .name = TYPE_SPARC32_ESPDMA_DEVICE, 328 .parent = TYPE_SPARC32_DMA_DEVICE, 329 .instance_size = sizeof(ESPDMADeviceState), 330 .instance_init = sparc32_espdma_device_init, 331 .class_init = sparc32_espdma_device_class_init, 332 }; 333 334 static void sparc32_ledma_device_init(Object *obj) 335 { 336 DMADeviceState *s = SPARC32_DMA_DEVICE(obj); 337 LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj); 338 339 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s, 340 "ledma-mmio", DMA_SIZE); 341 342 object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE); 343 } 344 345 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp) 346 { 347 LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev); 348 SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance); 349 350 object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort); 351 sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal); 352 } 353 354 static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data) 355 { 356 DeviceClass *dc = DEVICE_CLASS(klass); 357 358 dc->realize = sparc32_ledma_device_realize; 359 } 360 361 static const TypeInfo sparc32_ledma_device_info = { 362 .name = TYPE_SPARC32_LEDMA_DEVICE, 363 .parent = TYPE_SPARC32_DMA_DEVICE, 364 .instance_size = sizeof(LEDMADeviceState), 365 .instance_init = sparc32_ledma_device_init, 366 .class_init = sparc32_ledma_device_class_init, 367 }; 368 369 static void sparc32_dma_realize(DeviceState *dev, Error **errp) 370 { 371 SPARC32DMAState *s = SPARC32_DMA(dev); 372 DeviceState *espdma, *esp, *ledma, *lance; 373 SysBusDevice *sbd; 374 Object *iommu; 375 376 iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL); 377 if (!iommu) { 378 error_setg(errp, "unable to locate sun4m IOMMU device"); 379 return; 380 } 381 382 espdma = DEVICE(&s->espdma); 383 object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort); 384 sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal); 385 386 esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp")); 387 sbd = SYS_BUS_DEVICE(esp); 388 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0)); 389 qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0)); 390 qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1)); 391 392 sbd = SYS_BUS_DEVICE(espdma); 393 memory_region_add_subregion(&s->dmamem, 0x0, 394 sysbus_mmio_get_region(sbd, 0)); 395 396 ledma = DEVICE(&s->ledma); 397 object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort); 398 sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal); 399 400 lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance")); 401 sbd = SYS_BUS_DEVICE(lance); 402 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0)); 403 qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0)); 404 405 sbd = SYS_BUS_DEVICE(ledma); 406 memory_region_add_subregion(&s->dmamem, 0x10, 407 sysbus_mmio_get_region(sbd, 0)); 408 409 /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */ 410 memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias", 411 sysbus_mmio_get_region(sbd, 0), 0x4, 0x4); 412 memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias); 413 } 414 415 static void sparc32_dma_init(Object *obj) 416 { 417 SPARC32DMAState *s = SPARC32_DMA(obj); 418 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 419 420 memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE); 421 sysbus_init_mmio(sbd, &s->dmamem); 422 423 object_initialize_child(obj, "espdma", &s->espdma, 424 TYPE_SPARC32_ESPDMA_DEVICE); 425 object_initialize_child(obj, "ledma", &s->ledma, 426 TYPE_SPARC32_LEDMA_DEVICE); 427 } 428 429 static void sparc32_dma_class_init(ObjectClass *klass, void *data) 430 { 431 DeviceClass *dc = DEVICE_CLASS(klass); 432 433 dc->realize = sparc32_dma_realize; 434 } 435 436 static const TypeInfo sparc32_dma_info = { 437 .name = TYPE_SPARC32_DMA, 438 .parent = TYPE_SYS_BUS_DEVICE, 439 .instance_size = sizeof(SPARC32DMAState), 440 .instance_init = sparc32_dma_init, 441 .class_init = sparc32_dma_class_init, 442 }; 443 444 445 static void sparc32_dma_register_types(void) 446 { 447 type_register_static(&sparc32_dma_device_info); 448 type_register_static(&sparc32_espdma_device_info); 449 type_register_static(&sparc32_ledma_device_info); 450 type_register_static(&sparc32_dma_info); 451 } 452 453 type_init(sparc32_dma_register_types) 454