xref: /openbmc/qemu/hw/dma/sparc32_dma.c (revision effd60c8)
1 /*
2  * QEMU Sparc32 DMA controller emulation
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Modifications:
7  *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/irq.h"
30 #include "hw/qdev-properties.h"
31 #include "hw/sparc/sparc32_dma.h"
32 #include "hw/sparc/sun4m_iommu.h"
33 #include "hw/sysbus.h"
34 #include "migration/vmstate.h"
35 #include "sysemu/dma.h"
36 #include "qapi/error.h"
37 #include "qemu/module.h"
38 #include "trace.h"
39 
40 /*
41  * This is the DMA controller part of chip STP2000 (Master I/O), also
42  * produced as NCR89C100. See
43  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
44  * and
45  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
46  */
47 
48 #define DMA_SIZE (4 * sizeof(uint32_t))
49 /* We need the mask, because one instance of the device is not page
50    aligned (ledma, start address 0x0010) */
51 #define DMA_MASK (DMA_SIZE - 1)
52 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
53 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
54 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
55 
56 #define DMA_VER 0xa0000000
57 #define DMA_INTR 1
58 #define DMA_INTREN 0x10
59 #define DMA_WRITE_MEM 0x100
60 #define DMA_EN 0x200
61 #define DMA_LOADED 0x04000000
62 #define DMA_DRAIN_FIFO 0x40
63 #define DMA_RESET 0x80
64 
65 /* XXX SCSI and ethernet should have different read-only bit masks */
66 #define DMA_CSR_RO_MASK 0xfe000007
67 
68 enum {
69     GPIO_RESET = 0,
70     GPIO_DMA,
71 };
72 
73 /* Note: on sparc, the lance 16 bit bus is swapped */
74 void ledma_memory_read(void *opaque, hwaddr addr,
75                        uint8_t *buf, int len, int do_bswap)
76 {
77     DMADeviceState *s = opaque;
78     IOMMUState *is = (IOMMUState *)s->iommu;
79     int i;
80 
81     addr |= s->dmaregs[3];
82     trace_ledma_memory_read(addr, len);
83     if (do_bswap) {
84         dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
85     } else {
86         addr &= ~1;
87         len &= ~1;
88         dma_memory_read(&is->iommu_as, addr, buf, len, MEMTXATTRS_UNSPECIFIED);
89         for(i = 0; i < len; i += 2) {
90             bswap16s((uint16_t *)(buf + i));
91         }
92     }
93 }
94 
95 void ledma_memory_write(void *opaque, hwaddr addr,
96                         uint8_t *buf, int len, int do_bswap)
97 {
98     DMADeviceState *s = opaque;
99     IOMMUState *is = (IOMMUState *)s->iommu;
100     int l, i;
101     uint16_t tmp_buf[32];
102 
103     addr |= s->dmaregs[3];
104     trace_ledma_memory_write(addr, len);
105     if (do_bswap) {
106         dma_memory_write(&is->iommu_as, addr, buf, len,
107                          MEMTXATTRS_UNSPECIFIED);
108     } else {
109         addr &= ~1;
110         len &= ~1;
111         while (len > 0) {
112             l = len;
113             if (l > sizeof(tmp_buf))
114                 l = sizeof(tmp_buf);
115             for(i = 0; i < l; i += 2) {
116                 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
117             }
118             dma_memory_write(&is->iommu_as, addr, tmp_buf, l,
119                              MEMTXATTRS_UNSPECIFIED);
120             len -= l;
121             buf += l;
122             addr += l;
123         }
124     }
125 }
126 
127 static void dma_set_irq(void *opaque, int irq, int level)
128 {
129     DMADeviceState *s = opaque;
130     if (level) {
131         s->dmaregs[0] |= DMA_INTR;
132         if (s->dmaregs[0] & DMA_INTREN) {
133             trace_sparc32_dma_set_irq_raise();
134             qemu_irq_raise(s->irq);
135         }
136     } else {
137         if (s->dmaregs[0] & DMA_INTR) {
138             s->dmaregs[0] &= ~DMA_INTR;
139             if (s->dmaregs[0] & DMA_INTREN) {
140                 trace_sparc32_dma_set_irq_lower();
141                 qemu_irq_lower(s->irq);
142             }
143         }
144     }
145 }
146 
147 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
148 {
149     DMADeviceState *s = opaque;
150     IOMMUState *is = (IOMMUState *)s->iommu;
151 
152     trace_espdma_memory_read(s->dmaregs[1], len);
153     dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len,
154                     MEMTXATTRS_UNSPECIFIED);
155     s->dmaregs[1] += len;
156 }
157 
158 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
159 {
160     DMADeviceState *s = opaque;
161     IOMMUState *is = (IOMMUState *)s->iommu;
162 
163     trace_espdma_memory_write(s->dmaregs[1], len);
164     dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len,
165                      MEMTXATTRS_UNSPECIFIED);
166     s->dmaregs[1] += len;
167 }
168 
169 static uint64_t dma_mem_read(void *opaque, hwaddr addr,
170                              unsigned size)
171 {
172     DMADeviceState *s = opaque;
173     uint32_t saddr;
174 
175     saddr = (addr & DMA_MASK) >> 2;
176     trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
177     return s->dmaregs[saddr];
178 }
179 
180 static void dma_mem_write(void *opaque, hwaddr addr,
181                           uint64_t val, unsigned size)
182 {
183     DMADeviceState *s = opaque;
184     uint32_t saddr;
185 
186     saddr = (addr & DMA_MASK) >> 2;
187     trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
188     switch (saddr) {
189     case 0:
190         if (val & DMA_INTREN) {
191             if (s->dmaregs[0] & DMA_INTR) {
192                 trace_sparc32_dma_set_irq_raise();
193                 qemu_irq_raise(s->irq);
194             }
195         } else {
196             if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
197                 trace_sparc32_dma_set_irq_lower();
198                 qemu_irq_lower(s->irq);
199             }
200         }
201         if (val & DMA_RESET) {
202             qemu_irq_raise(s->gpio[GPIO_RESET]);
203             qemu_irq_lower(s->gpio[GPIO_RESET]);
204         } else if (val & DMA_DRAIN_FIFO) {
205             val &= ~DMA_DRAIN_FIFO;
206         } else if (val == 0)
207             val = DMA_DRAIN_FIFO;
208 
209         if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
210             trace_sparc32_dma_enable_raise();
211             qemu_irq_raise(s->gpio[GPIO_DMA]);
212         } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
213             trace_sparc32_dma_enable_lower();
214             qemu_irq_lower(s->gpio[GPIO_DMA]);
215         }
216 
217         val &= ~DMA_CSR_RO_MASK;
218         val |= DMA_VER;
219         s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
220         break;
221     case 1:
222         s->dmaregs[0] |= DMA_LOADED;
223         /* fall through */
224     default:
225         s->dmaregs[saddr] = val;
226         break;
227     }
228 }
229 
230 static const MemoryRegionOps dma_mem_ops = {
231     .read = dma_mem_read,
232     .write = dma_mem_write,
233     .endianness = DEVICE_NATIVE_ENDIAN,
234     .valid = {
235         .min_access_size = 4,
236         .max_access_size = 4,
237     },
238 };
239 
240 static void sparc32_dma_device_reset(DeviceState *d)
241 {
242     DMADeviceState *s = SPARC32_DMA_DEVICE(d);
243 
244     memset(s->dmaregs, 0, DMA_SIZE);
245     s->dmaregs[0] = DMA_VER;
246 }
247 
248 static const VMStateDescription vmstate_sparc32_dma_device = {
249     .name ="sparc32_dma",
250     .version_id = 2,
251     .minimum_version_id = 2,
252     .fields = (const VMStateField[]) {
253         VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
254         VMSTATE_END_OF_LIST()
255     }
256 };
257 
258 static void sparc32_dma_device_init(Object *obj)
259 {
260     DeviceState *dev = DEVICE(obj);
261     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
262     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
263 
264     sysbus_init_irq(sbd, &s->irq);
265 
266     sysbus_init_mmio(sbd, &s->iomem);
267 
268     object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
269                              (Object **) &s->iommu,
270                              qdev_prop_allow_set_link_before_realize,
271                              0);
272 
273     qdev_init_gpio_in(dev, dma_set_irq, 1);
274     qdev_init_gpio_out(dev, s->gpio, 2);
275 }
276 
277 static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
278 {
279     DeviceClass *dc = DEVICE_CLASS(klass);
280 
281     dc->reset = sparc32_dma_device_reset;
282     dc->vmsd = &vmstate_sparc32_dma_device;
283 }
284 
285 static const TypeInfo sparc32_dma_device_info = {
286     .name          = TYPE_SPARC32_DMA_DEVICE,
287     .parent        = TYPE_SYS_BUS_DEVICE,
288     .abstract      = true,
289     .instance_size = sizeof(DMADeviceState),
290     .instance_init = sparc32_dma_device_init,
291     .class_init    = sparc32_dma_device_class_init,
292 };
293 
294 static void sparc32_espdma_device_init(Object *obj)
295 {
296     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
297     ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(obj);
298 
299     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
300                           "espdma-mmio", DMA_SIZE);
301 
302     object_initialize_child(obj, "esp", &es->esp, TYPE_SYSBUS_ESP);
303 }
304 
305 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
306 {
307     ESPDMADeviceState *es = SPARC32_ESPDMA_DEVICE(dev);
308     SysBusESPState *sysbus = SYSBUS_ESP(&es->esp);
309     ESPState *esp = &sysbus->esp;
310 
311     esp->dma_memory_read = espdma_memory_read;
312     esp->dma_memory_write = espdma_memory_write;
313     esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
314     sysbus->it_shift = 2;
315     esp->dma_enabled = 1;
316     sysbus_realize(SYS_BUS_DEVICE(sysbus), &error_fatal);
317 }
318 
319 static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
320 {
321     DeviceClass *dc = DEVICE_CLASS(klass);
322 
323     dc->realize = sparc32_espdma_device_realize;
324 }
325 
326 static const TypeInfo sparc32_espdma_device_info = {
327     .name          = TYPE_SPARC32_ESPDMA_DEVICE,
328     .parent        = TYPE_SPARC32_DMA_DEVICE,
329     .instance_size = sizeof(ESPDMADeviceState),
330     .instance_init = sparc32_espdma_device_init,
331     .class_init    = sparc32_espdma_device_class_init,
332 };
333 
334 static void sparc32_ledma_device_init(Object *obj)
335 {
336     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
337     LEDMADeviceState *ls = SPARC32_LEDMA_DEVICE(obj);
338 
339     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
340                           "ledma-mmio", DMA_SIZE);
341 
342     object_initialize_child(obj, "lance", &ls->lance, TYPE_LANCE);
343 }
344 
345 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
346 {
347     LEDMADeviceState *s = SPARC32_LEDMA_DEVICE(dev);
348     SysBusPCNetState *lance = SYSBUS_PCNET(&s->lance);
349 
350     object_property_set_link(OBJECT(lance), "dma", OBJECT(dev), &error_abort);
351     sysbus_realize(SYS_BUS_DEVICE(lance), &error_fatal);
352 }
353 
354 static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
355 {
356     DeviceClass *dc = DEVICE_CLASS(klass);
357 
358     dc->realize = sparc32_ledma_device_realize;
359 }
360 
361 static const TypeInfo sparc32_ledma_device_info = {
362     .name          = TYPE_SPARC32_LEDMA_DEVICE,
363     .parent        = TYPE_SPARC32_DMA_DEVICE,
364     .instance_size = sizeof(LEDMADeviceState),
365     .instance_init = sparc32_ledma_device_init,
366     .class_init    = sparc32_ledma_device_class_init,
367 };
368 
369 static void sparc32_dma_realize(DeviceState *dev, Error **errp)
370 {
371     SPARC32DMAState *s = SPARC32_DMA(dev);
372     DeviceState *espdma, *esp, *ledma, *lance;
373     SysBusDevice *sbd;
374     Object *iommu;
375 
376     iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
377     if (!iommu) {
378         error_setg(errp, "unable to locate sun4m IOMMU device");
379         return;
380     }
381 
382     espdma = DEVICE(&s->espdma);
383     object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort);
384     sysbus_realize(SYS_BUS_DEVICE(espdma), &error_fatal);
385 
386     esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
387     sbd = SYS_BUS_DEVICE(esp);
388     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
389     qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
390     qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
391 
392     sbd = SYS_BUS_DEVICE(espdma);
393     memory_region_add_subregion(&s->dmamem, 0x0,
394                                 sysbus_mmio_get_region(sbd, 0));
395 
396     ledma = DEVICE(&s->ledma);
397     object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort);
398     sysbus_realize(SYS_BUS_DEVICE(ledma), &error_fatal);
399 
400     lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
401     sbd = SYS_BUS_DEVICE(lance);
402     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
403     qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
404 
405     sbd = SYS_BUS_DEVICE(ledma);
406     memory_region_add_subregion(&s->dmamem, 0x10,
407                                 sysbus_mmio_get_region(sbd, 0));
408 
409     /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
410     memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
411                              sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
412     memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
413 }
414 
415 static void sparc32_dma_init(Object *obj)
416 {
417     SPARC32DMAState *s = SPARC32_DMA(obj);
418     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
419 
420     memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
421     sysbus_init_mmio(sbd, &s->dmamem);
422 
423     object_initialize_child(obj, "espdma", &s->espdma,
424                             TYPE_SPARC32_ESPDMA_DEVICE);
425     object_initialize_child(obj, "ledma", &s->ledma,
426                             TYPE_SPARC32_LEDMA_DEVICE);
427 }
428 
429 static void sparc32_dma_class_init(ObjectClass *klass, void *data)
430 {
431     DeviceClass *dc = DEVICE_CLASS(klass);
432 
433     dc->realize = sparc32_dma_realize;
434 }
435 
436 static const TypeInfo sparc32_dma_info = {
437     .name          = TYPE_SPARC32_DMA,
438     .parent        = TYPE_SYS_BUS_DEVICE,
439     .instance_size = sizeof(SPARC32DMAState),
440     .instance_init = sparc32_dma_init,
441     .class_init    = sparc32_dma_class_init,
442 };
443 
444 
445 static void sparc32_dma_register_types(void)
446 {
447     type_register_static(&sparc32_dma_device_info);
448     type_register_static(&sparc32_espdma_device_info);
449     type_register_static(&sparc32_ledma_device_info);
450     type_register_static(&sparc32_dma_info);
451 }
452 
453 type_init(sparc32_dma_register_types)
454