1 /* 2 * QEMU Sparc32 DMA controller emulation 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Modifications: 7 * 2010-Feb-14 Artyom Tarasenko : reworked irq generation 8 * 9 * Permission is hereby granted, free of charge, to any person obtaining a copy 10 * of this software and associated documentation files (the "Software"), to deal 11 * in the Software without restriction, including without limitation the rights 12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 13 * copies of the Software, and to permit persons to whom the Software is 14 * furnished to do so, subject to the following conditions: 15 * 16 * The above copyright notice and this permission notice shall be included in 17 * all copies or substantial portions of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 25 * THE SOFTWARE. 26 */ 27 28 #include "qemu/osdep.h" 29 #include "hw/irq.h" 30 #include "hw/qdev-properties.h" 31 #include "hw/sparc/sparc32_dma.h" 32 #include "hw/sparc/sun4m_iommu.h" 33 #include "hw/sysbus.h" 34 #include "migration/vmstate.h" 35 #include "sysemu/dma.h" 36 #include "qapi/error.h" 37 #include "qemu/module.h" 38 #include "trace.h" 39 40 /* 41 * This is the DMA controller part of chip STP2000 (Master I/O), also 42 * produced as NCR89C100. See 43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt 44 * and 45 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt 46 */ 47 48 #define DMA_SIZE (4 * sizeof(uint32_t)) 49 /* We need the mask, because one instance of the device is not page 50 aligned (ledma, start address 0x0010) */ 51 #define DMA_MASK (DMA_SIZE - 1) 52 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */ 53 #define DMA_ETH_SIZE (8 * sizeof(uint32_t)) 54 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1) 55 56 #define DMA_VER 0xa0000000 57 #define DMA_INTR 1 58 #define DMA_INTREN 0x10 59 #define DMA_WRITE_MEM 0x100 60 #define DMA_EN 0x200 61 #define DMA_LOADED 0x04000000 62 #define DMA_DRAIN_FIFO 0x40 63 #define DMA_RESET 0x80 64 65 /* XXX SCSI and ethernet should have different read-only bit masks */ 66 #define DMA_CSR_RO_MASK 0xfe000007 67 68 enum { 69 GPIO_RESET = 0, 70 GPIO_DMA, 71 }; 72 73 /* Note: on sparc, the lance 16 bit bus is swapped */ 74 void ledma_memory_read(void *opaque, hwaddr addr, 75 uint8_t *buf, int len, int do_bswap) 76 { 77 DMADeviceState *s = opaque; 78 IOMMUState *is = (IOMMUState *)s->iommu; 79 int i; 80 81 addr |= s->dmaregs[3]; 82 trace_ledma_memory_read(addr, len); 83 if (do_bswap) { 84 dma_memory_read(&is->iommu_as, addr, buf, len); 85 } else { 86 addr &= ~1; 87 len &= ~1; 88 dma_memory_read(&is->iommu_as, addr, buf, len); 89 for(i = 0; i < len; i += 2) { 90 bswap16s((uint16_t *)(buf + i)); 91 } 92 } 93 } 94 95 void ledma_memory_write(void *opaque, hwaddr addr, 96 uint8_t *buf, int len, int do_bswap) 97 { 98 DMADeviceState *s = opaque; 99 IOMMUState *is = (IOMMUState *)s->iommu; 100 int l, i; 101 uint16_t tmp_buf[32]; 102 103 addr |= s->dmaregs[3]; 104 trace_ledma_memory_write(addr, len); 105 if (do_bswap) { 106 dma_memory_write(&is->iommu_as, addr, buf, len); 107 } else { 108 addr &= ~1; 109 len &= ~1; 110 while (len > 0) { 111 l = len; 112 if (l > sizeof(tmp_buf)) 113 l = sizeof(tmp_buf); 114 for(i = 0; i < l; i += 2) { 115 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i)); 116 } 117 dma_memory_write(&is->iommu_as, addr, tmp_buf, l); 118 len -= l; 119 buf += l; 120 addr += l; 121 } 122 } 123 } 124 125 static void dma_set_irq(void *opaque, int irq, int level) 126 { 127 DMADeviceState *s = opaque; 128 if (level) { 129 s->dmaregs[0] |= DMA_INTR; 130 if (s->dmaregs[0] & DMA_INTREN) { 131 trace_sparc32_dma_set_irq_raise(); 132 qemu_irq_raise(s->irq); 133 } 134 } else { 135 if (s->dmaregs[0] & DMA_INTR) { 136 s->dmaregs[0] &= ~DMA_INTR; 137 if (s->dmaregs[0] & DMA_INTREN) { 138 trace_sparc32_dma_set_irq_lower(); 139 qemu_irq_lower(s->irq); 140 } 141 } 142 } 143 } 144 145 void espdma_memory_read(void *opaque, uint8_t *buf, int len) 146 { 147 DMADeviceState *s = opaque; 148 IOMMUState *is = (IOMMUState *)s->iommu; 149 150 trace_espdma_memory_read(s->dmaregs[1], len); 151 dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len); 152 s->dmaregs[1] += len; 153 } 154 155 void espdma_memory_write(void *opaque, uint8_t *buf, int len) 156 { 157 DMADeviceState *s = opaque; 158 IOMMUState *is = (IOMMUState *)s->iommu; 159 160 trace_espdma_memory_write(s->dmaregs[1], len); 161 dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len); 162 s->dmaregs[1] += len; 163 } 164 165 static uint64_t dma_mem_read(void *opaque, hwaddr addr, 166 unsigned size) 167 { 168 DMADeviceState *s = opaque; 169 uint32_t saddr; 170 171 saddr = (addr & DMA_MASK) >> 2; 172 trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]); 173 return s->dmaregs[saddr]; 174 } 175 176 static void dma_mem_write(void *opaque, hwaddr addr, 177 uint64_t val, unsigned size) 178 { 179 DMADeviceState *s = opaque; 180 uint32_t saddr; 181 182 saddr = (addr & DMA_MASK) >> 2; 183 trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val); 184 switch (saddr) { 185 case 0: 186 if (val & DMA_INTREN) { 187 if (s->dmaregs[0] & DMA_INTR) { 188 trace_sparc32_dma_set_irq_raise(); 189 qemu_irq_raise(s->irq); 190 } 191 } else { 192 if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) { 193 trace_sparc32_dma_set_irq_lower(); 194 qemu_irq_lower(s->irq); 195 } 196 } 197 if (val & DMA_RESET) { 198 qemu_irq_raise(s->gpio[GPIO_RESET]); 199 qemu_irq_lower(s->gpio[GPIO_RESET]); 200 } else if (val & DMA_DRAIN_FIFO) { 201 val &= ~DMA_DRAIN_FIFO; 202 } else if (val == 0) 203 val = DMA_DRAIN_FIFO; 204 205 if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) { 206 trace_sparc32_dma_enable_raise(); 207 qemu_irq_raise(s->gpio[GPIO_DMA]); 208 } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) { 209 trace_sparc32_dma_enable_lower(); 210 qemu_irq_lower(s->gpio[GPIO_DMA]); 211 } 212 213 val &= ~DMA_CSR_RO_MASK; 214 val |= DMA_VER; 215 s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val; 216 break; 217 case 1: 218 s->dmaregs[0] |= DMA_LOADED; 219 /* fall through */ 220 default: 221 s->dmaregs[saddr] = val; 222 break; 223 } 224 } 225 226 static const MemoryRegionOps dma_mem_ops = { 227 .read = dma_mem_read, 228 .write = dma_mem_write, 229 .endianness = DEVICE_NATIVE_ENDIAN, 230 .valid = { 231 .min_access_size = 4, 232 .max_access_size = 4, 233 }, 234 }; 235 236 static void sparc32_dma_device_reset(DeviceState *d) 237 { 238 DMADeviceState *s = SPARC32_DMA_DEVICE(d); 239 240 memset(s->dmaregs, 0, DMA_SIZE); 241 s->dmaregs[0] = DMA_VER; 242 } 243 244 static const VMStateDescription vmstate_sparc32_dma_device = { 245 .name ="sparc32_dma", 246 .version_id = 2, 247 .minimum_version_id = 2, 248 .fields = (VMStateField[]) { 249 VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS), 250 VMSTATE_END_OF_LIST() 251 } 252 }; 253 254 static void sparc32_dma_device_init(Object *obj) 255 { 256 DeviceState *dev = DEVICE(obj); 257 DMADeviceState *s = SPARC32_DMA_DEVICE(obj); 258 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 259 260 sysbus_init_irq(sbd, &s->irq); 261 262 sysbus_init_mmio(sbd, &s->iomem); 263 264 object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU, 265 (Object **) &s->iommu, 266 qdev_prop_allow_set_link_before_realize, 267 0); 268 269 qdev_init_gpio_in(dev, dma_set_irq, 1); 270 qdev_init_gpio_out(dev, s->gpio, 2); 271 } 272 273 static void sparc32_dma_device_class_init(ObjectClass *klass, void *data) 274 { 275 DeviceClass *dc = DEVICE_CLASS(klass); 276 277 dc->reset = sparc32_dma_device_reset; 278 dc->vmsd = &vmstate_sparc32_dma_device; 279 } 280 281 static const TypeInfo sparc32_dma_device_info = { 282 .name = TYPE_SPARC32_DMA_DEVICE, 283 .parent = TYPE_SYS_BUS_DEVICE, 284 .abstract = true, 285 .instance_size = sizeof(DMADeviceState), 286 .instance_init = sparc32_dma_device_init, 287 .class_init = sparc32_dma_device_class_init, 288 }; 289 290 static void sparc32_espdma_device_init(Object *obj) 291 { 292 DMADeviceState *s = SPARC32_DMA_DEVICE(obj); 293 294 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s, 295 "espdma-mmio", DMA_SIZE); 296 } 297 298 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp) 299 { 300 DeviceState *d; 301 SysBusESPState *sysbus; 302 ESPState *esp; 303 304 d = qdev_new(TYPE_ESP); 305 object_property_add_child(OBJECT(dev), "esp", OBJECT(d)); 306 sysbus = ESP(d); 307 esp = &sysbus->esp; 308 esp->dma_memory_read = espdma_memory_read; 309 esp->dma_memory_write = espdma_memory_write; 310 esp->dma_opaque = SPARC32_DMA_DEVICE(dev); 311 sysbus->it_shift = 2; 312 esp->dma_enabled = 1; 313 sysbus_realize_and_unref(SYS_BUS_DEVICE(d), &error_fatal); 314 } 315 316 static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data) 317 { 318 DeviceClass *dc = DEVICE_CLASS(klass); 319 320 dc->realize = sparc32_espdma_device_realize; 321 } 322 323 static const TypeInfo sparc32_espdma_device_info = { 324 .name = TYPE_SPARC32_ESPDMA_DEVICE, 325 .parent = TYPE_SPARC32_DMA_DEVICE, 326 .instance_size = sizeof(ESPDMADeviceState), 327 .instance_init = sparc32_espdma_device_init, 328 .class_init = sparc32_espdma_device_class_init, 329 }; 330 331 static void sparc32_ledma_device_init(Object *obj) 332 { 333 DMADeviceState *s = SPARC32_DMA_DEVICE(obj); 334 335 memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s, 336 "ledma-mmio", DMA_SIZE); 337 } 338 339 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp) 340 { 341 DeviceState *d; 342 NICInfo *nd = &nd_table[0]; 343 344 /* FIXME use qdev NIC properties instead of nd_table[] */ 345 qemu_check_nic_model(nd, TYPE_LANCE); 346 347 d = qdev_new(TYPE_LANCE); 348 object_property_add_child(OBJECT(dev), "lance", OBJECT(d)); 349 qdev_set_nic_properties(d, nd); 350 object_property_set_link(OBJECT(d), "dma", OBJECT(dev), &error_abort); 351 sysbus_realize_and_unref(SYS_BUS_DEVICE(d), &error_fatal); 352 } 353 354 static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data) 355 { 356 DeviceClass *dc = DEVICE_CLASS(klass); 357 358 dc->realize = sparc32_ledma_device_realize; 359 } 360 361 static const TypeInfo sparc32_ledma_device_info = { 362 .name = TYPE_SPARC32_LEDMA_DEVICE, 363 .parent = TYPE_SPARC32_DMA_DEVICE, 364 .instance_size = sizeof(LEDMADeviceState), 365 .instance_init = sparc32_ledma_device_init, 366 .class_init = sparc32_ledma_device_class_init, 367 }; 368 369 static void sparc32_dma_realize(DeviceState *dev, Error **errp) 370 { 371 SPARC32DMAState *s = SPARC32_DMA(dev); 372 DeviceState *espdma, *esp, *ledma, *lance; 373 SysBusDevice *sbd; 374 Object *iommu; 375 376 iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL); 377 if (!iommu) { 378 error_setg(errp, "unable to locate sun4m IOMMU device"); 379 return; 380 } 381 382 espdma = qdev_new(TYPE_SPARC32_ESPDMA_DEVICE); 383 object_property_set_link(OBJECT(espdma), "iommu", iommu, &error_abort); 384 object_property_add_child(OBJECT(s), "espdma", OBJECT(espdma)); 385 sysbus_realize_and_unref(SYS_BUS_DEVICE(espdma), &error_fatal); 386 387 esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp")); 388 sbd = SYS_BUS_DEVICE(esp); 389 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0)); 390 qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0)); 391 qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1)); 392 393 sbd = SYS_BUS_DEVICE(espdma); 394 memory_region_add_subregion(&s->dmamem, 0x0, 395 sysbus_mmio_get_region(sbd, 0)); 396 397 ledma = qdev_new(TYPE_SPARC32_LEDMA_DEVICE); 398 object_property_set_link(OBJECT(ledma), "iommu", iommu, &error_abort); 399 object_property_add_child(OBJECT(s), "ledma", OBJECT(ledma)); 400 sysbus_realize_and_unref(SYS_BUS_DEVICE(ledma), &error_fatal); 401 402 lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance")); 403 sbd = SYS_BUS_DEVICE(lance); 404 sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0)); 405 qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0)); 406 407 sbd = SYS_BUS_DEVICE(ledma); 408 memory_region_add_subregion(&s->dmamem, 0x10, 409 sysbus_mmio_get_region(sbd, 0)); 410 411 /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */ 412 memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias", 413 sysbus_mmio_get_region(sbd, 0), 0x4, 0x4); 414 memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias); 415 } 416 417 static void sparc32_dma_init(Object *obj) 418 { 419 SPARC32DMAState *s = SPARC32_DMA(obj); 420 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 421 422 memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE); 423 sysbus_init_mmio(sbd, &s->dmamem); 424 } 425 426 static void sparc32_dma_class_init(ObjectClass *klass, void *data) 427 { 428 DeviceClass *dc = DEVICE_CLASS(klass); 429 430 dc->realize = sparc32_dma_realize; 431 } 432 433 static const TypeInfo sparc32_dma_info = { 434 .name = TYPE_SPARC32_DMA, 435 .parent = TYPE_SYS_BUS_DEVICE, 436 .instance_size = sizeof(SPARC32DMAState), 437 .instance_init = sparc32_dma_init, 438 .class_init = sparc32_dma_class_init, 439 }; 440 441 442 static void sparc32_dma_register_types(void) 443 { 444 type_register_static(&sparc32_dma_device_info); 445 type_register_static(&sparc32_espdma_device_info); 446 type_register_static(&sparc32_ledma_device_info); 447 type_register_static(&sparc32_dma_info); 448 } 449 450 type_init(sparc32_dma_register_types) 451