xref: /openbmc/qemu/hw/dma/sparc32_dma.c (revision 9dea2df8)
1 /*
2  * QEMU Sparc32 DMA controller emulation
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Modifications:
7  *  2010-Feb-14 Artyom Tarasenko : reworked irq generation
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 #include "qemu/osdep.h"
29 #include "hw/hw.h"
30 #include "hw/sparc/sparc32_dma.h"
31 #include "hw/sparc/sun4m_iommu.h"
32 #include "hw/sysbus.h"
33 #include "sysemu/dma.h"
34 #include "qapi/error.h"
35 #include "trace.h"
36 
37 /*
38  * This is the DMA controller part of chip STP2000 (Master I/O), also
39  * produced as NCR89C100. See
40  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
41  * and
42  * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
43  */
44 
45 #define DMA_SIZE (4 * sizeof(uint32_t))
46 /* We need the mask, because one instance of the device is not page
47    aligned (ledma, start address 0x0010) */
48 #define DMA_MASK (DMA_SIZE - 1)
49 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
50 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
51 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
52 
53 #define DMA_VER 0xa0000000
54 #define DMA_INTR 1
55 #define DMA_INTREN 0x10
56 #define DMA_WRITE_MEM 0x100
57 #define DMA_EN 0x200
58 #define DMA_LOADED 0x04000000
59 #define DMA_DRAIN_FIFO 0x40
60 #define DMA_RESET 0x80
61 
62 /* XXX SCSI and ethernet should have different read-only bit masks */
63 #define DMA_CSR_RO_MASK 0xfe000007
64 
65 enum {
66     GPIO_RESET = 0,
67     GPIO_DMA,
68 };
69 
70 /* Note: on sparc, the lance 16 bit bus is swapped */
71 void ledma_memory_read(void *opaque, hwaddr addr,
72                        uint8_t *buf, int len, int do_bswap)
73 {
74     DMADeviceState *s = opaque;
75     IOMMUState *is = (IOMMUState *)s->iommu;
76     int i;
77 
78     addr |= s->dmaregs[3];
79     trace_ledma_memory_read(addr, len);
80     if (do_bswap) {
81         dma_memory_read(&is->iommu_as, addr, buf, len);
82     } else {
83         addr &= ~1;
84         len &= ~1;
85         dma_memory_read(&is->iommu_as, addr, buf, len);
86         for(i = 0; i < len; i += 2) {
87             bswap16s((uint16_t *)(buf + i));
88         }
89     }
90 }
91 
92 void ledma_memory_write(void *opaque, hwaddr addr,
93                         uint8_t *buf, int len, int do_bswap)
94 {
95     DMADeviceState *s = opaque;
96     IOMMUState *is = (IOMMUState *)s->iommu;
97     int l, i;
98     uint16_t tmp_buf[32];
99 
100     addr |= s->dmaregs[3];
101     trace_ledma_memory_write(addr, len);
102     if (do_bswap) {
103         dma_memory_write(&is->iommu_as, addr, buf, len);
104     } else {
105         addr &= ~1;
106         len &= ~1;
107         while (len > 0) {
108             l = len;
109             if (l > sizeof(tmp_buf))
110                 l = sizeof(tmp_buf);
111             for(i = 0; i < l; i += 2) {
112                 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
113             }
114             dma_memory_write(&is->iommu_as, addr, tmp_buf, l);
115             len -= l;
116             buf += l;
117             addr += l;
118         }
119     }
120 }
121 
122 static void dma_set_irq(void *opaque, int irq, int level)
123 {
124     DMADeviceState *s = opaque;
125     if (level) {
126         s->dmaregs[0] |= DMA_INTR;
127         if (s->dmaregs[0] & DMA_INTREN) {
128             trace_sparc32_dma_set_irq_raise();
129             qemu_irq_raise(s->irq);
130         }
131     } else {
132         if (s->dmaregs[0] & DMA_INTR) {
133             s->dmaregs[0] &= ~DMA_INTR;
134             if (s->dmaregs[0] & DMA_INTREN) {
135                 trace_sparc32_dma_set_irq_lower();
136                 qemu_irq_lower(s->irq);
137             }
138         }
139     }
140 }
141 
142 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
143 {
144     DMADeviceState *s = opaque;
145     IOMMUState *is = (IOMMUState *)s->iommu;
146 
147     trace_espdma_memory_read(s->dmaregs[1], len);
148     dma_memory_read(&is->iommu_as, s->dmaregs[1], buf, len);
149     s->dmaregs[1] += len;
150 }
151 
152 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
153 {
154     DMADeviceState *s = opaque;
155     IOMMUState *is = (IOMMUState *)s->iommu;
156 
157     trace_espdma_memory_write(s->dmaregs[1], len);
158     dma_memory_write(&is->iommu_as, s->dmaregs[1], buf, len);
159     s->dmaregs[1] += len;
160 }
161 
162 static uint64_t dma_mem_read(void *opaque, hwaddr addr,
163                              unsigned size)
164 {
165     DMADeviceState *s = opaque;
166     uint32_t saddr;
167 
168     saddr = (addr & DMA_MASK) >> 2;
169     trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
170     return s->dmaregs[saddr];
171 }
172 
173 static void dma_mem_write(void *opaque, hwaddr addr,
174                           uint64_t val, unsigned size)
175 {
176     DMADeviceState *s = opaque;
177     uint32_t saddr;
178 
179     saddr = (addr & DMA_MASK) >> 2;
180     trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
181     switch (saddr) {
182     case 0:
183         if (val & DMA_INTREN) {
184             if (s->dmaregs[0] & DMA_INTR) {
185                 trace_sparc32_dma_set_irq_raise();
186                 qemu_irq_raise(s->irq);
187             }
188         } else {
189             if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
190                 trace_sparc32_dma_set_irq_lower();
191                 qemu_irq_lower(s->irq);
192             }
193         }
194         if (val & DMA_RESET) {
195             qemu_irq_raise(s->gpio[GPIO_RESET]);
196             qemu_irq_lower(s->gpio[GPIO_RESET]);
197         } else if (val & DMA_DRAIN_FIFO) {
198             val &= ~DMA_DRAIN_FIFO;
199         } else if (val == 0)
200             val = DMA_DRAIN_FIFO;
201 
202         if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
203             trace_sparc32_dma_enable_raise();
204             qemu_irq_raise(s->gpio[GPIO_DMA]);
205         } else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
206             trace_sparc32_dma_enable_lower();
207             qemu_irq_lower(s->gpio[GPIO_DMA]);
208         }
209 
210         val &= ~DMA_CSR_RO_MASK;
211         val |= DMA_VER;
212         s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
213         break;
214     case 1:
215         s->dmaregs[0] |= DMA_LOADED;
216         /* fall through */
217     default:
218         s->dmaregs[saddr] = val;
219         break;
220     }
221 }
222 
223 static const MemoryRegionOps dma_mem_ops = {
224     .read = dma_mem_read,
225     .write = dma_mem_write,
226     .endianness = DEVICE_NATIVE_ENDIAN,
227     .valid = {
228         .min_access_size = 4,
229         .max_access_size = 4,
230     },
231 };
232 
233 static void sparc32_dma_device_reset(DeviceState *d)
234 {
235     DMADeviceState *s = SPARC32_DMA_DEVICE(d);
236 
237     memset(s->dmaregs, 0, DMA_SIZE);
238     s->dmaregs[0] = DMA_VER;
239 }
240 
241 static const VMStateDescription vmstate_sparc32_dma_device = {
242     .name ="sparc32_dma",
243     .version_id = 2,
244     .minimum_version_id = 2,
245     .fields = (VMStateField[]) {
246         VMSTATE_UINT32_ARRAY(dmaregs, DMADeviceState, DMA_REGS),
247         VMSTATE_END_OF_LIST()
248     }
249 };
250 
251 static void sparc32_dma_device_init(Object *obj)
252 {
253     DeviceState *dev = DEVICE(obj);
254     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
255     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
256 
257     sysbus_init_irq(sbd, &s->irq);
258 
259     sysbus_init_mmio(sbd, &s->iomem);
260 
261     object_property_add_link(OBJECT(dev), "iommu", TYPE_SUN4M_IOMMU,
262                              (Object **) &s->iommu,
263                              qdev_prop_allow_set_link_before_realize,
264                              0, NULL);
265 
266     qdev_init_gpio_in(dev, dma_set_irq, 1);
267     qdev_init_gpio_out(dev, s->gpio, 2);
268 }
269 
270 static void sparc32_dma_device_class_init(ObjectClass *klass, void *data)
271 {
272     DeviceClass *dc = DEVICE_CLASS(klass);
273 
274     dc->reset = sparc32_dma_device_reset;
275     dc->vmsd = &vmstate_sparc32_dma_device;
276 }
277 
278 static const TypeInfo sparc32_dma_device_info = {
279     .name          = TYPE_SPARC32_DMA_DEVICE,
280     .parent        = TYPE_SYS_BUS_DEVICE,
281     .abstract      = true,
282     .instance_size = sizeof(DMADeviceState),
283     .instance_init = sparc32_dma_device_init,
284     .class_init    = sparc32_dma_device_class_init,
285 };
286 
287 static void sparc32_espdma_device_init(Object *obj)
288 {
289     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
290 
291     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
292                           "espdma-mmio", DMA_SIZE);
293 }
294 
295 static void sparc32_espdma_device_realize(DeviceState *dev, Error **errp)
296 {
297     DeviceState *d;
298     SysBusESPState *sysbus;
299     ESPState *esp;
300 
301     d = qdev_create(NULL, TYPE_ESP);
302     object_property_add_child(OBJECT(dev), "esp", OBJECT(d), errp);
303     sysbus = ESP_STATE(d);
304     esp = &sysbus->esp;
305     esp->dma_memory_read = espdma_memory_read;
306     esp->dma_memory_write = espdma_memory_write;
307     esp->dma_opaque = SPARC32_DMA_DEVICE(dev);
308     sysbus->it_shift = 2;
309     esp->dma_enabled = 1;
310     qdev_init_nofail(d);
311 }
312 
313 static void sparc32_espdma_device_class_init(ObjectClass *klass, void *data)
314 {
315     DeviceClass *dc = DEVICE_CLASS(klass);
316 
317     dc->realize = sparc32_espdma_device_realize;
318 }
319 
320 static const TypeInfo sparc32_espdma_device_info = {
321     .name          = TYPE_SPARC32_ESPDMA_DEVICE,
322     .parent        = TYPE_SPARC32_DMA_DEVICE,
323     .instance_size = sizeof(ESPDMADeviceState),
324     .instance_init = sparc32_espdma_device_init,
325     .class_init    = sparc32_espdma_device_class_init,
326 };
327 
328 static void sparc32_ledma_device_init(Object *obj)
329 {
330     DMADeviceState *s = SPARC32_DMA_DEVICE(obj);
331 
332     memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
333                           "ledma-mmio", DMA_SIZE);
334 }
335 
336 static void sparc32_ledma_device_realize(DeviceState *dev, Error **errp)
337 {
338     DeviceState *d;
339     NICInfo *nd = &nd_table[0];
340 
341     qemu_check_nic_model(nd, TYPE_LANCE);
342 
343     d = qdev_create(NULL, TYPE_LANCE);
344     object_property_add_child(OBJECT(dev), "lance", OBJECT(d), errp);
345     qdev_set_nic_properties(d, nd);
346     qdev_prop_set_ptr(d, "dma", dev);
347     qdev_init_nofail(d);
348 }
349 
350 static void sparc32_ledma_device_class_init(ObjectClass *klass, void *data)
351 {
352     DeviceClass *dc = DEVICE_CLASS(klass);
353 
354     dc->realize = sparc32_ledma_device_realize;
355 }
356 
357 static const TypeInfo sparc32_ledma_device_info = {
358     .name          = TYPE_SPARC32_LEDMA_DEVICE,
359     .parent        = TYPE_SPARC32_DMA_DEVICE,
360     .instance_size = sizeof(LEDMADeviceState),
361     .instance_init = sparc32_ledma_device_init,
362     .class_init    = sparc32_ledma_device_class_init,
363 };
364 
365 static void sparc32_dma_realize(DeviceState *dev, Error **errp)
366 {
367     SPARC32DMAState *s = SPARC32_DMA(dev);
368     DeviceState *espdma, *esp, *ledma, *lance;
369     SysBusDevice *sbd;
370     Object *iommu;
371 
372     iommu = object_resolve_path_type("", TYPE_SUN4M_IOMMU, NULL);
373     if (!iommu) {
374         error_setg(errp, "unable to locate sun4m IOMMU device");
375         return;
376     }
377 
378     espdma = qdev_create(NULL, TYPE_SPARC32_ESPDMA_DEVICE);
379     object_property_set_link(OBJECT(espdma), iommu, "iommu", errp);
380     object_property_add_child(OBJECT(s), "espdma", OBJECT(espdma), errp);
381     qdev_init_nofail(espdma);
382 
383     esp = DEVICE(object_resolve_path_component(OBJECT(espdma), "esp"));
384     sbd = SYS_BUS_DEVICE(esp);
385     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(espdma, 0));
386     qdev_connect_gpio_out(espdma, 0, qdev_get_gpio_in(esp, 0));
387     qdev_connect_gpio_out(espdma, 1, qdev_get_gpio_in(esp, 1));
388 
389     sbd = SYS_BUS_DEVICE(espdma);
390     memory_region_add_subregion(&s->dmamem, 0x0,
391                                 sysbus_mmio_get_region(sbd, 0));
392 
393     ledma = qdev_create(NULL, TYPE_SPARC32_LEDMA_DEVICE);
394     object_property_set_link(OBJECT(ledma), iommu, "iommu", errp);
395     object_property_add_child(OBJECT(s), "ledma", OBJECT(ledma), errp);
396     qdev_init_nofail(ledma);
397 
398     lance = DEVICE(object_resolve_path_component(OBJECT(ledma), "lance"));
399     sbd = SYS_BUS_DEVICE(lance);
400     sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(ledma, 0));
401     qdev_connect_gpio_out(ledma, 0, qdev_get_gpio_in(lance, 0));
402 
403     sbd = SYS_BUS_DEVICE(ledma);
404     memory_region_add_subregion(&s->dmamem, 0x10,
405                                 sysbus_mmio_get_region(sbd, 0));
406 
407     /* Add ledma alias to handle SunOS 5.7 - Solaris 9 invalid access bug */
408     memory_region_init_alias(&s->ledma_alias, OBJECT(dev), "ledma-alias",
409                              sysbus_mmio_get_region(sbd, 0), 0x4, 0x4);
410     memory_region_add_subregion(&s->dmamem, 0x20, &s->ledma_alias);
411 }
412 
413 static void sparc32_dma_init(Object *obj)
414 {
415     SPARC32DMAState *s = SPARC32_DMA(obj);
416     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
417 
418     memory_region_init(&s->dmamem, OBJECT(s), "dma", DMA_SIZE + DMA_ETH_SIZE);
419     sysbus_init_mmio(sbd, &s->dmamem);
420 }
421 
422 static void sparc32_dma_class_init(ObjectClass *klass, void *data)
423 {
424     DeviceClass *dc = DEVICE_CLASS(klass);
425 
426     dc->realize = sparc32_dma_realize;
427 }
428 
429 static const TypeInfo sparc32_dma_info = {
430     .name          = TYPE_SPARC32_DMA,
431     .parent        = TYPE_SYS_BUS_DEVICE,
432     .instance_size = sizeof(SPARC32DMAState),
433     .instance_init = sparc32_dma_init,
434     .class_init    = sparc32_dma_class_init,
435 };
436 
437 
438 static void sparc32_dma_register_types(void)
439 {
440     type_register_static(&sparc32_dma_device_info);
441     type_register_static(&sparc32_espdma_device_info);
442     type_register_static(&sparc32_ledma_device_info);
443     type_register_static(&sparc32_dma_info);
444 }
445 
446 type_init(sparc32_dma_register_types)
447