1 /* 2 * TI OMAP DMA gigacell. 3 * 4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org> 5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 of 10 * the License, or (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/timer.h" 23 #include "hw/arm/omap.h" 24 #include "hw/irq.h" 25 #include "hw/arm/soc_dma.h" 26 27 struct omap_dma_channel_s { 28 /* transfer data */ 29 int burst[2]; 30 int pack[2]; 31 int endian[2]; 32 int endian_lock[2]; 33 int translate[2]; 34 enum omap_dma_port port[2]; 35 hwaddr addr[2]; 36 omap_dma_addressing_t mode[2]; 37 uint32_t elements; 38 uint16_t frames; 39 int32_t frame_index[2]; 40 int16_t element_index[2]; 41 int data_type; 42 43 /* transfer type */ 44 int transparent_copy; 45 int constant_fill; 46 uint32_t color; 47 int prefetch; 48 49 /* auto init and linked channel data */ 50 int end_prog; 51 int repeat; 52 int auto_init; 53 int link_enabled; 54 int link_next_ch; 55 56 /* interruption data */ 57 int interrupts; 58 int status; 59 int cstatus; 60 61 /* state data */ 62 int active; 63 int enable; 64 int sync; 65 int src_sync; 66 int pending_request; 67 int waiting_end_prog; 68 uint16_t cpc; 69 int set_update; 70 71 /* sync type */ 72 int fs; 73 int bs; 74 75 /* compatibility */ 76 int omap_3_1_compatible_disable; 77 78 qemu_irq irq; 79 struct omap_dma_channel_s *sibling; 80 81 struct omap_dma_reg_set_s { 82 hwaddr src, dest; 83 int frame; 84 int element; 85 int pck_element; 86 int frame_delta[2]; 87 int elem_delta[2]; 88 int frames; 89 int elements; 90 int pck_elements; 91 } active_set; 92 93 struct soc_dma_ch_s *dma; 94 95 /* unused parameters */ 96 int write_mode; 97 int priority; 98 int interleave_disabled; 99 int type; 100 int suspend; 101 int buf_disable; 102 }; 103 104 struct omap_dma_s { 105 struct soc_dma_s *dma; 106 MemoryRegion iomem; 107 108 struct omap_mpu_state_s *mpu; 109 omap_clk clk; 110 qemu_irq irq[4]; 111 void (*intr_update)(struct omap_dma_s *s); 112 enum omap_dma_model model; 113 int omap_3_1_mapping_disabled; 114 115 uint32_t gcr; 116 uint32_t ocp; 117 uint32_t caps[5]; 118 uint32_t irqen[4]; 119 uint32_t irqstat[4]; 120 121 int chans; 122 struct omap_dma_channel_s ch[32]; 123 struct omap_dma_lcd_channel_s lcd_ch; 124 }; 125 126 /* Interrupts */ 127 #define TIMEOUT_INTR (1 << 0) 128 #define EVENT_DROP_INTR (1 << 1) 129 #define HALF_FRAME_INTR (1 << 2) 130 #define END_FRAME_INTR (1 << 3) 131 #define LAST_FRAME_INTR (1 << 4) 132 #define END_BLOCK_INTR (1 << 5) 133 #define SYNC (1 << 6) 134 #define END_PKT_INTR (1 << 7) 135 #define TRANS_ERR_INTR (1 << 8) 136 #define MISALIGN_INTR (1 << 11) 137 138 static inline void omap_dma_interrupts_update(struct omap_dma_s *s) 139 { 140 s->intr_update(s); 141 } 142 143 static void omap_dma_channel_load(struct omap_dma_channel_s *ch) 144 { 145 struct omap_dma_reg_set_s *a = &ch->active_set; 146 int i, normal; 147 int omap_3_1 = !ch->omap_3_1_compatible_disable; 148 149 /* 150 * TODO: verify address ranges and alignment 151 * TODO: port endianness 152 */ 153 154 a->src = ch->addr[0]; 155 a->dest = ch->addr[1]; 156 a->frames = ch->frames; 157 a->elements = ch->elements; 158 a->pck_elements = ch->frame_index[!ch->src_sync]; 159 a->frame = 0; 160 a->element = 0; 161 a->pck_element = 0; 162 163 if (unlikely(!ch->elements || !ch->frames)) { 164 printf("%s: bad DMA request\n", __func__); 165 return; 166 } 167 168 for (i = 0; i < 2; i ++) 169 switch (ch->mode[i]) { 170 case constant: 171 a->elem_delta[i] = 0; 172 a->frame_delta[i] = 0; 173 break; 174 case post_incremented: 175 a->elem_delta[i] = ch->data_type; 176 a->frame_delta[i] = 0; 177 break; 178 case single_index: 179 a->elem_delta[i] = ch->data_type + 180 ch->element_index[omap_3_1 ? 0 : i] - 1; 181 a->frame_delta[i] = 0; 182 break; 183 case double_index: 184 a->elem_delta[i] = ch->data_type + 185 ch->element_index[omap_3_1 ? 0 : i] - 1; 186 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] - 187 ch->element_index[omap_3_1 ? 0 : i]; 188 break; 189 default: 190 break; 191 } 192 193 normal = !ch->transparent_copy && !ch->constant_fill && 194 /* FIFO is big-endian so either (ch->endian[n] == 1) OR 195 * (ch->endian_lock[n] == 1) mean no endianism conversion. */ 196 (ch->endian[0] | ch->endian_lock[0]) == 197 (ch->endian[1] | ch->endian_lock[1]); 198 for (i = 0; i < 2; i ++) { 199 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just 200 * limit min_elems in omap_dma_transfer_setup to the nearest frame 201 * end. */ 202 if (!a->elem_delta[i] && normal && 203 (a->frames == 1 || !a->frame_delta[i])) 204 ch->dma->type[i] = soc_dma_access_const; 205 else if (a->elem_delta[i] == ch->data_type && normal && 206 (a->frames == 1 || !a->frame_delta[i])) 207 ch->dma->type[i] = soc_dma_access_linear; 208 else 209 ch->dma->type[i] = soc_dma_access_other; 210 211 ch->dma->vaddr[i] = ch->addr[i]; 212 } 213 soc_dma_ch_update(ch->dma); 214 } 215 216 static void omap_dma_activate_channel(struct omap_dma_s *s, 217 struct omap_dma_channel_s *ch) 218 { 219 if (!ch->active) { 220 if (ch->set_update) { 221 /* It's not clear when the active set is supposed to be 222 * loaded from registers. We're already loading it when the 223 * channel is enabled, and for some guests this is not enough 224 * but that may be also because of a race condition (no 225 * delays in qemu) in the guest code, which we're just 226 * working around here. */ 227 omap_dma_channel_load(ch); 228 ch->set_update = 0; 229 } 230 231 ch->active = 1; 232 soc_dma_set_request(ch->dma, 1); 233 if (ch->sync) 234 ch->status |= SYNC; 235 } 236 } 237 238 static void omap_dma_deactivate_channel(struct omap_dma_s *s, 239 struct omap_dma_channel_s *ch) 240 { 241 /* Update cpc */ 242 ch->cpc = ch->active_set.dest & 0xffff; 243 244 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) { 245 /* Don't deactivate the channel */ 246 ch->pending_request = 0; 247 return; 248 } 249 250 /* Don't deactive the channel if it is synchronized and the DMA request is 251 active */ 252 if (ch->sync && ch->enable && (s->dma->drqbmp & (1ULL << ch->sync))) 253 return; 254 255 if (ch->active) { 256 ch->active = 0; 257 ch->status &= ~SYNC; 258 soc_dma_set_request(ch->dma, 0); 259 } 260 } 261 262 static void omap_dma_enable_channel(struct omap_dma_s *s, 263 struct omap_dma_channel_s *ch) 264 { 265 if (!ch->enable) { 266 ch->enable = 1; 267 ch->waiting_end_prog = 0; 268 omap_dma_channel_load(ch); 269 /* TODO: theoretically if ch->sync && ch->prefetch && 270 * !s->dma->drqbmp[ch->sync], we should also activate and fetch 271 * from source and then stall until signalled. */ 272 if ((!ch->sync) || (s->dma->drqbmp & (1ULL << ch->sync))) { 273 omap_dma_activate_channel(s, ch); 274 } 275 } 276 } 277 278 static void omap_dma_disable_channel(struct omap_dma_s *s, 279 struct omap_dma_channel_s *ch) 280 { 281 if (ch->enable) { 282 ch->enable = 0; 283 /* Discard any pending request */ 284 ch->pending_request = 0; 285 omap_dma_deactivate_channel(s, ch); 286 } 287 } 288 289 static void omap_dma_channel_end_prog(struct omap_dma_s *s, 290 struct omap_dma_channel_s *ch) 291 { 292 if (ch->waiting_end_prog) { 293 ch->waiting_end_prog = 0; 294 if (!ch->sync || ch->pending_request) { 295 ch->pending_request = 0; 296 omap_dma_activate_channel(s, ch); 297 } 298 } 299 } 300 301 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s) 302 { 303 struct omap_dma_channel_s *ch = s->ch; 304 305 /* First three interrupts are shared between two channels each. */ 306 if (ch[0].status | ch[6].status) 307 qemu_irq_raise(ch[0].irq); 308 if (ch[1].status | ch[7].status) 309 qemu_irq_raise(ch[1].irq); 310 if (ch[2].status | ch[8].status) 311 qemu_irq_raise(ch[2].irq); 312 if (ch[3].status) 313 qemu_irq_raise(ch[3].irq); 314 if (ch[4].status) 315 qemu_irq_raise(ch[4].irq); 316 if (ch[5].status) 317 qemu_irq_raise(ch[5].irq); 318 } 319 320 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s) 321 { 322 struct omap_dma_channel_s *ch = s->ch; 323 int i; 324 325 for (i = s->chans; i; ch ++, i --) 326 if (ch->status) 327 qemu_irq_raise(ch->irq); 328 } 329 330 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s) 331 { 332 s->omap_3_1_mapping_disabled = 0; 333 s->chans = 9; 334 s->intr_update = omap_dma_interrupts_3_1_update; 335 } 336 337 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s) 338 { 339 s->omap_3_1_mapping_disabled = 1; 340 s->chans = 16; 341 s->intr_update = omap_dma_interrupts_3_2_update; 342 } 343 344 static void omap_dma_process_request(struct omap_dma_s *s, int request) 345 { 346 int channel; 347 int drop_event = 0; 348 struct omap_dma_channel_s *ch = s->ch; 349 350 for (channel = 0; channel < s->chans; channel ++, ch ++) { 351 if (ch->enable && ch->sync == request) { 352 if (!ch->active) 353 omap_dma_activate_channel(s, ch); 354 else if (!ch->pending_request) 355 ch->pending_request = 1; 356 else { 357 /* Request collision */ 358 /* Second request received while processing other request */ 359 ch->status |= EVENT_DROP_INTR; 360 drop_event = 1; 361 } 362 } 363 } 364 365 if (drop_event) 366 omap_dma_interrupts_update(s); 367 } 368 369 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma) 370 { 371 uint8_t value[4]; 372 struct omap_dma_channel_s *ch = dma->opaque; 373 struct omap_dma_reg_set_s *a = &ch->active_set; 374 int bytes = dma->bytes; 375 #ifdef MULTI_REQ 376 uint16_t status = ch->status; 377 #endif 378 379 do { 380 /* Transfer a single element */ 381 /* FIXME: check the endianness */ 382 if (!ch->constant_fill) 383 cpu_physical_memory_read(a->src, value, ch->data_type); 384 else 385 *(uint32_t *) value = ch->color; 386 387 if (!ch->transparent_copy || *(uint32_t *) value != ch->color) 388 cpu_physical_memory_write(a->dest, value, ch->data_type); 389 390 a->src += a->elem_delta[0]; 391 a->dest += a->elem_delta[1]; 392 a->element ++; 393 394 #ifndef MULTI_REQ 395 if (a->element == a->elements) { 396 /* End of Frame */ 397 a->element = 0; 398 a->src += a->frame_delta[0]; 399 a->dest += a->frame_delta[1]; 400 a->frame ++; 401 402 /* If the channel is async, update cpc */ 403 if (!ch->sync) 404 ch->cpc = a->dest & 0xffff; 405 } 406 } while ((bytes -= ch->data_type)); 407 #else 408 /* If the channel is element synchronized, deactivate it */ 409 if (ch->sync && !ch->fs && !ch->bs) 410 omap_dma_deactivate_channel(s, ch); 411 412 /* If it is the last frame, set the LAST_FRAME interrupt */ 413 if (a->element == 1 && a->frame == a->frames - 1) 414 if (ch->interrupts & LAST_FRAME_INTR) 415 ch->status |= LAST_FRAME_INTR; 416 417 /* If the half of the frame was reached, set the HALF_FRAME 418 interrupt */ 419 if (a->element == (a->elements >> 1)) 420 if (ch->interrupts & HALF_FRAME_INTR) 421 ch->status |= HALF_FRAME_INTR; 422 423 if (ch->fs && ch->bs) { 424 a->pck_element ++; 425 /* Check if a full packet has beed transferred. */ 426 if (a->pck_element == a->pck_elements) { 427 a->pck_element = 0; 428 429 /* Set the END_PKT interrupt */ 430 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync) 431 ch->status |= END_PKT_INTR; 432 433 /* If the channel is packet-synchronized, deactivate it */ 434 if (ch->sync) 435 omap_dma_deactivate_channel(s, ch); 436 } 437 } 438 439 if (a->element == a->elements) { 440 /* End of Frame */ 441 a->element = 0; 442 a->src += a->frame_delta[0]; 443 a->dest += a->frame_delta[1]; 444 a->frame ++; 445 446 /* If the channel is frame synchronized, deactivate it */ 447 if (ch->sync && ch->fs && !ch->bs) 448 omap_dma_deactivate_channel(s, ch); 449 450 /* If the channel is async, update cpc */ 451 if (!ch->sync) 452 ch->cpc = a->dest & 0xffff; 453 454 /* Set the END_FRAME interrupt */ 455 if (ch->interrupts & END_FRAME_INTR) 456 ch->status |= END_FRAME_INTR; 457 458 if (a->frame == a->frames) { 459 /* End of Block */ 460 /* Disable the channel */ 461 462 if (ch->omap_3_1_compatible_disable) { 463 omap_dma_disable_channel(s, ch); 464 if (ch->link_enabled) 465 omap_dma_enable_channel(s, 466 &s->ch[ch->link_next_ch]); 467 } else { 468 if (!ch->auto_init) 469 omap_dma_disable_channel(s, ch); 470 else if (ch->repeat || ch->end_prog) 471 omap_dma_channel_load(ch); 472 else { 473 ch->waiting_end_prog = 1; 474 omap_dma_deactivate_channel(s, ch); 475 } 476 } 477 478 if (ch->interrupts & END_BLOCK_INTR) 479 ch->status |= END_BLOCK_INTR; 480 } 481 } 482 } while (status == ch->status && ch->active); 483 484 omap_dma_interrupts_update(s); 485 #endif 486 } 487 488 enum { 489 omap_dma_intr_element_sync, 490 omap_dma_intr_last_frame, 491 omap_dma_intr_half_frame, 492 omap_dma_intr_frame, 493 omap_dma_intr_frame_sync, 494 omap_dma_intr_packet, 495 omap_dma_intr_packet_sync, 496 omap_dma_intr_block, 497 __omap_dma_intr_last, 498 }; 499 500 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma) 501 { 502 struct omap_dma_port_if_s *src_p, *dest_p; 503 struct omap_dma_reg_set_s *a; 504 struct omap_dma_channel_s *ch = dma->opaque; 505 struct omap_dma_s *s = dma->dma->opaque; 506 int frames, min_elems, elements[__omap_dma_intr_last]; 507 508 a = &ch->active_set; 509 510 src_p = &s->mpu->port[ch->port[0]]; 511 dest_p = &s->mpu->port[ch->port[1]]; 512 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) || 513 (!dest_p->addr_valid(s->mpu, a->dest))) { 514 #if 0 515 /* Bus time-out */ 516 if (ch->interrupts & TIMEOUT_INTR) 517 ch->status |= TIMEOUT_INTR; 518 omap_dma_deactivate_channel(s, ch); 519 continue; 520 #endif 521 printf("%s: Bus time-out in DMA%i operation\n", 522 __func__, dma->num); 523 } 524 525 min_elems = INT_MAX; 526 527 /* Check all the conditions that terminate the transfer starting 528 * with those that can occur the soonest. */ 529 #define INTR_CHECK(cond, id, nelements) \ 530 if (cond) { \ 531 elements[id] = nelements; \ 532 if (elements[id] < min_elems) \ 533 min_elems = elements[id]; \ 534 } else \ 535 elements[id] = INT_MAX; 536 537 /* Elements */ 538 INTR_CHECK( 539 ch->sync && !ch->fs && !ch->bs, 540 omap_dma_intr_element_sync, 541 1) 542 543 /* Frames */ 544 /* TODO: for transfers where entire frames can be read and written 545 * using memcpy() but a->frame_delta is non-zero, try to still do 546 * transfers using soc_dma but limit min_elems to a->elements - ... 547 * See also the TODO in omap_dma_channel_load. */ 548 INTR_CHECK( 549 (ch->interrupts & LAST_FRAME_INTR) && 550 ((a->frame < a->frames - 1) || !a->element), 551 omap_dma_intr_last_frame, 552 (a->frames - a->frame - 2) * a->elements + 553 (a->elements - a->element + 1)) 554 INTR_CHECK( 555 ch->interrupts & HALF_FRAME_INTR, 556 omap_dma_intr_half_frame, 557 (a->elements >> 1) + 558 (a->element >= (a->elements >> 1) ? a->elements : 0) - 559 a->element) 560 INTR_CHECK( 561 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR), 562 omap_dma_intr_frame, 563 a->elements - a->element) 564 INTR_CHECK( 565 ch->sync && ch->fs && !ch->bs, 566 omap_dma_intr_frame_sync, 567 a->elements - a->element) 568 569 /* Packets */ 570 INTR_CHECK( 571 ch->fs && ch->bs && 572 (ch->interrupts & END_PKT_INTR) && !ch->src_sync, 573 omap_dma_intr_packet, 574 a->pck_elements - a->pck_element) 575 INTR_CHECK( 576 ch->fs && ch->bs && ch->sync, 577 omap_dma_intr_packet_sync, 578 a->pck_elements - a->pck_element) 579 580 /* Blocks */ 581 INTR_CHECK( 582 1, 583 omap_dma_intr_block, 584 (a->frames - a->frame - 1) * a->elements + 585 (a->elements - a->element)) 586 587 dma->bytes = min_elems * ch->data_type; 588 589 /* Set appropriate interrupts and/or deactivate channels */ 590 591 #ifdef MULTI_REQ 592 /* TODO: should all of this only be done if dma->update, and otherwise 593 * inside omap_dma_transfer_generic below - check what's faster. */ 594 if (dma->update) { 595 #endif 596 597 /* If the channel is element synchronized, deactivate it */ 598 if (min_elems == elements[omap_dma_intr_element_sync]) 599 omap_dma_deactivate_channel(s, ch); 600 601 /* If it is the last frame, set the LAST_FRAME interrupt */ 602 if (min_elems == elements[omap_dma_intr_last_frame]) 603 ch->status |= LAST_FRAME_INTR; 604 605 /* If exactly half of the frame was reached, set the HALF_FRAME 606 interrupt */ 607 if (min_elems == elements[omap_dma_intr_half_frame]) 608 ch->status |= HALF_FRAME_INTR; 609 610 /* If a full packet has been transferred, set the END_PKT interrupt */ 611 if (min_elems == elements[omap_dma_intr_packet]) 612 ch->status |= END_PKT_INTR; 613 614 /* If the channel is packet-synchronized, deactivate it */ 615 if (min_elems == elements[omap_dma_intr_packet_sync]) 616 omap_dma_deactivate_channel(s, ch); 617 618 /* If the channel is frame synchronized, deactivate it */ 619 if (min_elems == elements[omap_dma_intr_frame_sync]) 620 omap_dma_deactivate_channel(s, ch); 621 622 /* Set the END_FRAME interrupt */ 623 if (min_elems == elements[omap_dma_intr_frame]) 624 ch->status |= END_FRAME_INTR; 625 626 if (min_elems == elements[omap_dma_intr_block]) { 627 /* End of Block */ 628 /* Disable the channel */ 629 630 if (ch->omap_3_1_compatible_disable) { 631 omap_dma_disable_channel(s, ch); 632 if (ch->link_enabled) 633 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]); 634 } else { 635 if (!ch->auto_init) 636 omap_dma_disable_channel(s, ch); 637 else if (ch->repeat || ch->end_prog) 638 omap_dma_channel_load(ch); 639 else { 640 ch->waiting_end_prog = 1; 641 omap_dma_deactivate_channel(s, ch); 642 } 643 } 644 645 if (ch->interrupts & END_BLOCK_INTR) 646 ch->status |= END_BLOCK_INTR; 647 } 648 649 /* Update packet number */ 650 if (ch->fs && ch->bs) { 651 a->pck_element += min_elems; 652 a->pck_element %= a->pck_elements; 653 } 654 655 /* TODO: check if we really need to update anything here or perhaps we 656 * can skip part of this. */ 657 #ifndef MULTI_REQ 658 if (dma->update) { 659 #endif 660 a->element += min_elems; 661 662 frames = a->element / a->elements; 663 a->element = a->element % a->elements; 664 a->frame += frames; 665 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0]; 666 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1]; 667 668 /* If the channel is async, update cpc */ 669 if (!ch->sync && frames) 670 ch->cpc = a->dest & 0xffff; 671 672 /* TODO: if the destination port is IMIF or EMIFF, set the dirty 673 * bits on it. */ 674 #ifndef MULTI_REQ 675 } 676 #else 677 } 678 #endif 679 680 omap_dma_interrupts_update(s); 681 } 682 683 void omap_dma_reset(struct soc_dma_s *dma) 684 { 685 int i; 686 struct omap_dma_s *s = dma->opaque; 687 688 soc_dma_reset(s->dma); 689 if (s->model < omap_dma_4) 690 s->gcr = 0x0004; 691 else 692 s->gcr = 0x00010010; 693 s->ocp = 0x00000000; 694 memset(&s->irqstat, 0, sizeof(s->irqstat)); 695 memset(&s->irqen, 0, sizeof(s->irqen)); 696 s->lcd_ch.src = emiff; 697 s->lcd_ch.condition = 0; 698 s->lcd_ch.interrupts = 0; 699 s->lcd_ch.dual = 0; 700 if (s->model < omap_dma_4) 701 omap_dma_enable_3_1_mapping(s); 702 for (i = 0; i < s->chans; i ++) { 703 s->ch[i].suspend = 0; 704 s->ch[i].prefetch = 0; 705 s->ch[i].buf_disable = 0; 706 s->ch[i].src_sync = 0; 707 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst)); 708 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port)); 709 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode)); 710 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index)); 711 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index)); 712 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian)); 713 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock)); 714 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate)); 715 s->ch[i].write_mode = 0; 716 s->ch[i].data_type = 0; 717 s->ch[i].transparent_copy = 0; 718 s->ch[i].constant_fill = 0; 719 s->ch[i].color = 0x00000000; 720 s->ch[i].end_prog = 0; 721 s->ch[i].repeat = 0; 722 s->ch[i].auto_init = 0; 723 s->ch[i].link_enabled = 0; 724 if (s->model < omap_dma_4) 725 s->ch[i].interrupts = 0x0003; 726 else 727 s->ch[i].interrupts = 0x0000; 728 s->ch[i].status = 0; 729 s->ch[i].cstatus = 0; 730 s->ch[i].active = 0; 731 s->ch[i].enable = 0; 732 s->ch[i].sync = 0; 733 s->ch[i].pending_request = 0; 734 s->ch[i].waiting_end_prog = 0; 735 s->ch[i].cpc = 0x0000; 736 s->ch[i].fs = 0; 737 s->ch[i].bs = 0; 738 s->ch[i].omap_3_1_compatible_disable = 0; 739 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set)); 740 s->ch[i].priority = 0; 741 s->ch[i].interleave_disabled = 0; 742 s->ch[i].type = 0; 743 } 744 } 745 746 static int omap_dma_ch_reg_read(struct omap_dma_s *s, 747 struct omap_dma_channel_s *ch, int reg, uint16_t *value) 748 { 749 switch (reg) { 750 case 0x00: /* SYS_DMA_CSDP_CH0 */ 751 *value = (ch->burst[1] << 14) | 752 (ch->pack[1] << 13) | 753 (ch->port[1] << 9) | 754 (ch->burst[0] << 7) | 755 (ch->pack[0] << 6) | 756 (ch->port[0] << 2) | 757 (ch->data_type >> 1); 758 break; 759 760 case 0x02: /* SYS_DMA_CCR_CH0 */ 761 if (s->model <= omap_dma_3_1) 762 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */ 763 else 764 *value = ch->omap_3_1_compatible_disable << 10; 765 *value |= (ch->mode[1] << 14) | 766 (ch->mode[0] << 12) | 767 (ch->end_prog << 11) | 768 (ch->repeat << 9) | 769 (ch->auto_init << 8) | 770 (ch->enable << 7) | 771 (ch->priority << 6) | 772 (ch->fs << 5) | ch->sync; 773 break; 774 775 case 0x04: /* SYS_DMA_CICR_CH0 */ 776 *value = ch->interrupts; 777 break; 778 779 case 0x06: /* SYS_DMA_CSR_CH0 */ 780 *value = ch->status; 781 ch->status &= SYNC; 782 if (!ch->omap_3_1_compatible_disable && ch->sibling) { 783 *value |= (ch->sibling->status & 0x3f) << 6; 784 ch->sibling->status &= SYNC; 785 } 786 qemu_irq_lower(ch->irq); 787 break; 788 789 case 0x08: /* SYS_DMA_CSSA_L_CH0 */ 790 *value = ch->addr[0] & 0x0000ffff; 791 break; 792 793 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ 794 *value = ch->addr[0] >> 16; 795 break; 796 797 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ 798 *value = ch->addr[1] & 0x0000ffff; 799 break; 800 801 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ 802 *value = ch->addr[1] >> 16; 803 break; 804 805 case 0x10: /* SYS_DMA_CEN_CH0 */ 806 *value = ch->elements; 807 break; 808 809 case 0x12: /* SYS_DMA_CFN_CH0 */ 810 *value = ch->frames; 811 break; 812 813 case 0x14: /* SYS_DMA_CFI_CH0 */ 814 *value = ch->frame_index[0]; 815 break; 816 817 case 0x16: /* SYS_DMA_CEI_CH0 */ 818 *value = ch->element_index[0]; 819 break; 820 821 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */ 822 if (ch->omap_3_1_compatible_disable) 823 *value = ch->active_set.src & 0xffff; /* CSAC */ 824 else 825 *value = ch->cpc; 826 break; 827 828 case 0x1a: /* DMA_CDAC */ 829 *value = ch->active_set.dest & 0xffff; /* CDAC */ 830 break; 831 832 case 0x1c: /* DMA_CDEI */ 833 *value = ch->element_index[1]; 834 break; 835 836 case 0x1e: /* DMA_CDFI */ 837 *value = ch->frame_index[1]; 838 break; 839 840 case 0x20: /* DMA_COLOR_L */ 841 *value = ch->color & 0xffff; 842 break; 843 844 case 0x22: /* DMA_COLOR_U */ 845 *value = ch->color >> 16; 846 break; 847 848 case 0x24: /* DMA_CCR2 */ 849 *value = (ch->bs << 2) | 850 (ch->transparent_copy << 1) | 851 ch->constant_fill; 852 break; 853 854 case 0x28: /* DMA_CLNK_CTRL */ 855 *value = (ch->link_enabled << 15) | 856 (ch->link_next_ch & 0xf); 857 break; 858 859 case 0x2a: /* DMA_LCH_CTRL */ 860 *value = (ch->interleave_disabled << 15) | 861 ch->type; 862 break; 863 864 default: 865 return 1; 866 } 867 return 0; 868 } 869 870 static int omap_dma_ch_reg_write(struct omap_dma_s *s, 871 struct omap_dma_channel_s *ch, int reg, uint16_t value) 872 { 873 switch (reg) { 874 case 0x00: /* SYS_DMA_CSDP_CH0 */ 875 ch->burst[1] = (value & 0xc000) >> 14; 876 ch->pack[1] = (value & 0x2000) >> 13; 877 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9); 878 ch->burst[0] = (value & 0x0180) >> 7; 879 ch->pack[0] = (value & 0x0040) >> 6; 880 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2); 881 if (ch->port[0] >= __omap_dma_port_last) 882 printf("%s: invalid DMA port %i\n", __func__, 883 ch->port[0]); 884 if (ch->port[1] >= __omap_dma_port_last) 885 printf("%s: invalid DMA port %i\n", __func__, 886 ch->port[1]); 887 ch->data_type = 1 << (value & 3); 888 if ((value & 3) == 3) { 889 printf("%s: bad data_type for DMA channel\n", __func__); 890 ch->data_type >>= 1; 891 } 892 break; 893 894 case 0x02: /* SYS_DMA_CCR_CH0 */ 895 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); 896 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); 897 ch->end_prog = (value & 0x0800) >> 11; 898 if (s->model >= omap_dma_3_2) 899 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1; 900 ch->repeat = (value & 0x0200) >> 9; 901 ch->auto_init = (value & 0x0100) >> 8; 902 ch->priority = (value & 0x0040) >> 6; 903 ch->fs = (value & 0x0020) >> 5; 904 ch->sync = value & 0x001f; 905 906 if (value & 0x0080) 907 omap_dma_enable_channel(s, ch); 908 else 909 omap_dma_disable_channel(s, ch); 910 911 if (ch->end_prog) 912 omap_dma_channel_end_prog(s, ch); 913 914 break; 915 916 case 0x04: /* SYS_DMA_CICR_CH0 */ 917 ch->interrupts = value & 0x3f; 918 break; 919 920 case 0x06: /* SYS_DMA_CSR_CH0 */ 921 OMAP_RO_REG((hwaddr) reg); 922 break; 923 924 case 0x08: /* SYS_DMA_CSSA_L_CH0 */ 925 ch->addr[0] &= 0xffff0000; 926 ch->addr[0] |= value; 927 break; 928 929 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ 930 ch->addr[0] &= 0x0000ffff; 931 ch->addr[0] |= (uint32_t) value << 16; 932 break; 933 934 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ 935 ch->addr[1] &= 0xffff0000; 936 ch->addr[1] |= value; 937 break; 938 939 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ 940 ch->addr[1] &= 0x0000ffff; 941 ch->addr[1] |= (uint32_t) value << 16; 942 break; 943 944 case 0x10: /* SYS_DMA_CEN_CH0 */ 945 ch->elements = value; 946 break; 947 948 case 0x12: /* SYS_DMA_CFN_CH0 */ 949 ch->frames = value; 950 break; 951 952 case 0x14: /* SYS_DMA_CFI_CH0 */ 953 ch->frame_index[0] = (int16_t) value; 954 break; 955 956 case 0x16: /* SYS_DMA_CEI_CH0 */ 957 ch->element_index[0] = (int16_t) value; 958 break; 959 960 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */ 961 OMAP_RO_REG((hwaddr) reg); 962 break; 963 964 case 0x1c: /* DMA_CDEI */ 965 ch->element_index[1] = (int16_t) value; 966 break; 967 968 case 0x1e: /* DMA_CDFI */ 969 ch->frame_index[1] = (int16_t) value; 970 break; 971 972 case 0x20: /* DMA_COLOR_L */ 973 ch->color &= 0xffff0000; 974 ch->color |= value; 975 break; 976 977 case 0x22: /* DMA_COLOR_U */ 978 ch->color &= 0xffff; 979 ch->color |= (uint32_t)value << 16; 980 break; 981 982 case 0x24: /* DMA_CCR2 */ 983 ch->bs = (value >> 2) & 0x1; 984 ch->transparent_copy = (value >> 1) & 0x1; 985 ch->constant_fill = value & 0x1; 986 break; 987 988 case 0x28: /* DMA_CLNK_CTRL */ 989 ch->link_enabled = (value >> 15) & 0x1; 990 if (value & (1 << 14)) { /* Stop_Lnk */ 991 ch->link_enabled = 0; 992 omap_dma_disable_channel(s, ch); 993 } 994 ch->link_next_ch = value & 0x1f; 995 break; 996 997 case 0x2a: /* DMA_LCH_CTRL */ 998 ch->interleave_disabled = (value >> 15) & 0x1; 999 ch->type = value & 0xf; 1000 break; 1001 1002 default: 1003 return 1; 1004 } 1005 return 0; 1006 } 1007 1008 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset, 1009 uint16_t value) 1010 { 1011 switch (offset) { 1012 case 0xbc0: /* DMA_LCD_CSDP */ 1013 s->brust_f2 = (value >> 14) & 0x3; 1014 s->pack_f2 = (value >> 13) & 0x1; 1015 s->data_type_f2 = (1 << ((value >> 11) & 0x3)); 1016 s->brust_f1 = (value >> 7) & 0x3; 1017 s->pack_f1 = (value >> 6) & 0x1; 1018 s->data_type_f1 = (1 << ((value >> 0) & 0x3)); 1019 break; 1020 1021 case 0xbc2: /* DMA_LCD_CCR */ 1022 s->mode_f2 = (value >> 14) & 0x3; 1023 s->mode_f1 = (value >> 12) & 0x3; 1024 s->end_prog = (value >> 11) & 0x1; 1025 s->omap_3_1_compatible_disable = (value >> 10) & 0x1; 1026 s->repeat = (value >> 9) & 0x1; 1027 s->auto_init = (value >> 8) & 0x1; 1028 s->running = (value >> 7) & 0x1; 1029 s->priority = (value >> 6) & 0x1; 1030 s->bs = (value >> 4) & 0x1; 1031 break; 1032 1033 case 0xbc4: /* DMA_LCD_CTRL */ 1034 s->dst = (value >> 8) & 0x1; 1035 s->src = ((value >> 6) & 0x3) << 1; 1036 s->condition = 0; 1037 /* Assume no bus errors and thus no BUS_ERROR irq bits. */ 1038 s->interrupts = (value >> 1) & 1; 1039 s->dual = value & 1; 1040 break; 1041 1042 case 0xbc8: /* TOP_B1_L */ 1043 s->src_f1_top &= 0xffff0000; 1044 s->src_f1_top |= 0x0000ffff & value; 1045 break; 1046 1047 case 0xbca: /* TOP_B1_U */ 1048 s->src_f1_top &= 0x0000ffff; 1049 s->src_f1_top |= (uint32_t)value << 16; 1050 break; 1051 1052 case 0xbcc: /* BOT_B1_L */ 1053 s->src_f1_bottom &= 0xffff0000; 1054 s->src_f1_bottom |= 0x0000ffff & value; 1055 break; 1056 1057 case 0xbce: /* BOT_B1_U */ 1058 s->src_f1_bottom &= 0x0000ffff; 1059 s->src_f1_bottom |= (uint32_t) value << 16; 1060 break; 1061 1062 case 0xbd0: /* TOP_B2_L */ 1063 s->src_f2_top &= 0xffff0000; 1064 s->src_f2_top |= 0x0000ffff & value; 1065 break; 1066 1067 case 0xbd2: /* TOP_B2_U */ 1068 s->src_f2_top &= 0x0000ffff; 1069 s->src_f2_top |= (uint32_t) value << 16; 1070 break; 1071 1072 case 0xbd4: /* BOT_B2_L */ 1073 s->src_f2_bottom &= 0xffff0000; 1074 s->src_f2_bottom |= 0x0000ffff & value; 1075 break; 1076 1077 case 0xbd6: /* BOT_B2_U */ 1078 s->src_f2_bottom &= 0x0000ffff; 1079 s->src_f2_bottom |= (uint32_t) value << 16; 1080 break; 1081 1082 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */ 1083 s->element_index_f1 = value; 1084 break; 1085 1086 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */ 1087 s->frame_index_f1 &= 0xffff0000; 1088 s->frame_index_f1 |= 0x0000ffff & value; 1089 break; 1090 1091 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */ 1092 s->frame_index_f1 &= 0x0000ffff; 1093 s->frame_index_f1 |= (uint32_t) value << 16; 1094 break; 1095 1096 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */ 1097 s->element_index_f2 = value; 1098 break; 1099 1100 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */ 1101 s->frame_index_f2 &= 0xffff0000; 1102 s->frame_index_f2 |= 0x0000ffff & value; 1103 break; 1104 1105 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */ 1106 s->frame_index_f2 &= 0x0000ffff; 1107 s->frame_index_f2 |= (uint32_t) value << 16; 1108 break; 1109 1110 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */ 1111 s->elements_f1 = value; 1112 break; 1113 1114 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */ 1115 s->frames_f1 = value; 1116 break; 1117 1118 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */ 1119 s->elements_f2 = value; 1120 break; 1121 1122 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */ 1123 s->frames_f2 = value; 1124 break; 1125 1126 case 0xbea: /* DMA_LCD_LCH_CTRL */ 1127 s->lch_type = value & 0xf; 1128 break; 1129 1130 default: 1131 return 1; 1132 } 1133 return 0; 1134 } 1135 1136 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset, 1137 uint16_t *ret) 1138 { 1139 switch (offset) { 1140 case 0xbc0: /* DMA_LCD_CSDP */ 1141 *ret = (s->brust_f2 << 14) | 1142 (s->pack_f2 << 13) | 1143 ((s->data_type_f2 >> 1) << 11) | 1144 (s->brust_f1 << 7) | 1145 (s->pack_f1 << 6) | 1146 ((s->data_type_f1 >> 1) << 0); 1147 break; 1148 1149 case 0xbc2: /* DMA_LCD_CCR */ 1150 *ret = (s->mode_f2 << 14) | 1151 (s->mode_f1 << 12) | 1152 (s->end_prog << 11) | 1153 (s->omap_3_1_compatible_disable << 10) | 1154 (s->repeat << 9) | 1155 (s->auto_init << 8) | 1156 (s->running << 7) | 1157 (s->priority << 6) | 1158 (s->bs << 4); 1159 break; 1160 1161 case 0xbc4: /* DMA_LCD_CTRL */ 1162 qemu_irq_lower(s->irq); 1163 *ret = (s->dst << 8) | 1164 ((s->src & 0x6) << 5) | 1165 (s->condition << 3) | 1166 (s->interrupts << 1) | 1167 s->dual; 1168 break; 1169 1170 case 0xbc8: /* TOP_B1_L */ 1171 *ret = s->src_f1_top & 0xffff; 1172 break; 1173 1174 case 0xbca: /* TOP_B1_U */ 1175 *ret = s->src_f1_top >> 16; 1176 break; 1177 1178 case 0xbcc: /* BOT_B1_L */ 1179 *ret = s->src_f1_bottom & 0xffff; 1180 break; 1181 1182 case 0xbce: /* BOT_B1_U */ 1183 *ret = s->src_f1_bottom >> 16; 1184 break; 1185 1186 case 0xbd0: /* TOP_B2_L */ 1187 *ret = s->src_f2_top & 0xffff; 1188 break; 1189 1190 case 0xbd2: /* TOP_B2_U */ 1191 *ret = s->src_f2_top >> 16; 1192 break; 1193 1194 case 0xbd4: /* BOT_B2_L */ 1195 *ret = s->src_f2_bottom & 0xffff; 1196 break; 1197 1198 case 0xbd6: /* BOT_B2_U */ 1199 *ret = s->src_f2_bottom >> 16; 1200 break; 1201 1202 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */ 1203 *ret = s->element_index_f1; 1204 break; 1205 1206 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */ 1207 *ret = s->frame_index_f1 & 0xffff; 1208 break; 1209 1210 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */ 1211 *ret = s->frame_index_f1 >> 16; 1212 break; 1213 1214 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */ 1215 *ret = s->element_index_f2; 1216 break; 1217 1218 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */ 1219 *ret = s->frame_index_f2 & 0xffff; 1220 break; 1221 1222 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */ 1223 *ret = s->frame_index_f2 >> 16; 1224 break; 1225 1226 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */ 1227 *ret = s->elements_f1; 1228 break; 1229 1230 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */ 1231 *ret = s->frames_f1; 1232 break; 1233 1234 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */ 1235 *ret = s->elements_f2; 1236 break; 1237 1238 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */ 1239 *ret = s->frames_f2; 1240 break; 1241 1242 case 0xbea: /* DMA_LCD_LCH_CTRL */ 1243 *ret = s->lch_type; 1244 break; 1245 1246 default: 1247 return 1; 1248 } 1249 return 0; 1250 } 1251 1252 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset, 1253 uint16_t value) 1254 { 1255 switch (offset) { 1256 case 0x300: /* SYS_DMA_LCD_CTRL */ 1257 s->src = (value & 0x40) ? imif : emiff; 1258 s->condition = 0; 1259 /* Assume no bus errors and thus no BUS_ERROR irq bits. */ 1260 s->interrupts = (value >> 1) & 1; 1261 s->dual = value & 1; 1262 break; 1263 1264 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ 1265 s->src_f1_top &= 0xffff0000; 1266 s->src_f1_top |= 0x0000ffff & value; 1267 break; 1268 1269 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ 1270 s->src_f1_top &= 0x0000ffff; 1271 s->src_f1_top |= (uint32_t)value << 16; 1272 break; 1273 1274 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ 1275 s->src_f1_bottom &= 0xffff0000; 1276 s->src_f1_bottom |= 0x0000ffff & value; 1277 break; 1278 1279 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ 1280 s->src_f1_bottom &= 0x0000ffff; 1281 s->src_f1_bottom |= (uint32_t)value << 16; 1282 break; 1283 1284 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ 1285 s->src_f2_top &= 0xffff0000; 1286 s->src_f2_top |= 0x0000ffff & value; 1287 break; 1288 1289 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ 1290 s->src_f2_top &= 0x0000ffff; 1291 s->src_f2_top |= (uint32_t)value << 16; 1292 break; 1293 1294 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ 1295 s->src_f2_bottom &= 0xffff0000; 1296 s->src_f2_bottom |= 0x0000ffff & value; 1297 break; 1298 1299 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ 1300 s->src_f2_bottom &= 0x0000ffff; 1301 s->src_f2_bottom |= (uint32_t)value << 16; 1302 break; 1303 1304 default: 1305 return 1; 1306 } 1307 return 0; 1308 } 1309 1310 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset, 1311 uint16_t *ret) 1312 { 1313 int i; 1314 1315 switch (offset) { 1316 case 0x300: /* SYS_DMA_LCD_CTRL */ 1317 i = s->condition; 1318 s->condition = 0; 1319 qemu_irq_lower(s->irq); 1320 *ret = ((s->src == imif) << 6) | (i << 3) | 1321 (s->interrupts << 1) | s->dual; 1322 break; 1323 1324 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ 1325 *ret = s->src_f1_top & 0xffff; 1326 break; 1327 1328 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ 1329 *ret = s->src_f1_top >> 16; 1330 break; 1331 1332 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ 1333 *ret = s->src_f1_bottom & 0xffff; 1334 break; 1335 1336 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ 1337 *ret = s->src_f1_bottom >> 16; 1338 break; 1339 1340 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ 1341 *ret = s->src_f2_top & 0xffff; 1342 break; 1343 1344 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ 1345 *ret = s->src_f2_top >> 16; 1346 break; 1347 1348 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ 1349 *ret = s->src_f2_bottom & 0xffff; 1350 break; 1351 1352 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ 1353 *ret = s->src_f2_bottom >> 16; 1354 break; 1355 1356 default: 1357 return 1; 1358 } 1359 return 0; 1360 } 1361 1362 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value) 1363 { 1364 switch (offset) { 1365 case 0x400: /* SYS_DMA_GCR */ 1366 s->gcr = value; 1367 break; 1368 1369 case 0x404: /* DMA_GSCR */ 1370 if (value & 0x8) 1371 omap_dma_disable_3_1_mapping(s); 1372 else 1373 omap_dma_enable_3_1_mapping(s); 1374 break; 1375 1376 case 0x408: /* DMA_GRST */ 1377 if (value & 0x1) 1378 omap_dma_reset(s->dma); 1379 break; 1380 1381 default: 1382 return 1; 1383 } 1384 return 0; 1385 } 1386 1387 static int omap_dma_sys_read(struct omap_dma_s *s, int offset, 1388 uint16_t *ret) 1389 { 1390 switch (offset) { 1391 case 0x400: /* SYS_DMA_GCR */ 1392 *ret = s->gcr; 1393 break; 1394 1395 case 0x404: /* DMA_GSCR */ 1396 *ret = s->omap_3_1_mapping_disabled << 3; 1397 break; 1398 1399 case 0x408: /* DMA_GRST */ 1400 *ret = 0; 1401 break; 1402 1403 case 0x442: /* DMA_HW_ID */ 1404 case 0x444: /* DMA_PCh2_ID */ 1405 case 0x446: /* DMA_PCh0_ID */ 1406 case 0x448: /* DMA_PCh1_ID */ 1407 case 0x44a: /* DMA_PChG_ID */ 1408 case 0x44c: /* DMA_PChD_ID */ 1409 *ret = 1; 1410 break; 1411 1412 case 0x44e: /* DMA_CAPS_0_U */ 1413 *ret = (s->caps[0] >> 16) & 0xffff; 1414 break; 1415 case 0x450: /* DMA_CAPS_0_L */ 1416 *ret = (s->caps[0] >> 0) & 0xffff; 1417 break; 1418 1419 case 0x452: /* DMA_CAPS_1_U */ 1420 *ret = (s->caps[1] >> 16) & 0xffff; 1421 break; 1422 case 0x454: /* DMA_CAPS_1_L */ 1423 *ret = (s->caps[1] >> 0) & 0xffff; 1424 break; 1425 1426 case 0x456: /* DMA_CAPS_2 */ 1427 *ret = s->caps[2]; 1428 break; 1429 1430 case 0x458: /* DMA_CAPS_3 */ 1431 *ret = s->caps[3]; 1432 break; 1433 1434 case 0x45a: /* DMA_CAPS_4 */ 1435 *ret = s->caps[4]; 1436 break; 1437 1438 case 0x460: /* DMA_PCh2_SR */ 1439 case 0x480: /* DMA_PCh0_SR */ 1440 case 0x482: /* DMA_PCh1_SR */ 1441 case 0x4c0: /* DMA_PChD_SR_0 */ 1442 printf("%s: Physical Channel Status Registers not implemented.\n", 1443 __func__); 1444 *ret = 0xff; 1445 break; 1446 1447 default: 1448 return 1; 1449 } 1450 return 0; 1451 } 1452 1453 static uint64_t omap_dma_read(void *opaque, hwaddr addr, 1454 unsigned size) 1455 { 1456 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1457 int reg, ch; 1458 uint16_t ret; 1459 1460 if (size != 2) { 1461 return omap_badwidth_read16(opaque, addr); 1462 } 1463 1464 switch (addr) { 1465 case 0x300 ... 0x3fe: 1466 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) { 1467 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret)) 1468 break; 1469 return ret; 1470 } 1471 /* Fall through. */ 1472 case 0x000 ... 0x2fe: 1473 reg = addr & 0x3f; 1474 ch = (addr >> 6) & 0x0f; 1475 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret)) 1476 break; 1477 return ret; 1478 1479 case 0x404 ... 0x4fe: 1480 if (s->model <= omap_dma_3_1) 1481 break; 1482 /* Fall through. */ 1483 case 0x400: 1484 if (omap_dma_sys_read(s, addr, &ret)) 1485 break; 1486 return ret; 1487 1488 case 0xb00 ... 0xbfe: 1489 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) { 1490 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret)) 1491 break; 1492 return ret; 1493 } 1494 break; 1495 } 1496 1497 OMAP_BAD_REG(addr); 1498 return 0; 1499 } 1500 1501 static void omap_dma_write(void *opaque, hwaddr addr, 1502 uint64_t value, unsigned size) 1503 { 1504 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1505 int reg, ch; 1506 1507 if (size != 2) { 1508 omap_badwidth_write16(opaque, addr, value); 1509 return; 1510 } 1511 1512 switch (addr) { 1513 case 0x300 ... 0x3fe: 1514 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) { 1515 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value)) 1516 break; 1517 return; 1518 } 1519 /* Fall through. */ 1520 case 0x000 ... 0x2fe: 1521 reg = addr & 0x3f; 1522 ch = (addr >> 6) & 0x0f; 1523 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value)) 1524 break; 1525 return; 1526 1527 case 0x404 ... 0x4fe: 1528 if (s->model <= omap_dma_3_1) 1529 break; 1530 case 0x400: 1531 /* Fall through. */ 1532 if (omap_dma_sys_write(s, addr, value)) 1533 break; 1534 return; 1535 1536 case 0xb00 ... 0xbfe: 1537 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) { 1538 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value)) 1539 break; 1540 return; 1541 } 1542 break; 1543 } 1544 1545 OMAP_BAD_REG(addr); 1546 } 1547 1548 static const MemoryRegionOps omap_dma_ops = { 1549 .read = omap_dma_read, 1550 .write = omap_dma_write, 1551 .endianness = DEVICE_NATIVE_ENDIAN, 1552 }; 1553 1554 static void omap_dma_request(void *opaque, int drq, int req) 1555 { 1556 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1557 /* The request pins are level triggered in QEMU. */ 1558 if (req) { 1559 if (~s->dma->drqbmp & (1ULL << drq)) { 1560 s->dma->drqbmp |= 1ULL << drq; 1561 omap_dma_process_request(s, drq); 1562 } 1563 } else 1564 s->dma->drqbmp &= ~(1ULL << drq); 1565 } 1566 1567 /* XXX: this won't be needed once soc_dma knows about clocks. */ 1568 static void omap_dma_clk_update(void *opaque, int line, int on) 1569 { 1570 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1571 int i; 1572 1573 s->dma->freq = omap_clk_getrate(s->clk); 1574 1575 for (i = 0; i < s->chans; i ++) 1576 if (s->ch[i].active) 1577 soc_dma_set_request(s->ch[i].dma, on); 1578 } 1579 1580 static void omap_dma_setcaps(struct omap_dma_s *s) 1581 { 1582 switch (s->model) { 1583 default: 1584 case omap_dma_3_1: 1585 break; 1586 case omap_dma_3_2: 1587 case omap_dma_4: 1588 /* XXX Only available for sDMA */ 1589 s->caps[0] = 1590 (1 << 19) | /* Constant Fill Capability */ 1591 (1 << 18); /* Transparent BLT Capability */ 1592 s->caps[1] = 1593 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */ 1594 s->caps[2] = 1595 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */ 1596 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */ 1597 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */ 1598 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */ 1599 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */ 1600 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */ 1601 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */ 1602 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */ 1603 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */ 1604 s->caps[3] = 1605 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */ 1606 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */ 1607 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */ 1608 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */ 1609 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */ 1610 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */ 1611 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */ 1612 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */ 1613 s->caps[4] = 1614 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */ 1615 (1 << 6) | /* SYNC_STATUS_CPBLTY */ 1616 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */ 1617 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */ 1618 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */ 1619 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */ 1620 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */ 1621 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */ 1622 break; 1623 } 1624 } 1625 1626 struct soc_dma_s *omap_dma_init(hwaddr base, qemu_irq *irqs, 1627 MemoryRegion *sysmem, 1628 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk, 1629 enum omap_dma_model model) 1630 { 1631 int num_irqs, memsize, i; 1632 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1); 1633 1634 if (model <= omap_dma_3_1) { 1635 num_irqs = 6; 1636 memsize = 0x800; 1637 } else { 1638 num_irqs = 16; 1639 memsize = 0xc00; 1640 } 1641 s->model = model; 1642 s->mpu = mpu; 1643 s->clk = clk; 1644 s->lcd_ch.irq = lcd_irq; 1645 s->lcd_ch.mpu = mpu; 1646 1647 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16); 1648 s->dma->freq = omap_clk_getrate(clk); 1649 s->dma->transfer_fn = omap_dma_transfer_generic; 1650 s->dma->setup_fn = omap_dma_transfer_setup; 1651 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32); 1652 s->dma->opaque = s; 1653 1654 while (num_irqs --) 1655 s->ch[num_irqs].irq = irqs[num_irqs]; 1656 for (i = 0; i < 3; i ++) { 1657 s->ch[i].sibling = &s->ch[i + 6]; 1658 s->ch[i + 6].sibling = &s->ch[i]; 1659 } 1660 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) { 1661 s->ch[i].dma = &s->dma->ch[i]; 1662 s->dma->ch[i].opaque = &s->ch[i]; 1663 } 1664 1665 omap_dma_setcaps(s); 1666 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0)); 1667 omap_dma_reset(s->dma); 1668 omap_dma_clk_update(s, 0, 1); 1669 1670 memory_region_init_io(&s->iomem, NULL, &omap_dma_ops, s, "omap.dma", memsize); 1671 memory_region_add_subregion(sysmem, base, &s->iomem); 1672 1673 mpu->drq = s->dma->drq; 1674 1675 return s->dma; 1676 } 1677 1678 static void omap_dma_interrupts_4_update(struct omap_dma_s *s) 1679 { 1680 struct omap_dma_channel_s *ch = s->ch; 1681 uint32_t bmp, bit; 1682 1683 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1) 1684 if (ch->status) { 1685 bmp |= bit; 1686 ch->cstatus |= ch->status; 1687 ch->status = 0; 1688 } 1689 if ((s->irqstat[0] |= s->irqen[0] & bmp)) 1690 qemu_irq_raise(s->irq[0]); 1691 if ((s->irqstat[1] |= s->irqen[1] & bmp)) 1692 qemu_irq_raise(s->irq[1]); 1693 if ((s->irqstat[2] |= s->irqen[2] & bmp)) 1694 qemu_irq_raise(s->irq[2]); 1695 if ((s->irqstat[3] |= s->irqen[3] & bmp)) 1696 qemu_irq_raise(s->irq[3]); 1697 } 1698 1699 static uint64_t omap_dma4_read(void *opaque, hwaddr addr, 1700 unsigned size) 1701 { 1702 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1703 int irqn = 0, chnum; 1704 struct omap_dma_channel_s *ch; 1705 1706 if (size == 1) { 1707 return omap_badwidth_read16(opaque, addr); 1708 } 1709 1710 switch (addr) { 1711 case 0x00: /* DMA4_REVISION */ 1712 return 0x40; 1713 1714 case 0x14: /* DMA4_IRQSTATUS_L3 */ 1715 irqn ++; 1716 /* fall through */ 1717 case 0x10: /* DMA4_IRQSTATUS_L2 */ 1718 irqn ++; 1719 /* fall through */ 1720 case 0x0c: /* DMA4_IRQSTATUS_L1 */ 1721 irqn ++; 1722 /* fall through */ 1723 case 0x08: /* DMA4_IRQSTATUS_L0 */ 1724 return s->irqstat[irqn]; 1725 1726 case 0x24: /* DMA4_IRQENABLE_L3 */ 1727 irqn ++; 1728 /* fall through */ 1729 case 0x20: /* DMA4_IRQENABLE_L2 */ 1730 irqn ++; 1731 /* fall through */ 1732 case 0x1c: /* DMA4_IRQENABLE_L1 */ 1733 irqn ++; 1734 /* fall through */ 1735 case 0x18: /* DMA4_IRQENABLE_L0 */ 1736 return s->irqen[irqn]; 1737 1738 case 0x28: /* DMA4_SYSSTATUS */ 1739 return 1; /* RESETDONE */ 1740 1741 case 0x2c: /* DMA4_OCP_SYSCONFIG */ 1742 return s->ocp; 1743 1744 case 0x64: /* DMA4_CAPS_0 */ 1745 return s->caps[0]; 1746 case 0x6c: /* DMA4_CAPS_2 */ 1747 return s->caps[2]; 1748 case 0x70: /* DMA4_CAPS_3 */ 1749 return s->caps[3]; 1750 case 0x74: /* DMA4_CAPS_4 */ 1751 return s->caps[4]; 1752 1753 case 0x78: /* DMA4_GCR */ 1754 return s->gcr; 1755 1756 case 0x80 ... 0xfff: 1757 addr -= 0x80; 1758 chnum = addr / 0x60; 1759 ch = s->ch + chnum; 1760 addr -= chnum * 0x60; 1761 break; 1762 1763 default: 1764 OMAP_BAD_REG(addr); 1765 return 0; 1766 } 1767 1768 /* Per-channel registers */ 1769 switch (addr) { 1770 case 0x00: /* DMA4_CCR */ 1771 return (ch->buf_disable << 25) | 1772 (ch->src_sync << 24) | 1773 (ch->prefetch << 23) | 1774 ((ch->sync & 0x60) << 14) | 1775 (ch->bs << 18) | 1776 (ch->transparent_copy << 17) | 1777 (ch->constant_fill << 16) | 1778 (ch->mode[1] << 14) | 1779 (ch->mode[0] << 12) | 1780 (0 << 10) | (0 << 9) | 1781 (ch->suspend << 8) | 1782 (ch->enable << 7) | 1783 (ch->priority << 6) | 1784 (ch->fs << 5) | (ch->sync & 0x1f); 1785 1786 case 0x04: /* DMA4_CLNK_CTRL */ 1787 return (ch->link_enabled << 15) | ch->link_next_ch; 1788 1789 case 0x08: /* DMA4_CICR */ 1790 return ch->interrupts; 1791 1792 case 0x0c: /* DMA4_CSR */ 1793 return ch->cstatus; 1794 1795 case 0x10: /* DMA4_CSDP */ 1796 return (ch->endian[0] << 21) | 1797 (ch->endian_lock[0] << 20) | 1798 (ch->endian[1] << 19) | 1799 (ch->endian_lock[1] << 18) | 1800 (ch->write_mode << 16) | 1801 (ch->burst[1] << 14) | 1802 (ch->pack[1] << 13) | 1803 (ch->translate[1] << 9) | 1804 (ch->burst[0] << 7) | 1805 (ch->pack[0] << 6) | 1806 (ch->translate[0] << 2) | 1807 (ch->data_type >> 1); 1808 1809 case 0x14: /* DMA4_CEN */ 1810 return ch->elements; 1811 1812 case 0x18: /* DMA4_CFN */ 1813 return ch->frames; 1814 1815 case 0x1c: /* DMA4_CSSA */ 1816 return ch->addr[0]; 1817 1818 case 0x20: /* DMA4_CDSA */ 1819 return ch->addr[1]; 1820 1821 case 0x24: /* DMA4_CSEI */ 1822 return ch->element_index[0]; 1823 1824 case 0x28: /* DMA4_CSFI */ 1825 return ch->frame_index[0]; 1826 1827 case 0x2c: /* DMA4_CDEI */ 1828 return ch->element_index[1]; 1829 1830 case 0x30: /* DMA4_CDFI */ 1831 return ch->frame_index[1]; 1832 1833 case 0x34: /* DMA4_CSAC */ 1834 return ch->active_set.src & 0xffff; 1835 1836 case 0x38: /* DMA4_CDAC */ 1837 return ch->active_set.dest & 0xffff; 1838 1839 case 0x3c: /* DMA4_CCEN */ 1840 return ch->active_set.element; 1841 1842 case 0x40: /* DMA4_CCFN */ 1843 return ch->active_set.frame; 1844 1845 case 0x44: /* DMA4_COLOR */ 1846 /* XXX only in sDMA */ 1847 return ch->color; 1848 1849 default: 1850 OMAP_BAD_REG(addr); 1851 return 0; 1852 } 1853 } 1854 1855 static void omap_dma4_write(void *opaque, hwaddr addr, 1856 uint64_t value, unsigned size) 1857 { 1858 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1859 int chnum, irqn = 0; 1860 struct omap_dma_channel_s *ch; 1861 1862 if (size == 1) { 1863 omap_badwidth_write16(opaque, addr, value); 1864 return; 1865 } 1866 1867 switch (addr) { 1868 case 0x14: /* DMA4_IRQSTATUS_L3 */ 1869 irqn ++; 1870 /* fall through */ 1871 case 0x10: /* DMA4_IRQSTATUS_L2 */ 1872 irqn ++; 1873 /* fall through */ 1874 case 0x0c: /* DMA4_IRQSTATUS_L1 */ 1875 irqn ++; 1876 /* fall through */ 1877 case 0x08: /* DMA4_IRQSTATUS_L0 */ 1878 s->irqstat[irqn] &= ~value; 1879 if (!s->irqstat[irqn]) 1880 qemu_irq_lower(s->irq[irqn]); 1881 return; 1882 1883 case 0x24: /* DMA4_IRQENABLE_L3 */ 1884 irqn ++; 1885 /* fall through */ 1886 case 0x20: /* DMA4_IRQENABLE_L2 */ 1887 irqn ++; 1888 /* fall through */ 1889 case 0x1c: /* DMA4_IRQENABLE_L1 */ 1890 irqn ++; 1891 /* fall through */ 1892 case 0x18: /* DMA4_IRQENABLE_L0 */ 1893 s->irqen[irqn] = value; 1894 return; 1895 1896 case 0x2c: /* DMA4_OCP_SYSCONFIG */ 1897 if (value & 2) /* SOFTRESET */ 1898 omap_dma_reset(s->dma); 1899 s->ocp = value & 0x3321; 1900 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */ 1901 fprintf(stderr, "%s: invalid DMA power mode\n", __func__); 1902 return; 1903 1904 case 0x78: /* DMA4_GCR */ 1905 s->gcr = value & 0x00ff00ff; 1906 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */ 1907 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __func__); 1908 return; 1909 1910 case 0x80 ... 0xfff: 1911 addr -= 0x80; 1912 chnum = addr / 0x60; 1913 ch = s->ch + chnum; 1914 addr -= chnum * 0x60; 1915 break; 1916 1917 case 0x00: /* DMA4_REVISION */ 1918 case 0x28: /* DMA4_SYSSTATUS */ 1919 case 0x64: /* DMA4_CAPS_0 */ 1920 case 0x6c: /* DMA4_CAPS_2 */ 1921 case 0x70: /* DMA4_CAPS_3 */ 1922 case 0x74: /* DMA4_CAPS_4 */ 1923 OMAP_RO_REG(addr); 1924 return; 1925 1926 default: 1927 OMAP_BAD_REG(addr); 1928 return; 1929 } 1930 1931 /* Per-channel registers */ 1932 switch (addr) { 1933 case 0x00: /* DMA4_CCR */ 1934 ch->buf_disable = (value >> 25) & 1; 1935 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */ 1936 if (ch->buf_disable && !ch->src_sync) 1937 fprintf(stderr, "%s: Buffering disable is not allowed in " 1938 "destination synchronised mode\n", __func__); 1939 ch->prefetch = (value >> 23) & 1; 1940 ch->bs = (value >> 18) & 1; 1941 ch->transparent_copy = (value >> 17) & 1; 1942 ch->constant_fill = (value >> 16) & 1; 1943 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); 1944 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); 1945 ch->suspend = (value & 0x0100) >> 8; 1946 ch->priority = (value & 0x0040) >> 6; 1947 ch->fs = (value & 0x0020) >> 5; 1948 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1]) 1949 fprintf(stderr, "%s: For a packet transfer at least one port " 1950 "must be constant-addressed\n", __func__); 1951 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060); 1952 /* XXX must be 0x01 for CamDMA */ 1953 1954 if (value & 0x0080) 1955 omap_dma_enable_channel(s, ch); 1956 else 1957 omap_dma_disable_channel(s, ch); 1958 1959 break; 1960 1961 case 0x04: /* DMA4_CLNK_CTRL */ 1962 ch->link_enabled = (value >> 15) & 0x1; 1963 ch->link_next_ch = value & 0x1f; 1964 break; 1965 1966 case 0x08: /* DMA4_CICR */ 1967 ch->interrupts = value & 0x09be; 1968 break; 1969 1970 case 0x0c: /* DMA4_CSR */ 1971 ch->cstatus &= ~value; 1972 break; 1973 1974 case 0x10: /* DMA4_CSDP */ 1975 ch->endian[0] =(value >> 21) & 1; 1976 ch->endian_lock[0] =(value >> 20) & 1; 1977 ch->endian[1] =(value >> 19) & 1; 1978 ch->endian_lock[1] =(value >> 18) & 1; 1979 if (ch->endian[0] != ch->endian[1]) 1980 fprintf(stderr, "%s: DMA endianness conversion enable attempt\n", 1981 __func__); 1982 ch->write_mode = (value >> 16) & 3; 1983 ch->burst[1] = (value & 0xc000) >> 14; 1984 ch->pack[1] = (value & 0x2000) >> 13; 1985 ch->translate[1] = (value & 0x1e00) >> 9; 1986 ch->burst[0] = (value & 0x0180) >> 7; 1987 ch->pack[0] = (value & 0x0040) >> 6; 1988 ch->translate[0] = (value & 0x003c) >> 2; 1989 if (ch->translate[0] | ch->translate[1]) 1990 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n", 1991 __func__); 1992 ch->data_type = 1 << (value & 3); 1993 if ((value & 3) == 3) { 1994 printf("%s: bad data_type for DMA channel\n", __func__); 1995 ch->data_type >>= 1; 1996 } 1997 break; 1998 1999 case 0x14: /* DMA4_CEN */ 2000 ch->set_update = 1; 2001 ch->elements = value & 0xffffff; 2002 break; 2003 2004 case 0x18: /* DMA4_CFN */ 2005 ch->frames = value & 0xffff; 2006 ch->set_update = 1; 2007 break; 2008 2009 case 0x1c: /* DMA4_CSSA */ 2010 ch->addr[0] = (hwaddr) (uint32_t) value; 2011 ch->set_update = 1; 2012 break; 2013 2014 case 0x20: /* DMA4_CDSA */ 2015 ch->addr[1] = (hwaddr) (uint32_t) value; 2016 ch->set_update = 1; 2017 break; 2018 2019 case 0x24: /* DMA4_CSEI */ 2020 ch->element_index[0] = (int16_t) value; 2021 ch->set_update = 1; 2022 break; 2023 2024 case 0x28: /* DMA4_CSFI */ 2025 ch->frame_index[0] = (int32_t) value; 2026 ch->set_update = 1; 2027 break; 2028 2029 case 0x2c: /* DMA4_CDEI */ 2030 ch->element_index[1] = (int16_t) value; 2031 ch->set_update = 1; 2032 break; 2033 2034 case 0x30: /* DMA4_CDFI */ 2035 ch->frame_index[1] = (int32_t) value; 2036 ch->set_update = 1; 2037 break; 2038 2039 case 0x44: /* DMA4_COLOR */ 2040 /* XXX only in sDMA */ 2041 ch->color = value; 2042 break; 2043 2044 case 0x34: /* DMA4_CSAC */ 2045 case 0x38: /* DMA4_CDAC */ 2046 case 0x3c: /* DMA4_CCEN */ 2047 case 0x40: /* DMA4_CCFN */ 2048 OMAP_RO_REG(addr); 2049 break; 2050 2051 default: 2052 OMAP_BAD_REG(addr); 2053 } 2054 } 2055 2056 static const MemoryRegionOps omap_dma4_ops = { 2057 .read = omap_dma4_read, 2058 .write = omap_dma4_write, 2059 .endianness = DEVICE_NATIVE_ENDIAN, 2060 }; 2061 2062 struct soc_dma_s *omap_dma4_init(hwaddr base, qemu_irq *irqs, 2063 MemoryRegion *sysmem, 2064 struct omap_mpu_state_s *mpu, int fifo, 2065 int chans, omap_clk iclk, omap_clk fclk) 2066 { 2067 int i; 2068 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1); 2069 2070 s->model = omap_dma_4; 2071 s->chans = chans; 2072 s->mpu = mpu; 2073 s->clk = fclk; 2074 2075 s->dma = soc_dma_init(s->chans); 2076 s->dma->freq = omap_clk_getrate(fclk); 2077 s->dma->transfer_fn = omap_dma_transfer_generic; 2078 s->dma->setup_fn = omap_dma_transfer_setup; 2079 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64); 2080 s->dma->opaque = s; 2081 for (i = 0; i < s->chans; i ++) { 2082 s->ch[i].dma = &s->dma->ch[i]; 2083 s->dma->ch[i].opaque = &s->ch[i]; 2084 } 2085 2086 memcpy(&s->irq, irqs, sizeof(s->irq)); 2087 s->intr_update = omap_dma_interrupts_4_update; 2088 2089 omap_dma_setcaps(s); 2090 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0)); 2091 omap_dma_reset(s->dma); 2092 omap_dma_clk_update(s, 0, !!s->dma->freq); 2093 2094 memory_region_init_io(&s->iomem, NULL, &omap_dma4_ops, s, "omap.dma4", 0x1000); 2095 memory_region_add_subregion(sysmem, base, &s->iomem); 2096 2097 mpu->drq = s->dma->drq; 2098 2099 return s->dma; 2100 } 2101 2102 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma) 2103 { 2104 struct omap_dma_s *s = dma->opaque; 2105 2106 return &s->lcd_ch; 2107 } 2108