1 /* 2 * TI OMAP DMA gigacell. 3 * 4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org> 5 * Copyright (C) 2007-2008 Lauro Ramos Venancio <lauro.venancio@indt.org.br> 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License as 9 * published by the Free Software Foundation; either version 2 of 10 * the License, or (at your option) any later version. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License along 18 * with this program; if not, see <http://www.gnu.org/licenses/>. 19 */ 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/timer.h" 23 #include "hw/arm/omap.h" 24 #include "hw/irq.h" 25 #include "hw/arm/soc_dma.h" 26 27 struct omap_dma_channel_s { 28 /* transfer data */ 29 int burst[2]; 30 int pack[2]; 31 int endian[2]; 32 int endian_lock[2]; 33 int translate[2]; 34 enum omap_dma_port port[2]; 35 hwaddr addr[2]; 36 omap_dma_addressing_t mode[2]; 37 uint32_t elements; 38 uint16_t frames; 39 int32_t frame_index[2]; 40 int16_t element_index[2]; 41 int data_type; 42 43 /* transfer type */ 44 int transparent_copy; 45 int constant_fill; 46 uint32_t color; 47 int prefetch; 48 49 /* auto init and linked channel data */ 50 int end_prog; 51 int repeat; 52 int auto_init; 53 int link_enabled; 54 int link_next_ch; 55 56 /* interruption data */ 57 int interrupts; 58 int status; 59 int cstatus; 60 61 /* state data */ 62 int active; 63 int enable; 64 int sync; 65 int src_sync; 66 int pending_request; 67 int waiting_end_prog; 68 uint16_t cpc; 69 int set_update; 70 71 /* sync type */ 72 int fs; 73 int bs; 74 75 /* compatibility */ 76 int omap_3_1_compatible_disable; 77 78 qemu_irq irq; 79 struct omap_dma_channel_s *sibling; 80 81 struct omap_dma_reg_set_s { 82 hwaddr src, dest; 83 int frame; 84 int element; 85 int pck_element; 86 int frame_delta[2]; 87 int elem_delta[2]; 88 int frames; 89 int elements; 90 int pck_elements; 91 } active_set; 92 93 struct soc_dma_ch_s *dma; 94 95 /* unused parameters */ 96 int write_mode; 97 int priority; 98 int interleave_disabled; 99 int type; 100 int suspend; 101 int buf_disable; 102 }; 103 104 struct omap_dma_s { 105 struct soc_dma_s *dma; 106 MemoryRegion iomem; 107 108 struct omap_mpu_state_s *mpu; 109 omap_clk clk; 110 qemu_irq irq[4]; 111 void (*intr_update)(struct omap_dma_s *s); 112 enum omap_dma_model model; 113 int omap_3_1_mapping_disabled; 114 115 uint32_t gcr; 116 uint32_t ocp; 117 uint32_t caps[5]; 118 uint32_t irqen[4]; 119 uint32_t irqstat[4]; 120 121 int chans; 122 struct omap_dma_channel_s ch[32]; 123 struct omap_dma_lcd_channel_s lcd_ch; 124 }; 125 126 /* Interrupts */ 127 #define TIMEOUT_INTR (1 << 0) 128 #define EVENT_DROP_INTR (1 << 1) 129 #define HALF_FRAME_INTR (1 << 2) 130 #define END_FRAME_INTR (1 << 3) 131 #define LAST_FRAME_INTR (1 << 4) 132 #define END_BLOCK_INTR (1 << 5) 133 #define SYNC (1 << 6) 134 #define END_PKT_INTR (1 << 7) 135 #define TRANS_ERR_INTR (1 << 8) 136 #define MISALIGN_INTR (1 << 11) 137 138 static inline void omap_dma_interrupts_update(struct omap_dma_s *s) 139 { 140 s->intr_update(s); 141 } 142 143 static void omap_dma_channel_load(struct omap_dma_channel_s *ch) 144 { 145 struct omap_dma_reg_set_s *a = &ch->active_set; 146 int i, normal; 147 int omap_3_1 = !ch->omap_3_1_compatible_disable; 148 149 /* 150 * TODO: verify address ranges and alignment 151 * TODO: port endianness 152 */ 153 154 a->src = ch->addr[0]; 155 a->dest = ch->addr[1]; 156 a->frames = ch->frames; 157 a->elements = ch->elements; 158 a->pck_elements = ch->frame_index[!ch->src_sync]; 159 a->frame = 0; 160 a->element = 0; 161 a->pck_element = 0; 162 163 if (unlikely(!ch->elements || !ch->frames)) { 164 printf("%s: bad DMA request\n", __FUNCTION__); 165 return; 166 } 167 168 for (i = 0; i < 2; i ++) 169 switch (ch->mode[i]) { 170 case constant: 171 a->elem_delta[i] = 0; 172 a->frame_delta[i] = 0; 173 break; 174 case post_incremented: 175 a->elem_delta[i] = ch->data_type; 176 a->frame_delta[i] = 0; 177 break; 178 case single_index: 179 a->elem_delta[i] = ch->data_type + 180 ch->element_index[omap_3_1 ? 0 : i] - 1; 181 a->frame_delta[i] = 0; 182 break; 183 case double_index: 184 a->elem_delta[i] = ch->data_type + 185 ch->element_index[omap_3_1 ? 0 : i] - 1; 186 a->frame_delta[i] = ch->frame_index[omap_3_1 ? 0 : i] - 187 ch->element_index[omap_3_1 ? 0 : i]; 188 break; 189 default: 190 break; 191 } 192 193 normal = !ch->transparent_copy && !ch->constant_fill && 194 /* FIFO is big-endian so either (ch->endian[n] == 1) OR 195 * (ch->endian_lock[n] == 1) mean no endianism conversion. */ 196 (ch->endian[0] | ch->endian_lock[0]) == 197 (ch->endian[1] | ch->endian_lock[1]); 198 for (i = 0; i < 2; i ++) { 199 /* TODO: for a->frame_delta[i] > 0 still use the fast path, just 200 * limit min_elems in omap_dma_transfer_setup to the nearest frame 201 * end. */ 202 if (!a->elem_delta[i] && normal && 203 (a->frames == 1 || !a->frame_delta[i])) 204 ch->dma->type[i] = soc_dma_access_const; 205 else if (a->elem_delta[i] == ch->data_type && normal && 206 (a->frames == 1 || !a->frame_delta[i])) 207 ch->dma->type[i] = soc_dma_access_linear; 208 else 209 ch->dma->type[i] = soc_dma_access_other; 210 211 ch->dma->vaddr[i] = ch->addr[i]; 212 } 213 soc_dma_ch_update(ch->dma); 214 } 215 216 static void omap_dma_activate_channel(struct omap_dma_s *s, 217 struct omap_dma_channel_s *ch) 218 { 219 if (!ch->active) { 220 if (ch->set_update) { 221 /* It's not clear when the active set is supposed to be 222 * loaded from registers. We're already loading it when the 223 * channel is enabled, and for some guests this is not enough 224 * but that may be also because of a race condition (no 225 * delays in qemu) in the guest code, which we're just 226 * working around here. */ 227 omap_dma_channel_load(ch); 228 ch->set_update = 0; 229 } 230 231 ch->active = 1; 232 soc_dma_set_request(ch->dma, 1); 233 if (ch->sync) 234 ch->status |= SYNC; 235 } 236 } 237 238 static void omap_dma_deactivate_channel(struct omap_dma_s *s, 239 struct omap_dma_channel_s *ch) 240 { 241 /* Update cpc */ 242 ch->cpc = ch->active_set.dest & 0xffff; 243 244 if (ch->pending_request && !ch->waiting_end_prog && ch->enable) { 245 /* Don't deactivate the channel */ 246 ch->pending_request = 0; 247 return; 248 } 249 250 /* Don't deactive the channel if it is synchronized and the DMA request is 251 active */ 252 if (ch->sync && ch->enable && (s->dma->drqbmp & (1ULL << ch->sync))) 253 return; 254 255 if (ch->active) { 256 ch->active = 0; 257 ch->status &= ~SYNC; 258 soc_dma_set_request(ch->dma, 0); 259 } 260 } 261 262 static void omap_dma_enable_channel(struct omap_dma_s *s, 263 struct omap_dma_channel_s *ch) 264 { 265 if (!ch->enable) { 266 ch->enable = 1; 267 ch->waiting_end_prog = 0; 268 omap_dma_channel_load(ch); 269 /* TODO: theoretically if ch->sync && ch->prefetch && 270 * !s->dma->drqbmp[ch->sync], we should also activate and fetch 271 * from source and then stall until signalled. */ 272 if ((!ch->sync) || (s->dma->drqbmp & (1ULL << ch->sync))) { 273 omap_dma_activate_channel(s, ch); 274 } 275 } 276 } 277 278 static void omap_dma_disable_channel(struct omap_dma_s *s, 279 struct omap_dma_channel_s *ch) 280 { 281 if (ch->enable) { 282 ch->enable = 0; 283 /* Discard any pending request */ 284 ch->pending_request = 0; 285 omap_dma_deactivate_channel(s, ch); 286 } 287 } 288 289 static void omap_dma_channel_end_prog(struct omap_dma_s *s, 290 struct omap_dma_channel_s *ch) 291 { 292 if (ch->waiting_end_prog) { 293 ch->waiting_end_prog = 0; 294 if (!ch->sync || ch->pending_request) { 295 ch->pending_request = 0; 296 omap_dma_activate_channel(s, ch); 297 } 298 } 299 } 300 301 static void omap_dma_interrupts_3_1_update(struct omap_dma_s *s) 302 { 303 struct omap_dma_channel_s *ch = s->ch; 304 305 /* First three interrupts are shared between two channels each. */ 306 if (ch[0].status | ch[6].status) 307 qemu_irq_raise(ch[0].irq); 308 if (ch[1].status | ch[7].status) 309 qemu_irq_raise(ch[1].irq); 310 if (ch[2].status | ch[8].status) 311 qemu_irq_raise(ch[2].irq); 312 if (ch[3].status) 313 qemu_irq_raise(ch[3].irq); 314 if (ch[4].status) 315 qemu_irq_raise(ch[4].irq); 316 if (ch[5].status) 317 qemu_irq_raise(ch[5].irq); 318 } 319 320 static void omap_dma_interrupts_3_2_update(struct omap_dma_s *s) 321 { 322 struct omap_dma_channel_s *ch = s->ch; 323 int i; 324 325 for (i = s->chans; i; ch ++, i --) 326 if (ch->status) 327 qemu_irq_raise(ch->irq); 328 } 329 330 static void omap_dma_enable_3_1_mapping(struct omap_dma_s *s) 331 { 332 s->omap_3_1_mapping_disabled = 0; 333 s->chans = 9; 334 s->intr_update = omap_dma_interrupts_3_1_update; 335 } 336 337 static void omap_dma_disable_3_1_mapping(struct omap_dma_s *s) 338 { 339 s->omap_3_1_mapping_disabled = 1; 340 s->chans = 16; 341 s->intr_update = omap_dma_interrupts_3_2_update; 342 } 343 344 static void omap_dma_process_request(struct omap_dma_s *s, int request) 345 { 346 int channel; 347 int drop_event = 0; 348 struct omap_dma_channel_s *ch = s->ch; 349 350 for (channel = 0; channel < s->chans; channel ++, ch ++) { 351 if (ch->enable && ch->sync == request) { 352 if (!ch->active) 353 omap_dma_activate_channel(s, ch); 354 else if (!ch->pending_request) 355 ch->pending_request = 1; 356 else { 357 /* Request collision */ 358 /* Second request received while processing other request */ 359 ch->status |= EVENT_DROP_INTR; 360 drop_event = 1; 361 } 362 } 363 } 364 365 if (drop_event) 366 omap_dma_interrupts_update(s); 367 } 368 369 static void omap_dma_transfer_generic(struct soc_dma_ch_s *dma) 370 { 371 uint8_t value[4]; 372 struct omap_dma_channel_s *ch = dma->opaque; 373 struct omap_dma_reg_set_s *a = &ch->active_set; 374 int bytes = dma->bytes; 375 #ifdef MULTI_REQ 376 uint16_t status = ch->status; 377 #endif 378 379 do { 380 /* Transfer a single element */ 381 /* FIXME: check the endianness */ 382 if (!ch->constant_fill) 383 cpu_physical_memory_read(a->src, value, ch->data_type); 384 else 385 *(uint32_t *) value = ch->color; 386 387 if (!ch->transparent_copy || *(uint32_t *) value != ch->color) 388 cpu_physical_memory_write(a->dest, value, ch->data_type); 389 390 a->src += a->elem_delta[0]; 391 a->dest += a->elem_delta[1]; 392 a->element ++; 393 394 #ifndef MULTI_REQ 395 if (a->element == a->elements) { 396 /* End of Frame */ 397 a->element = 0; 398 a->src += a->frame_delta[0]; 399 a->dest += a->frame_delta[1]; 400 a->frame ++; 401 402 /* If the channel is async, update cpc */ 403 if (!ch->sync) 404 ch->cpc = a->dest & 0xffff; 405 } 406 } while ((bytes -= ch->data_type)); 407 #else 408 /* If the channel is element synchronized, deactivate it */ 409 if (ch->sync && !ch->fs && !ch->bs) 410 omap_dma_deactivate_channel(s, ch); 411 412 /* If it is the last frame, set the LAST_FRAME interrupt */ 413 if (a->element == 1 && a->frame == a->frames - 1) 414 if (ch->interrupts & LAST_FRAME_INTR) 415 ch->status |= LAST_FRAME_INTR; 416 417 /* If the half of the frame was reached, set the HALF_FRAME 418 interrupt */ 419 if (a->element == (a->elements >> 1)) 420 if (ch->interrupts & HALF_FRAME_INTR) 421 ch->status |= HALF_FRAME_INTR; 422 423 if (ch->fs && ch->bs) { 424 a->pck_element ++; 425 /* Check if a full packet has beed transferred. */ 426 if (a->pck_element == a->pck_elements) { 427 a->pck_element = 0; 428 429 /* Set the END_PKT interrupt */ 430 if ((ch->interrupts & END_PKT_INTR) && !ch->src_sync) 431 ch->status |= END_PKT_INTR; 432 433 /* If the channel is packet-synchronized, deactivate it */ 434 if (ch->sync) 435 omap_dma_deactivate_channel(s, ch); 436 } 437 } 438 439 if (a->element == a->elements) { 440 /* End of Frame */ 441 a->element = 0; 442 a->src += a->frame_delta[0]; 443 a->dest += a->frame_delta[1]; 444 a->frame ++; 445 446 /* If the channel is frame synchronized, deactivate it */ 447 if (ch->sync && ch->fs && !ch->bs) 448 omap_dma_deactivate_channel(s, ch); 449 450 /* If the channel is async, update cpc */ 451 if (!ch->sync) 452 ch->cpc = a->dest & 0xffff; 453 454 /* Set the END_FRAME interrupt */ 455 if (ch->interrupts & END_FRAME_INTR) 456 ch->status |= END_FRAME_INTR; 457 458 if (a->frame == a->frames) { 459 /* End of Block */ 460 /* Disable the channel */ 461 462 if (ch->omap_3_1_compatible_disable) { 463 omap_dma_disable_channel(s, ch); 464 if (ch->link_enabled) 465 omap_dma_enable_channel(s, 466 &s->ch[ch->link_next_ch]); 467 } else { 468 if (!ch->auto_init) 469 omap_dma_disable_channel(s, ch); 470 else if (ch->repeat || ch->end_prog) 471 omap_dma_channel_load(ch); 472 else { 473 ch->waiting_end_prog = 1; 474 omap_dma_deactivate_channel(s, ch); 475 } 476 } 477 478 if (ch->interrupts & END_BLOCK_INTR) 479 ch->status |= END_BLOCK_INTR; 480 } 481 } 482 } while (status == ch->status && ch->active); 483 484 omap_dma_interrupts_update(s); 485 #endif 486 } 487 488 enum { 489 omap_dma_intr_element_sync, 490 omap_dma_intr_last_frame, 491 omap_dma_intr_half_frame, 492 omap_dma_intr_frame, 493 omap_dma_intr_frame_sync, 494 omap_dma_intr_packet, 495 omap_dma_intr_packet_sync, 496 omap_dma_intr_block, 497 __omap_dma_intr_last, 498 }; 499 500 static void omap_dma_transfer_setup(struct soc_dma_ch_s *dma) 501 { 502 struct omap_dma_port_if_s *src_p, *dest_p; 503 struct omap_dma_reg_set_s *a; 504 struct omap_dma_channel_s *ch = dma->opaque; 505 struct omap_dma_s *s = dma->dma->opaque; 506 int frames, min_elems, elements[__omap_dma_intr_last]; 507 508 a = &ch->active_set; 509 510 src_p = &s->mpu->port[ch->port[0]]; 511 dest_p = &s->mpu->port[ch->port[1]]; 512 if ((!ch->constant_fill && !src_p->addr_valid(s->mpu, a->src)) || 513 (!dest_p->addr_valid(s->mpu, a->dest))) { 514 #if 0 515 /* Bus time-out */ 516 if (ch->interrupts & TIMEOUT_INTR) 517 ch->status |= TIMEOUT_INTR; 518 omap_dma_deactivate_channel(s, ch); 519 continue; 520 #endif 521 printf("%s: Bus time-out in DMA%i operation\n", 522 __FUNCTION__, dma->num); 523 } 524 525 min_elems = INT_MAX; 526 527 /* Check all the conditions that terminate the transfer starting 528 * with those that can occur the soonest. */ 529 #define INTR_CHECK(cond, id, nelements) \ 530 if (cond) { \ 531 elements[id] = nelements; \ 532 if (elements[id] < min_elems) \ 533 min_elems = elements[id]; \ 534 } else \ 535 elements[id] = INT_MAX; 536 537 /* Elements */ 538 INTR_CHECK( 539 ch->sync && !ch->fs && !ch->bs, 540 omap_dma_intr_element_sync, 541 1) 542 543 /* Frames */ 544 /* TODO: for transfers where entire frames can be read and written 545 * using memcpy() but a->frame_delta is non-zero, try to still do 546 * transfers using soc_dma but limit min_elems to a->elements - ... 547 * See also the TODO in omap_dma_channel_load. */ 548 INTR_CHECK( 549 (ch->interrupts & LAST_FRAME_INTR) && 550 ((a->frame < a->frames - 1) || !a->element), 551 omap_dma_intr_last_frame, 552 (a->frames - a->frame - 2) * a->elements + 553 (a->elements - a->element + 1)) 554 INTR_CHECK( 555 ch->interrupts & HALF_FRAME_INTR, 556 omap_dma_intr_half_frame, 557 (a->elements >> 1) + 558 (a->element >= (a->elements >> 1) ? a->elements : 0) - 559 a->element) 560 INTR_CHECK( 561 ch->sync && ch->fs && (ch->interrupts & END_FRAME_INTR), 562 omap_dma_intr_frame, 563 a->elements - a->element) 564 INTR_CHECK( 565 ch->sync && ch->fs && !ch->bs, 566 omap_dma_intr_frame_sync, 567 a->elements - a->element) 568 569 /* Packets */ 570 INTR_CHECK( 571 ch->fs && ch->bs && 572 (ch->interrupts & END_PKT_INTR) && !ch->src_sync, 573 omap_dma_intr_packet, 574 a->pck_elements - a->pck_element) 575 INTR_CHECK( 576 ch->fs && ch->bs && ch->sync, 577 omap_dma_intr_packet_sync, 578 a->pck_elements - a->pck_element) 579 580 /* Blocks */ 581 INTR_CHECK( 582 1, 583 omap_dma_intr_block, 584 (a->frames - a->frame - 1) * a->elements + 585 (a->elements - a->element)) 586 587 dma->bytes = min_elems * ch->data_type; 588 589 /* Set appropriate interrupts and/or deactivate channels */ 590 591 #ifdef MULTI_REQ 592 /* TODO: should all of this only be done if dma->update, and otherwise 593 * inside omap_dma_transfer_generic below - check what's faster. */ 594 if (dma->update) { 595 #endif 596 597 /* If the channel is element synchronized, deactivate it */ 598 if (min_elems == elements[omap_dma_intr_element_sync]) 599 omap_dma_deactivate_channel(s, ch); 600 601 /* If it is the last frame, set the LAST_FRAME interrupt */ 602 if (min_elems == elements[omap_dma_intr_last_frame]) 603 ch->status |= LAST_FRAME_INTR; 604 605 /* If exactly half of the frame was reached, set the HALF_FRAME 606 interrupt */ 607 if (min_elems == elements[omap_dma_intr_half_frame]) 608 ch->status |= HALF_FRAME_INTR; 609 610 /* If a full packet has been transferred, set the END_PKT interrupt */ 611 if (min_elems == elements[omap_dma_intr_packet]) 612 ch->status |= END_PKT_INTR; 613 614 /* If the channel is packet-synchronized, deactivate it */ 615 if (min_elems == elements[omap_dma_intr_packet_sync]) 616 omap_dma_deactivate_channel(s, ch); 617 618 /* If the channel is frame synchronized, deactivate it */ 619 if (min_elems == elements[omap_dma_intr_frame_sync]) 620 omap_dma_deactivate_channel(s, ch); 621 622 /* Set the END_FRAME interrupt */ 623 if (min_elems == elements[omap_dma_intr_frame]) 624 ch->status |= END_FRAME_INTR; 625 626 if (min_elems == elements[omap_dma_intr_block]) { 627 /* End of Block */ 628 /* Disable the channel */ 629 630 if (ch->omap_3_1_compatible_disable) { 631 omap_dma_disable_channel(s, ch); 632 if (ch->link_enabled) 633 omap_dma_enable_channel(s, &s->ch[ch->link_next_ch]); 634 } else { 635 if (!ch->auto_init) 636 omap_dma_disable_channel(s, ch); 637 else if (ch->repeat || ch->end_prog) 638 omap_dma_channel_load(ch); 639 else { 640 ch->waiting_end_prog = 1; 641 omap_dma_deactivate_channel(s, ch); 642 } 643 } 644 645 if (ch->interrupts & END_BLOCK_INTR) 646 ch->status |= END_BLOCK_INTR; 647 } 648 649 /* Update packet number */ 650 if (ch->fs && ch->bs) { 651 a->pck_element += min_elems; 652 a->pck_element %= a->pck_elements; 653 } 654 655 /* TODO: check if we really need to update anything here or perhaps we 656 * can skip part of this. */ 657 #ifndef MULTI_REQ 658 if (dma->update) { 659 #endif 660 a->element += min_elems; 661 662 frames = a->element / a->elements; 663 a->element = a->element % a->elements; 664 a->frame += frames; 665 a->src += min_elems * a->elem_delta[0] + frames * a->frame_delta[0]; 666 a->dest += min_elems * a->elem_delta[1] + frames * a->frame_delta[1]; 667 668 /* If the channel is async, update cpc */ 669 if (!ch->sync && frames) 670 ch->cpc = a->dest & 0xffff; 671 672 /* TODO: if the destination port is IMIF or EMIFF, set the dirty 673 * bits on it. */ 674 #ifndef MULTI_REQ 675 } 676 #else 677 } 678 #endif 679 680 omap_dma_interrupts_update(s); 681 } 682 683 void omap_dma_reset(struct soc_dma_s *dma) 684 { 685 int i; 686 struct omap_dma_s *s = dma->opaque; 687 688 soc_dma_reset(s->dma); 689 if (s->model < omap_dma_4) 690 s->gcr = 0x0004; 691 else 692 s->gcr = 0x00010010; 693 s->ocp = 0x00000000; 694 memset(&s->irqstat, 0, sizeof(s->irqstat)); 695 memset(&s->irqen, 0, sizeof(s->irqen)); 696 s->lcd_ch.src = emiff; 697 s->lcd_ch.condition = 0; 698 s->lcd_ch.interrupts = 0; 699 s->lcd_ch.dual = 0; 700 if (s->model < omap_dma_4) 701 omap_dma_enable_3_1_mapping(s); 702 for (i = 0; i < s->chans; i ++) { 703 s->ch[i].suspend = 0; 704 s->ch[i].prefetch = 0; 705 s->ch[i].buf_disable = 0; 706 s->ch[i].src_sync = 0; 707 memset(&s->ch[i].burst, 0, sizeof(s->ch[i].burst)); 708 memset(&s->ch[i].port, 0, sizeof(s->ch[i].port)); 709 memset(&s->ch[i].mode, 0, sizeof(s->ch[i].mode)); 710 memset(&s->ch[i].frame_index, 0, sizeof(s->ch[i].frame_index)); 711 memset(&s->ch[i].element_index, 0, sizeof(s->ch[i].element_index)); 712 memset(&s->ch[i].endian, 0, sizeof(s->ch[i].endian)); 713 memset(&s->ch[i].endian_lock, 0, sizeof(s->ch[i].endian_lock)); 714 memset(&s->ch[i].translate, 0, sizeof(s->ch[i].translate)); 715 s->ch[i].write_mode = 0; 716 s->ch[i].data_type = 0; 717 s->ch[i].transparent_copy = 0; 718 s->ch[i].constant_fill = 0; 719 s->ch[i].color = 0x00000000; 720 s->ch[i].end_prog = 0; 721 s->ch[i].repeat = 0; 722 s->ch[i].auto_init = 0; 723 s->ch[i].link_enabled = 0; 724 if (s->model < omap_dma_4) 725 s->ch[i].interrupts = 0x0003; 726 else 727 s->ch[i].interrupts = 0x0000; 728 s->ch[i].status = 0; 729 s->ch[i].cstatus = 0; 730 s->ch[i].active = 0; 731 s->ch[i].enable = 0; 732 s->ch[i].sync = 0; 733 s->ch[i].pending_request = 0; 734 s->ch[i].waiting_end_prog = 0; 735 s->ch[i].cpc = 0x0000; 736 s->ch[i].fs = 0; 737 s->ch[i].bs = 0; 738 s->ch[i].omap_3_1_compatible_disable = 0; 739 memset(&s->ch[i].active_set, 0, sizeof(s->ch[i].active_set)); 740 s->ch[i].priority = 0; 741 s->ch[i].interleave_disabled = 0; 742 s->ch[i].type = 0; 743 } 744 } 745 746 static int omap_dma_ch_reg_read(struct omap_dma_s *s, 747 struct omap_dma_channel_s *ch, int reg, uint16_t *value) 748 { 749 switch (reg) { 750 case 0x00: /* SYS_DMA_CSDP_CH0 */ 751 *value = (ch->burst[1] << 14) | 752 (ch->pack[1] << 13) | 753 (ch->port[1] << 9) | 754 (ch->burst[0] << 7) | 755 (ch->pack[0] << 6) | 756 (ch->port[0] << 2) | 757 (ch->data_type >> 1); 758 break; 759 760 case 0x02: /* SYS_DMA_CCR_CH0 */ 761 if (s->model <= omap_dma_3_1) 762 *value = 0 << 10; /* FIFO_FLUSH reads as 0 */ 763 else 764 *value = ch->omap_3_1_compatible_disable << 10; 765 *value |= (ch->mode[1] << 14) | 766 (ch->mode[0] << 12) | 767 (ch->end_prog << 11) | 768 (ch->repeat << 9) | 769 (ch->auto_init << 8) | 770 (ch->enable << 7) | 771 (ch->priority << 6) | 772 (ch->fs << 5) | ch->sync; 773 break; 774 775 case 0x04: /* SYS_DMA_CICR_CH0 */ 776 *value = ch->interrupts; 777 break; 778 779 case 0x06: /* SYS_DMA_CSR_CH0 */ 780 *value = ch->status; 781 ch->status &= SYNC; 782 if (!ch->omap_3_1_compatible_disable && ch->sibling) { 783 *value |= (ch->sibling->status & 0x3f) << 6; 784 ch->sibling->status &= SYNC; 785 } 786 qemu_irq_lower(ch->irq); 787 break; 788 789 case 0x08: /* SYS_DMA_CSSA_L_CH0 */ 790 *value = ch->addr[0] & 0x0000ffff; 791 break; 792 793 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ 794 *value = ch->addr[0] >> 16; 795 break; 796 797 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ 798 *value = ch->addr[1] & 0x0000ffff; 799 break; 800 801 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ 802 *value = ch->addr[1] >> 16; 803 break; 804 805 case 0x10: /* SYS_DMA_CEN_CH0 */ 806 *value = ch->elements; 807 break; 808 809 case 0x12: /* SYS_DMA_CFN_CH0 */ 810 *value = ch->frames; 811 break; 812 813 case 0x14: /* SYS_DMA_CFI_CH0 */ 814 *value = ch->frame_index[0]; 815 break; 816 817 case 0x16: /* SYS_DMA_CEI_CH0 */ 818 *value = ch->element_index[0]; 819 break; 820 821 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */ 822 if (ch->omap_3_1_compatible_disable) 823 *value = ch->active_set.src & 0xffff; /* CSAC */ 824 else 825 *value = ch->cpc; 826 break; 827 828 case 0x1a: /* DMA_CDAC */ 829 *value = ch->active_set.dest & 0xffff; /* CDAC */ 830 break; 831 832 case 0x1c: /* DMA_CDEI */ 833 *value = ch->element_index[1]; 834 break; 835 836 case 0x1e: /* DMA_CDFI */ 837 *value = ch->frame_index[1]; 838 break; 839 840 case 0x20: /* DMA_COLOR_L */ 841 *value = ch->color & 0xffff; 842 break; 843 844 case 0x22: /* DMA_COLOR_U */ 845 *value = ch->color >> 16; 846 break; 847 848 case 0x24: /* DMA_CCR2 */ 849 *value = (ch->bs << 2) | 850 (ch->transparent_copy << 1) | 851 ch->constant_fill; 852 break; 853 854 case 0x28: /* DMA_CLNK_CTRL */ 855 *value = (ch->link_enabled << 15) | 856 (ch->link_next_ch & 0xf); 857 break; 858 859 case 0x2a: /* DMA_LCH_CTRL */ 860 *value = (ch->interleave_disabled << 15) | 861 ch->type; 862 break; 863 864 default: 865 return 1; 866 } 867 return 0; 868 } 869 870 static int omap_dma_ch_reg_write(struct omap_dma_s *s, 871 struct omap_dma_channel_s *ch, int reg, uint16_t value) 872 { 873 switch (reg) { 874 case 0x00: /* SYS_DMA_CSDP_CH0 */ 875 ch->burst[1] = (value & 0xc000) >> 14; 876 ch->pack[1] = (value & 0x2000) >> 13; 877 ch->port[1] = (enum omap_dma_port) ((value & 0x1e00) >> 9); 878 ch->burst[0] = (value & 0x0180) >> 7; 879 ch->pack[0] = (value & 0x0040) >> 6; 880 ch->port[0] = (enum omap_dma_port) ((value & 0x003c) >> 2); 881 ch->data_type = 1 << (value & 3); 882 if (ch->port[0] >= __omap_dma_port_last) 883 printf("%s: invalid DMA port %i\n", __FUNCTION__, 884 ch->port[0]); 885 if (ch->port[1] >= __omap_dma_port_last) 886 printf("%s: invalid DMA port %i\n", __FUNCTION__, 887 ch->port[1]); 888 if ((value & 3) == 3) 889 printf("%s: bad data_type for DMA channel\n", __FUNCTION__); 890 break; 891 892 case 0x02: /* SYS_DMA_CCR_CH0 */ 893 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); 894 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); 895 ch->end_prog = (value & 0x0800) >> 11; 896 if (s->model >= omap_dma_3_2) 897 ch->omap_3_1_compatible_disable = (value >> 10) & 0x1; 898 ch->repeat = (value & 0x0200) >> 9; 899 ch->auto_init = (value & 0x0100) >> 8; 900 ch->priority = (value & 0x0040) >> 6; 901 ch->fs = (value & 0x0020) >> 5; 902 ch->sync = value & 0x001f; 903 904 if (value & 0x0080) 905 omap_dma_enable_channel(s, ch); 906 else 907 omap_dma_disable_channel(s, ch); 908 909 if (ch->end_prog) 910 omap_dma_channel_end_prog(s, ch); 911 912 break; 913 914 case 0x04: /* SYS_DMA_CICR_CH0 */ 915 ch->interrupts = value & 0x3f; 916 break; 917 918 case 0x06: /* SYS_DMA_CSR_CH0 */ 919 OMAP_RO_REG((hwaddr) reg); 920 break; 921 922 case 0x08: /* SYS_DMA_CSSA_L_CH0 */ 923 ch->addr[0] &= 0xffff0000; 924 ch->addr[0] |= value; 925 break; 926 927 case 0x0a: /* SYS_DMA_CSSA_U_CH0 */ 928 ch->addr[0] &= 0x0000ffff; 929 ch->addr[0] |= (uint32_t) value << 16; 930 break; 931 932 case 0x0c: /* SYS_DMA_CDSA_L_CH0 */ 933 ch->addr[1] &= 0xffff0000; 934 ch->addr[1] |= value; 935 break; 936 937 case 0x0e: /* SYS_DMA_CDSA_U_CH0 */ 938 ch->addr[1] &= 0x0000ffff; 939 ch->addr[1] |= (uint32_t) value << 16; 940 break; 941 942 case 0x10: /* SYS_DMA_CEN_CH0 */ 943 ch->elements = value; 944 break; 945 946 case 0x12: /* SYS_DMA_CFN_CH0 */ 947 ch->frames = value; 948 break; 949 950 case 0x14: /* SYS_DMA_CFI_CH0 */ 951 ch->frame_index[0] = (int16_t) value; 952 break; 953 954 case 0x16: /* SYS_DMA_CEI_CH0 */ 955 ch->element_index[0] = (int16_t) value; 956 break; 957 958 case 0x18: /* SYS_DMA_CPC_CH0 or DMA_CSAC */ 959 OMAP_RO_REG((hwaddr) reg); 960 break; 961 962 case 0x1c: /* DMA_CDEI */ 963 ch->element_index[1] = (int16_t) value; 964 break; 965 966 case 0x1e: /* DMA_CDFI */ 967 ch->frame_index[1] = (int16_t) value; 968 break; 969 970 case 0x20: /* DMA_COLOR_L */ 971 ch->color &= 0xffff0000; 972 ch->color |= value; 973 break; 974 975 case 0x22: /* DMA_COLOR_U */ 976 ch->color &= 0xffff; 977 ch->color |= (uint32_t)value << 16; 978 break; 979 980 case 0x24: /* DMA_CCR2 */ 981 ch->bs = (value >> 2) & 0x1; 982 ch->transparent_copy = (value >> 1) & 0x1; 983 ch->constant_fill = value & 0x1; 984 break; 985 986 case 0x28: /* DMA_CLNK_CTRL */ 987 ch->link_enabled = (value >> 15) & 0x1; 988 if (value & (1 << 14)) { /* Stop_Lnk */ 989 ch->link_enabled = 0; 990 omap_dma_disable_channel(s, ch); 991 } 992 ch->link_next_ch = value & 0x1f; 993 break; 994 995 case 0x2a: /* DMA_LCH_CTRL */ 996 ch->interleave_disabled = (value >> 15) & 0x1; 997 ch->type = value & 0xf; 998 break; 999 1000 default: 1001 return 1; 1002 } 1003 return 0; 1004 } 1005 1006 static int omap_dma_3_2_lcd_write(struct omap_dma_lcd_channel_s *s, int offset, 1007 uint16_t value) 1008 { 1009 switch (offset) { 1010 case 0xbc0: /* DMA_LCD_CSDP */ 1011 s->brust_f2 = (value >> 14) & 0x3; 1012 s->pack_f2 = (value >> 13) & 0x1; 1013 s->data_type_f2 = (1 << ((value >> 11) & 0x3)); 1014 s->brust_f1 = (value >> 7) & 0x3; 1015 s->pack_f1 = (value >> 6) & 0x1; 1016 s->data_type_f1 = (1 << ((value >> 0) & 0x3)); 1017 break; 1018 1019 case 0xbc2: /* DMA_LCD_CCR */ 1020 s->mode_f2 = (value >> 14) & 0x3; 1021 s->mode_f1 = (value >> 12) & 0x3; 1022 s->end_prog = (value >> 11) & 0x1; 1023 s->omap_3_1_compatible_disable = (value >> 10) & 0x1; 1024 s->repeat = (value >> 9) & 0x1; 1025 s->auto_init = (value >> 8) & 0x1; 1026 s->running = (value >> 7) & 0x1; 1027 s->priority = (value >> 6) & 0x1; 1028 s->bs = (value >> 4) & 0x1; 1029 break; 1030 1031 case 0xbc4: /* DMA_LCD_CTRL */ 1032 s->dst = (value >> 8) & 0x1; 1033 s->src = ((value >> 6) & 0x3) << 1; 1034 s->condition = 0; 1035 /* Assume no bus errors and thus no BUS_ERROR irq bits. */ 1036 s->interrupts = (value >> 1) & 1; 1037 s->dual = value & 1; 1038 break; 1039 1040 case 0xbc8: /* TOP_B1_L */ 1041 s->src_f1_top &= 0xffff0000; 1042 s->src_f1_top |= 0x0000ffff & value; 1043 break; 1044 1045 case 0xbca: /* TOP_B1_U */ 1046 s->src_f1_top &= 0x0000ffff; 1047 s->src_f1_top |= (uint32_t)value << 16; 1048 break; 1049 1050 case 0xbcc: /* BOT_B1_L */ 1051 s->src_f1_bottom &= 0xffff0000; 1052 s->src_f1_bottom |= 0x0000ffff & value; 1053 break; 1054 1055 case 0xbce: /* BOT_B1_U */ 1056 s->src_f1_bottom &= 0x0000ffff; 1057 s->src_f1_bottom |= (uint32_t) value << 16; 1058 break; 1059 1060 case 0xbd0: /* TOP_B2_L */ 1061 s->src_f2_top &= 0xffff0000; 1062 s->src_f2_top |= 0x0000ffff & value; 1063 break; 1064 1065 case 0xbd2: /* TOP_B2_U */ 1066 s->src_f2_top &= 0x0000ffff; 1067 s->src_f2_top |= (uint32_t) value << 16; 1068 break; 1069 1070 case 0xbd4: /* BOT_B2_L */ 1071 s->src_f2_bottom &= 0xffff0000; 1072 s->src_f2_bottom |= 0x0000ffff & value; 1073 break; 1074 1075 case 0xbd6: /* BOT_B2_U */ 1076 s->src_f2_bottom &= 0x0000ffff; 1077 s->src_f2_bottom |= (uint32_t) value << 16; 1078 break; 1079 1080 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */ 1081 s->element_index_f1 = value; 1082 break; 1083 1084 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */ 1085 s->frame_index_f1 &= 0xffff0000; 1086 s->frame_index_f1 |= 0x0000ffff & value; 1087 break; 1088 1089 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */ 1090 s->frame_index_f1 &= 0x0000ffff; 1091 s->frame_index_f1 |= (uint32_t) value << 16; 1092 break; 1093 1094 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */ 1095 s->element_index_f2 = value; 1096 break; 1097 1098 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */ 1099 s->frame_index_f2 &= 0xffff0000; 1100 s->frame_index_f2 |= 0x0000ffff & value; 1101 break; 1102 1103 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */ 1104 s->frame_index_f2 &= 0x0000ffff; 1105 s->frame_index_f2 |= (uint32_t) value << 16; 1106 break; 1107 1108 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */ 1109 s->elements_f1 = value; 1110 break; 1111 1112 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */ 1113 s->frames_f1 = value; 1114 break; 1115 1116 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */ 1117 s->elements_f2 = value; 1118 break; 1119 1120 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */ 1121 s->frames_f2 = value; 1122 break; 1123 1124 case 0xbea: /* DMA_LCD_LCH_CTRL */ 1125 s->lch_type = value & 0xf; 1126 break; 1127 1128 default: 1129 return 1; 1130 } 1131 return 0; 1132 } 1133 1134 static int omap_dma_3_2_lcd_read(struct omap_dma_lcd_channel_s *s, int offset, 1135 uint16_t *ret) 1136 { 1137 switch (offset) { 1138 case 0xbc0: /* DMA_LCD_CSDP */ 1139 *ret = (s->brust_f2 << 14) | 1140 (s->pack_f2 << 13) | 1141 ((s->data_type_f2 >> 1) << 11) | 1142 (s->brust_f1 << 7) | 1143 (s->pack_f1 << 6) | 1144 ((s->data_type_f1 >> 1) << 0); 1145 break; 1146 1147 case 0xbc2: /* DMA_LCD_CCR */ 1148 *ret = (s->mode_f2 << 14) | 1149 (s->mode_f1 << 12) | 1150 (s->end_prog << 11) | 1151 (s->omap_3_1_compatible_disable << 10) | 1152 (s->repeat << 9) | 1153 (s->auto_init << 8) | 1154 (s->running << 7) | 1155 (s->priority << 6) | 1156 (s->bs << 4); 1157 break; 1158 1159 case 0xbc4: /* DMA_LCD_CTRL */ 1160 qemu_irq_lower(s->irq); 1161 *ret = (s->dst << 8) | 1162 ((s->src & 0x6) << 5) | 1163 (s->condition << 3) | 1164 (s->interrupts << 1) | 1165 s->dual; 1166 break; 1167 1168 case 0xbc8: /* TOP_B1_L */ 1169 *ret = s->src_f1_top & 0xffff; 1170 break; 1171 1172 case 0xbca: /* TOP_B1_U */ 1173 *ret = s->src_f1_top >> 16; 1174 break; 1175 1176 case 0xbcc: /* BOT_B1_L */ 1177 *ret = s->src_f1_bottom & 0xffff; 1178 break; 1179 1180 case 0xbce: /* BOT_B1_U */ 1181 *ret = s->src_f1_bottom >> 16; 1182 break; 1183 1184 case 0xbd0: /* TOP_B2_L */ 1185 *ret = s->src_f2_top & 0xffff; 1186 break; 1187 1188 case 0xbd2: /* TOP_B2_U */ 1189 *ret = s->src_f2_top >> 16; 1190 break; 1191 1192 case 0xbd4: /* BOT_B2_L */ 1193 *ret = s->src_f2_bottom & 0xffff; 1194 break; 1195 1196 case 0xbd6: /* BOT_B2_U */ 1197 *ret = s->src_f2_bottom >> 16; 1198 break; 1199 1200 case 0xbd8: /* DMA_LCD_SRC_EI_B1 */ 1201 *ret = s->element_index_f1; 1202 break; 1203 1204 case 0xbda: /* DMA_LCD_SRC_FI_B1_L */ 1205 *ret = s->frame_index_f1 & 0xffff; 1206 break; 1207 1208 case 0xbf4: /* DMA_LCD_SRC_FI_B1_U */ 1209 *ret = s->frame_index_f1 >> 16; 1210 break; 1211 1212 case 0xbdc: /* DMA_LCD_SRC_EI_B2 */ 1213 *ret = s->element_index_f2; 1214 break; 1215 1216 case 0xbde: /* DMA_LCD_SRC_FI_B2_L */ 1217 *ret = s->frame_index_f2 & 0xffff; 1218 break; 1219 1220 case 0xbf6: /* DMA_LCD_SRC_FI_B2_U */ 1221 *ret = s->frame_index_f2 >> 16; 1222 break; 1223 1224 case 0xbe0: /* DMA_LCD_SRC_EN_B1 */ 1225 *ret = s->elements_f1; 1226 break; 1227 1228 case 0xbe4: /* DMA_LCD_SRC_FN_B1 */ 1229 *ret = s->frames_f1; 1230 break; 1231 1232 case 0xbe2: /* DMA_LCD_SRC_EN_B2 */ 1233 *ret = s->elements_f2; 1234 break; 1235 1236 case 0xbe6: /* DMA_LCD_SRC_FN_B2 */ 1237 *ret = s->frames_f2; 1238 break; 1239 1240 case 0xbea: /* DMA_LCD_LCH_CTRL */ 1241 *ret = s->lch_type; 1242 break; 1243 1244 default: 1245 return 1; 1246 } 1247 return 0; 1248 } 1249 1250 static int omap_dma_3_1_lcd_write(struct omap_dma_lcd_channel_s *s, int offset, 1251 uint16_t value) 1252 { 1253 switch (offset) { 1254 case 0x300: /* SYS_DMA_LCD_CTRL */ 1255 s->src = (value & 0x40) ? imif : emiff; 1256 s->condition = 0; 1257 /* Assume no bus errors and thus no BUS_ERROR irq bits. */ 1258 s->interrupts = (value >> 1) & 1; 1259 s->dual = value & 1; 1260 break; 1261 1262 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ 1263 s->src_f1_top &= 0xffff0000; 1264 s->src_f1_top |= 0x0000ffff & value; 1265 break; 1266 1267 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ 1268 s->src_f1_top &= 0x0000ffff; 1269 s->src_f1_top |= (uint32_t)value << 16; 1270 break; 1271 1272 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ 1273 s->src_f1_bottom &= 0xffff0000; 1274 s->src_f1_bottom |= 0x0000ffff & value; 1275 break; 1276 1277 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ 1278 s->src_f1_bottom &= 0x0000ffff; 1279 s->src_f1_bottom |= (uint32_t)value << 16; 1280 break; 1281 1282 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ 1283 s->src_f2_top &= 0xffff0000; 1284 s->src_f2_top |= 0x0000ffff & value; 1285 break; 1286 1287 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ 1288 s->src_f2_top &= 0x0000ffff; 1289 s->src_f2_top |= (uint32_t)value << 16; 1290 break; 1291 1292 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ 1293 s->src_f2_bottom &= 0xffff0000; 1294 s->src_f2_bottom |= 0x0000ffff & value; 1295 break; 1296 1297 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ 1298 s->src_f2_bottom &= 0x0000ffff; 1299 s->src_f2_bottom |= (uint32_t)value << 16; 1300 break; 1301 1302 default: 1303 return 1; 1304 } 1305 return 0; 1306 } 1307 1308 static int omap_dma_3_1_lcd_read(struct omap_dma_lcd_channel_s *s, int offset, 1309 uint16_t *ret) 1310 { 1311 int i; 1312 1313 switch (offset) { 1314 case 0x300: /* SYS_DMA_LCD_CTRL */ 1315 i = s->condition; 1316 s->condition = 0; 1317 qemu_irq_lower(s->irq); 1318 *ret = ((s->src == imif) << 6) | (i << 3) | 1319 (s->interrupts << 1) | s->dual; 1320 break; 1321 1322 case 0x302: /* SYS_DMA_LCD_TOP_F1_L */ 1323 *ret = s->src_f1_top & 0xffff; 1324 break; 1325 1326 case 0x304: /* SYS_DMA_LCD_TOP_F1_U */ 1327 *ret = s->src_f1_top >> 16; 1328 break; 1329 1330 case 0x306: /* SYS_DMA_LCD_BOT_F1_L */ 1331 *ret = s->src_f1_bottom & 0xffff; 1332 break; 1333 1334 case 0x308: /* SYS_DMA_LCD_BOT_F1_U */ 1335 *ret = s->src_f1_bottom >> 16; 1336 break; 1337 1338 case 0x30a: /* SYS_DMA_LCD_TOP_F2_L */ 1339 *ret = s->src_f2_top & 0xffff; 1340 break; 1341 1342 case 0x30c: /* SYS_DMA_LCD_TOP_F2_U */ 1343 *ret = s->src_f2_top >> 16; 1344 break; 1345 1346 case 0x30e: /* SYS_DMA_LCD_BOT_F2_L */ 1347 *ret = s->src_f2_bottom & 0xffff; 1348 break; 1349 1350 case 0x310: /* SYS_DMA_LCD_BOT_F2_U */ 1351 *ret = s->src_f2_bottom >> 16; 1352 break; 1353 1354 default: 1355 return 1; 1356 } 1357 return 0; 1358 } 1359 1360 static int omap_dma_sys_write(struct omap_dma_s *s, int offset, uint16_t value) 1361 { 1362 switch (offset) { 1363 case 0x400: /* SYS_DMA_GCR */ 1364 s->gcr = value; 1365 break; 1366 1367 case 0x404: /* DMA_GSCR */ 1368 if (value & 0x8) 1369 omap_dma_disable_3_1_mapping(s); 1370 else 1371 omap_dma_enable_3_1_mapping(s); 1372 break; 1373 1374 case 0x408: /* DMA_GRST */ 1375 if (value & 0x1) 1376 omap_dma_reset(s->dma); 1377 break; 1378 1379 default: 1380 return 1; 1381 } 1382 return 0; 1383 } 1384 1385 static int omap_dma_sys_read(struct omap_dma_s *s, int offset, 1386 uint16_t *ret) 1387 { 1388 switch (offset) { 1389 case 0x400: /* SYS_DMA_GCR */ 1390 *ret = s->gcr; 1391 break; 1392 1393 case 0x404: /* DMA_GSCR */ 1394 *ret = s->omap_3_1_mapping_disabled << 3; 1395 break; 1396 1397 case 0x408: /* DMA_GRST */ 1398 *ret = 0; 1399 break; 1400 1401 case 0x442: /* DMA_HW_ID */ 1402 case 0x444: /* DMA_PCh2_ID */ 1403 case 0x446: /* DMA_PCh0_ID */ 1404 case 0x448: /* DMA_PCh1_ID */ 1405 case 0x44a: /* DMA_PChG_ID */ 1406 case 0x44c: /* DMA_PChD_ID */ 1407 *ret = 1; 1408 break; 1409 1410 case 0x44e: /* DMA_CAPS_0_U */ 1411 *ret = (s->caps[0] >> 16) & 0xffff; 1412 break; 1413 case 0x450: /* DMA_CAPS_0_L */ 1414 *ret = (s->caps[0] >> 0) & 0xffff; 1415 break; 1416 1417 case 0x452: /* DMA_CAPS_1_U */ 1418 *ret = (s->caps[1] >> 16) & 0xffff; 1419 break; 1420 case 0x454: /* DMA_CAPS_1_L */ 1421 *ret = (s->caps[1] >> 0) & 0xffff; 1422 break; 1423 1424 case 0x456: /* DMA_CAPS_2 */ 1425 *ret = s->caps[2]; 1426 break; 1427 1428 case 0x458: /* DMA_CAPS_3 */ 1429 *ret = s->caps[3]; 1430 break; 1431 1432 case 0x45a: /* DMA_CAPS_4 */ 1433 *ret = s->caps[4]; 1434 break; 1435 1436 case 0x460: /* DMA_PCh2_SR */ 1437 case 0x480: /* DMA_PCh0_SR */ 1438 case 0x482: /* DMA_PCh1_SR */ 1439 case 0x4c0: /* DMA_PChD_SR_0 */ 1440 printf("%s: Physical Channel Status Registers not implemented.\n", 1441 __FUNCTION__); 1442 *ret = 0xff; 1443 break; 1444 1445 default: 1446 return 1; 1447 } 1448 return 0; 1449 } 1450 1451 static uint64_t omap_dma_read(void *opaque, hwaddr addr, 1452 unsigned size) 1453 { 1454 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1455 int reg, ch; 1456 uint16_t ret; 1457 1458 if (size != 2) { 1459 return omap_badwidth_read16(opaque, addr); 1460 } 1461 1462 switch (addr) { 1463 case 0x300 ... 0x3fe: 1464 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) { 1465 if (omap_dma_3_1_lcd_read(&s->lcd_ch, addr, &ret)) 1466 break; 1467 return ret; 1468 } 1469 /* Fall through. */ 1470 case 0x000 ... 0x2fe: 1471 reg = addr & 0x3f; 1472 ch = (addr >> 6) & 0x0f; 1473 if (omap_dma_ch_reg_read(s, &s->ch[ch], reg, &ret)) 1474 break; 1475 return ret; 1476 1477 case 0x404 ... 0x4fe: 1478 if (s->model <= omap_dma_3_1) 1479 break; 1480 /* Fall through. */ 1481 case 0x400: 1482 if (omap_dma_sys_read(s, addr, &ret)) 1483 break; 1484 return ret; 1485 1486 case 0xb00 ... 0xbfe: 1487 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) { 1488 if (omap_dma_3_2_lcd_read(&s->lcd_ch, addr, &ret)) 1489 break; 1490 return ret; 1491 } 1492 break; 1493 } 1494 1495 OMAP_BAD_REG(addr); 1496 return 0; 1497 } 1498 1499 static void omap_dma_write(void *opaque, hwaddr addr, 1500 uint64_t value, unsigned size) 1501 { 1502 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1503 int reg, ch; 1504 1505 if (size != 2) { 1506 omap_badwidth_write16(opaque, addr, value); 1507 return; 1508 } 1509 1510 switch (addr) { 1511 case 0x300 ... 0x3fe: 1512 if (s->model <= omap_dma_3_1 || !s->omap_3_1_mapping_disabled) { 1513 if (omap_dma_3_1_lcd_write(&s->lcd_ch, addr, value)) 1514 break; 1515 return; 1516 } 1517 /* Fall through. */ 1518 case 0x000 ... 0x2fe: 1519 reg = addr & 0x3f; 1520 ch = (addr >> 6) & 0x0f; 1521 if (omap_dma_ch_reg_write(s, &s->ch[ch], reg, value)) 1522 break; 1523 return; 1524 1525 case 0x404 ... 0x4fe: 1526 if (s->model <= omap_dma_3_1) 1527 break; 1528 case 0x400: 1529 /* Fall through. */ 1530 if (omap_dma_sys_write(s, addr, value)) 1531 break; 1532 return; 1533 1534 case 0xb00 ... 0xbfe: 1535 if (s->model == omap_dma_3_2 && s->omap_3_1_mapping_disabled) { 1536 if (omap_dma_3_2_lcd_write(&s->lcd_ch, addr, value)) 1537 break; 1538 return; 1539 } 1540 break; 1541 } 1542 1543 OMAP_BAD_REG(addr); 1544 } 1545 1546 static const MemoryRegionOps omap_dma_ops = { 1547 .read = omap_dma_read, 1548 .write = omap_dma_write, 1549 .endianness = DEVICE_NATIVE_ENDIAN, 1550 }; 1551 1552 static void omap_dma_request(void *opaque, int drq, int req) 1553 { 1554 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1555 /* The request pins are level triggered in QEMU. */ 1556 if (req) { 1557 if (~s->dma->drqbmp & (1ULL << drq)) { 1558 s->dma->drqbmp |= 1ULL << drq; 1559 omap_dma_process_request(s, drq); 1560 } 1561 } else 1562 s->dma->drqbmp &= ~(1ULL << drq); 1563 } 1564 1565 /* XXX: this won't be needed once soc_dma knows about clocks. */ 1566 static void omap_dma_clk_update(void *opaque, int line, int on) 1567 { 1568 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1569 int i; 1570 1571 s->dma->freq = omap_clk_getrate(s->clk); 1572 1573 for (i = 0; i < s->chans; i ++) 1574 if (s->ch[i].active) 1575 soc_dma_set_request(s->ch[i].dma, on); 1576 } 1577 1578 static void omap_dma_setcaps(struct omap_dma_s *s) 1579 { 1580 switch (s->model) { 1581 default: 1582 case omap_dma_3_1: 1583 break; 1584 case omap_dma_3_2: 1585 case omap_dma_4: 1586 /* XXX Only available for sDMA */ 1587 s->caps[0] = 1588 (1 << 19) | /* Constant Fill Capability */ 1589 (1 << 18); /* Transparent BLT Capability */ 1590 s->caps[1] = 1591 (1 << 1); /* 1-bit palettized capability (DMA 3.2 only) */ 1592 s->caps[2] = 1593 (1 << 8) | /* SEPARATE_SRC_AND_DST_INDEX_CPBLTY */ 1594 (1 << 7) | /* DST_DOUBLE_INDEX_ADRS_CPBLTY */ 1595 (1 << 6) | /* DST_SINGLE_INDEX_ADRS_CPBLTY */ 1596 (1 << 5) | /* DST_POST_INCRMNT_ADRS_CPBLTY */ 1597 (1 << 4) | /* DST_CONST_ADRS_CPBLTY */ 1598 (1 << 3) | /* SRC_DOUBLE_INDEX_ADRS_CPBLTY */ 1599 (1 << 2) | /* SRC_SINGLE_INDEX_ADRS_CPBLTY */ 1600 (1 << 1) | /* SRC_POST_INCRMNT_ADRS_CPBLTY */ 1601 (1 << 0); /* SRC_CONST_ADRS_CPBLTY */ 1602 s->caps[3] = 1603 (1 << 6) | /* BLOCK_SYNCHR_CPBLTY (DMA 4 only) */ 1604 (1 << 7) | /* PKT_SYNCHR_CPBLTY (DMA 4 only) */ 1605 (1 << 5) | /* CHANNEL_CHAINING_CPBLTY */ 1606 (1 << 4) | /* LCh_INTERLEAVE_CPBLTY */ 1607 (1 << 3) | /* AUTOINIT_REPEAT_CPBLTY (DMA 3.2 only) */ 1608 (1 << 2) | /* AUTOINIT_ENDPROG_CPBLTY (DMA 3.2 only) */ 1609 (1 << 1) | /* FRAME_SYNCHR_CPBLTY */ 1610 (1 << 0); /* ELMNT_SYNCHR_CPBLTY */ 1611 s->caps[4] = 1612 (1 << 7) | /* PKT_INTERRUPT_CPBLTY (DMA 4 only) */ 1613 (1 << 6) | /* SYNC_STATUS_CPBLTY */ 1614 (1 << 5) | /* BLOCK_INTERRUPT_CPBLTY */ 1615 (1 << 4) | /* LAST_FRAME_INTERRUPT_CPBLTY */ 1616 (1 << 3) | /* FRAME_INTERRUPT_CPBLTY */ 1617 (1 << 2) | /* HALF_FRAME_INTERRUPT_CPBLTY */ 1618 (1 << 1) | /* EVENT_DROP_INTERRUPT_CPBLTY */ 1619 (1 << 0); /* TIMEOUT_INTERRUPT_CPBLTY (DMA 3.2 only) */ 1620 break; 1621 } 1622 } 1623 1624 struct soc_dma_s *omap_dma_init(hwaddr base, qemu_irq *irqs, 1625 MemoryRegion *sysmem, 1626 qemu_irq lcd_irq, struct omap_mpu_state_s *mpu, omap_clk clk, 1627 enum omap_dma_model model) 1628 { 1629 int num_irqs, memsize, i; 1630 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1); 1631 1632 if (model <= omap_dma_3_1) { 1633 num_irqs = 6; 1634 memsize = 0x800; 1635 } else { 1636 num_irqs = 16; 1637 memsize = 0xc00; 1638 } 1639 s->model = model; 1640 s->mpu = mpu; 1641 s->clk = clk; 1642 s->lcd_ch.irq = lcd_irq; 1643 s->lcd_ch.mpu = mpu; 1644 1645 s->dma = soc_dma_init((model <= omap_dma_3_1) ? 9 : 16); 1646 s->dma->freq = omap_clk_getrate(clk); 1647 s->dma->transfer_fn = omap_dma_transfer_generic; 1648 s->dma->setup_fn = omap_dma_transfer_setup; 1649 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 32); 1650 s->dma->opaque = s; 1651 1652 while (num_irqs --) 1653 s->ch[num_irqs].irq = irqs[num_irqs]; 1654 for (i = 0; i < 3; i ++) { 1655 s->ch[i].sibling = &s->ch[i + 6]; 1656 s->ch[i + 6].sibling = &s->ch[i]; 1657 } 1658 for (i = (model <= omap_dma_3_1) ? 8 : 15; i >= 0; i --) { 1659 s->ch[i].dma = &s->dma->ch[i]; 1660 s->dma->ch[i].opaque = &s->ch[i]; 1661 } 1662 1663 omap_dma_setcaps(s); 1664 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0)); 1665 omap_dma_reset(s->dma); 1666 omap_dma_clk_update(s, 0, 1); 1667 1668 memory_region_init_io(&s->iomem, NULL, &omap_dma_ops, s, "omap.dma", memsize); 1669 memory_region_add_subregion(sysmem, base, &s->iomem); 1670 1671 mpu->drq = s->dma->drq; 1672 1673 return s->dma; 1674 } 1675 1676 static void omap_dma_interrupts_4_update(struct omap_dma_s *s) 1677 { 1678 struct omap_dma_channel_s *ch = s->ch; 1679 uint32_t bmp, bit; 1680 1681 for (bmp = 0, bit = 1; bit; ch ++, bit <<= 1) 1682 if (ch->status) { 1683 bmp |= bit; 1684 ch->cstatus |= ch->status; 1685 ch->status = 0; 1686 } 1687 if ((s->irqstat[0] |= s->irqen[0] & bmp)) 1688 qemu_irq_raise(s->irq[0]); 1689 if ((s->irqstat[1] |= s->irqen[1] & bmp)) 1690 qemu_irq_raise(s->irq[1]); 1691 if ((s->irqstat[2] |= s->irqen[2] & bmp)) 1692 qemu_irq_raise(s->irq[2]); 1693 if ((s->irqstat[3] |= s->irqen[3] & bmp)) 1694 qemu_irq_raise(s->irq[3]); 1695 } 1696 1697 static uint64_t omap_dma4_read(void *opaque, hwaddr addr, 1698 unsigned size) 1699 { 1700 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1701 int irqn = 0, chnum; 1702 struct omap_dma_channel_s *ch; 1703 1704 if (size == 1) { 1705 return omap_badwidth_read16(opaque, addr); 1706 } 1707 1708 switch (addr) { 1709 case 0x00: /* DMA4_REVISION */ 1710 return 0x40; 1711 1712 case 0x14: /* DMA4_IRQSTATUS_L3 */ 1713 irqn ++; 1714 /* fall through */ 1715 case 0x10: /* DMA4_IRQSTATUS_L2 */ 1716 irqn ++; 1717 /* fall through */ 1718 case 0x0c: /* DMA4_IRQSTATUS_L1 */ 1719 irqn ++; 1720 /* fall through */ 1721 case 0x08: /* DMA4_IRQSTATUS_L0 */ 1722 return s->irqstat[irqn]; 1723 1724 case 0x24: /* DMA4_IRQENABLE_L3 */ 1725 irqn ++; 1726 /* fall through */ 1727 case 0x20: /* DMA4_IRQENABLE_L2 */ 1728 irqn ++; 1729 /* fall through */ 1730 case 0x1c: /* DMA4_IRQENABLE_L1 */ 1731 irqn ++; 1732 /* fall through */ 1733 case 0x18: /* DMA4_IRQENABLE_L0 */ 1734 return s->irqen[irqn]; 1735 1736 case 0x28: /* DMA4_SYSSTATUS */ 1737 return 1; /* RESETDONE */ 1738 1739 case 0x2c: /* DMA4_OCP_SYSCONFIG */ 1740 return s->ocp; 1741 1742 case 0x64: /* DMA4_CAPS_0 */ 1743 return s->caps[0]; 1744 case 0x6c: /* DMA4_CAPS_2 */ 1745 return s->caps[2]; 1746 case 0x70: /* DMA4_CAPS_3 */ 1747 return s->caps[3]; 1748 case 0x74: /* DMA4_CAPS_4 */ 1749 return s->caps[4]; 1750 1751 case 0x78: /* DMA4_GCR */ 1752 return s->gcr; 1753 1754 case 0x80 ... 0xfff: 1755 addr -= 0x80; 1756 chnum = addr / 0x60; 1757 ch = s->ch + chnum; 1758 addr -= chnum * 0x60; 1759 break; 1760 1761 default: 1762 OMAP_BAD_REG(addr); 1763 return 0; 1764 } 1765 1766 /* Per-channel registers */ 1767 switch (addr) { 1768 case 0x00: /* DMA4_CCR */ 1769 return (ch->buf_disable << 25) | 1770 (ch->src_sync << 24) | 1771 (ch->prefetch << 23) | 1772 ((ch->sync & 0x60) << 14) | 1773 (ch->bs << 18) | 1774 (ch->transparent_copy << 17) | 1775 (ch->constant_fill << 16) | 1776 (ch->mode[1] << 14) | 1777 (ch->mode[0] << 12) | 1778 (0 << 10) | (0 << 9) | 1779 (ch->suspend << 8) | 1780 (ch->enable << 7) | 1781 (ch->priority << 6) | 1782 (ch->fs << 5) | (ch->sync & 0x1f); 1783 1784 case 0x04: /* DMA4_CLNK_CTRL */ 1785 return (ch->link_enabled << 15) | ch->link_next_ch; 1786 1787 case 0x08: /* DMA4_CICR */ 1788 return ch->interrupts; 1789 1790 case 0x0c: /* DMA4_CSR */ 1791 return ch->cstatus; 1792 1793 case 0x10: /* DMA4_CSDP */ 1794 return (ch->endian[0] << 21) | 1795 (ch->endian_lock[0] << 20) | 1796 (ch->endian[1] << 19) | 1797 (ch->endian_lock[1] << 18) | 1798 (ch->write_mode << 16) | 1799 (ch->burst[1] << 14) | 1800 (ch->pack[1] << 13) | 1801 (ch->translate[1] << 9) | 1802 (ch->burst[0] << 7) | 1803 (ch->pack[0] << 6) | 1804 (ch->translate[0] << 2) | 1805 (ch->data_type >> 1); 1806 1807 case 0x14: /* DMA4_CEN */ 1808 return ch->elements; 1809 1810 case 0x18: /* DMA4_CFN */ 1811 return ch->frames; 1812 1813 case 0x1c: /* DMA4_CSSA */ 1814 return ch->addr[0]; 1815 1816 case 0x20: /* DMA4_CDSA */ 1817 return ch->addr[1]; 1818 1819 case 0x24: /* DMA4_CSEI */ 1820 return ch->element_index[0]; 1821 1822 case 0x28: /* DMA4_CSFI */ 1823 return ch->frame_index[0]; 1824 1825 case 0x2c: /* DMA4_CDEI */ 1826 return ch->element_index[1]; 1827 1828 case 0x30: /* DMA4_CDFI */ 1829 return ch->frame_index[1]; 1830 1831 case 0x34: /* DMA4_CSAC */ 1832 return ch->active_set.src & 0xffff; 1833 1834 case 0x38: /* DMA4_CDAC */ 1835 return ch->active_set.dest & 0xffff; 1836 1837 case 0x3c: /* DMA4_CCEN */ 1838 return ch->active_set.element; 1839 1840 case 0x40: /* DMA4_CCFN */ 1841 return ch->active_set.frame; 1842 1843 case 0x44: /* DMA4_COLOR */ 1844 /* XXX only in sDMA */ 1845 return ch->color; 1846 1847 default: 1848 OMAP_BAD_REG(addr); 1849 return 0; 1850 } 1851 } 1852 1853 static void omap_dma4_write(void *opaque, hwaddr addr, 1854 uint64_t value, unsigned size) 1855 { 1856 struct omap_dma_s *s = (struct omap_dma_s *) opaque; 1857 int chnum, irqn = 0; 1858 struct omap_dma_channel_s *ch; 1859 1860 if (size == 1) { 1861 omap_badwidth_write16(opaque, addr, value); 1862 return; 1863 } 1864 1865 switch (addr) { 1866 case 0x14: /* DMA4_IRQSTATUS_L3 */ 1867 irqn ++; 1868 /* fall through */ 1869 case 0x10: /* DMA4_IRQSTATUS_L2 */ 1870 irqn ++; 1871 /* fall through */ 1872 case 0x0c: /* DMA4_IRQSTATUS_L1 */ 1873 irqn ++; 1874 /* fall through */ 1875 case 0x08: /* DMA4_IRQSTATUS_L0 */ 1876 s->irqstat[irqn] &= ~value; 1877 if (!s->irqstat[irqn]) 1878 qemu_irq_lower(s->irq[irqn]); 1879 return; 1880 1881 case 0x24: /* DMA4_IRQENABLE_L3 */ 1882 irqn ++; 1883 /* fall through */ 1884 case 0x20: /* DMA4_IRQENABLE_L2 */ 1885 irqn ++; 1886 /* fall through */ 1887 case 0x1c: /* DMA4_IRQENABLE_L1 */ 1888 irqn ++; 1889 /* fall through */ 1890 case 0x18: /* DMA4_IRQENABLE_L0 */ 1891 s->irqen[irqn] = value; 1892 return; 1893 1894 case 0x2c: /* DMA4_OCP_SYSCONFIG */ 1895 if (value & 2) /* SOFTRESET */ 1896 omap_dma_reset(s->dma); 1897 s->ocp = value & 0x3321; 1898 if (((s->ocp >> 12) & 3) == 3) /* MIDLEMODE */ 1899 fprintf(stderr, "%s: invalid DMA power mode\n", __FUNCTION__); 1900 return; 1901 1902 case 0x78: /* DMA4_GCR */ 1903 s->gcr = value & 0x00ff00ff; 1904 if ((value & 0xff) == 0x00) /* MAX_CHANNEL_FIFO_DEPTH */ 1905 fprintf(stderr, "%s: wrong FIFO depth in GCR\n", __FUNCTION__); 1906 return; 1907 1908 case 0x80 ... 0xfff: 1909 addr -= 0x80; 1910 chnum = addr / 0x60; 1911 ch = s->ch + chnum; 1912 addr -= chnum * 0x60; 1913 break; 1914 1915 case 0x00: /* DMA4_REVISION */ 1916 case 0x28: /* DMA4_SYSSTATUS */ 1917 case 0x64: /* DMA4_CAPS_0 */ 1918 case 0x6c: /* DMA4_CAPS_2 */ 1919 case 0x70: /* DMA4_CAPS_3 */ 1920 case 0x74: /* DMA4_CAPS_4 */ 1921 OMAP_RO_REG(addr); 1922 return; 1923 1924 default: 1925 OMAP_BAD_REG(addr); 1926 return; 1927 } 1928 1929 /* Per-channel registers */ 1930 switch (addr) { 1931 case 0x00: /* DMA4_CCR */ 1932 ch->buf_disable = (value >> 25) & 1; 1933 ch->src_sync = (value >> 24) & 1; /* XXX For CamDMA must be 1 */ 1934 if (ch->buf_disable && !ch->src_sync) 1935 fprintf(stderr, "%s: Buffering disable is not allowed in " 1936 "destination synchronised mode\n", __FUNCTION__); 1937 ch->prefetch = (value >> 23) & 1; 1938 ch->bs = (value >> 18) & 1; 1939 ch->transparent_copy = (value >> 17) & 1; 1940 ch->constant_fill = (value >> 16) & 1; 1941 ch->mode[1] = (omap_dma_addressing_t) ((value & 0xc000) >> 14); 1942 ch->mode[0] = (omap_dma_addressing_t) ((value & 0x3000) >> 12); 1943 ch->suspend = (value & 0x0100) >> 8; 1944 ch->priority = (value & 0x0040) >> 6; 1945 ch->fs = (value & 0x0020) >> 5; 1946 if (ch->fs && ch->bs && ch->mode[0] && ch->mode[1]) 1947 fprintf(stderr, "%s: For a packet transfer at least one port " 1948 "must be constant-addressed\n", __FUNCTION__); 1949 ch->sync = (value & 0x001f) | ((value >> 14) & 0x0060); 1950 /* XXX must be 0x01 for CamDMA */ 1951 1952 if (value & 0x0080) 1953 omap_dma_enable_channel(s, ch); 1954 else 1955 omap_dma_disable_channel(s, ch); 1956 1957 break; 1958 1959 case 0x04: /* DMA4_CLNK_CTRL */ 1960 ch->link_enabled = (value >> 15) & 0x1; 1961 ch->link_next_ch = value & 0x1f; 1962 break; 1963 1964 case 0x08: /* DMA4_CICR */ 1965 ch->interrupts = value & 0x09be; 1966 break; 1967 1968 case 0x0c: /* DMA4_CSR */ 1969 ch->cstatus &= ~value; 1970 break; 1971 1972 case 0x10: /* DMA4_CSDP */ 1973 ch->endian[0] =(value >> 21) & 1; 1974 ch->endian_lock[0] =(value >> 20) & 1; 1975 ch->endian[1] =(value >> 19) & 1; 1976 ch->endian_lock[1] =(value >> 18) & 1; 1977 if (ch->endian[0] != ch->endian[1]) 1978 fprintf(stderr, "%s: DMA endiannes conversion enable attempt\n", 1979 __FUNCTION__); 1980 ch->write_mode = (value >> 16) & 3; 1981 ch->burst[1] = (value & 0xc000) >> 14; 1982 ch->pack[1] = (value & 0x2000) >> 13; 1983 ch->translate[1] = (value & 0x1e00) >> 9; 1984 ch->burst[0] = (value & 0x0180) >> 7; 1985 ch->pack[0] = (value & 0x0040) >> 6; 1986 ch->translate[0] = (value & 0x003c) >> 2; 1987 if (ch->translate[0] | ch->translate[1]) 1988 fprintf(stderr, "%s: bad MReqAddressTranslate sideband signal\n", 1989 __FUNCTION__); 1990 ch->data_type = 1 << (value & 3); 1991 if ((value & 3) == 3) 1992 printf("%s: bad data_type for DMA channel\n", __FUNCTION__); 1993 break; 1994 1995 case 0x14: /* DMA4_CEN */ 1996 ch->set_update = 1; 1997 ch->elements = value & 0xffffff; 1998 break; 1999 2000 case 0x18: /* DMA4_CFN */ 2001 ch->frames = value & 0xffff; 2002 ch->set_update = 1; 2003 break; 2004 2005 case 0x1c: /* DMA4_CSSA */ 2006 ch->addr[0] = (hwaddr) (uint32_t) value; 2007 ch->set_update = 1; 2008 break; 2009 2010 case 0x20: /* DMA4_CDSA */ 2011 ch->addr[1] = (hwaddr) (uint32_t) value; 2012 ch->set_update = 1; 2013 break; 2014 2015 case 0x24: /* DMA4_CSEI */ 2016 ch->element_index[0] = (int16_t) value; 2017 ch->set_update = 1; 2018 break; 2019 2020 case 0x28: /* DMA4_CSFI */ 2021 ch->frame_index[0] = (int32_t) value; 2022 ch->set_update = 1; 2023 break; 2024 2025 case 0x2c: /* DMA4_CDEI */ 2026 ch->element_index[1] = (int16_t) value; 2027 ch->set_update = 1; 2028 break; 2029 2030 case 0x30: /* DMA4_CDFI */ 2031 ch->frame_index[1] = (int32_t) value; 2032 ch->set_update = 1; 2033 break; 2034 2035 case 0x44: /* DMA4_COLOR */ 2036 /* XXX only in sDMA */ 2037 ch->color = value; 2038 break; 2039 2040 case 0x34: /* DMA4_CSAC */ 2041 case 0x38: /* DMA4_CDAC */ 2042 case 0x3c: /* DMA4_CCEN */ 2043 case 0x40: /* DMA4_CCFN */ 2044 OMAP_RO_REG(addr); 2045 break; 2046 2047 default: 2048 OMAP_BAD_REG(addr); 2049 } 2050 } 2051 2052 static const MemoryRegionOps omap_dma4_ops = { 2053 .read = omap_dma4_read, 2054 .write = omap_dma4_write, 2055 .endianness = DEVICE_NATIVE_ENDIAN, 2056 }; 2057 2058 struct soc_dma_s *omap_dma4_init(hwaddr base, qemu_irq *irqs, 2059 MemoryRegion *sysmem, 2060 struct omap_mpu_state_s *mpu, int fifo, 2061 int chans, omap_clk iclk, omap_clk fclk) 2062 { 2063 int i; 2064 struct omap_dma_s *s = g_new0(struct omap_dma_s, 1); 2065 2066 s->model = omap_dma_4; 2067 s->chans = chans; 2068 s->mpu = mpu; 2069 s->clk = fclk; 2070 2071 s->dma = soc_dma_init(s->chans); 2072 s->dma->freq = omap_clk_getrate(fclk); 2073 s->dma->transfer_fn = omap_dma_transfer_generic; 2074 s->dma->setup_fn = omap_dma_transfer_setup; 2075 s->dma->drq = qemu_allocate_irqs(omap_dma_request, s, 64); 2076 s->dma->opaque = s; 2077 for (i = 0; i < s->chans; i ++) { 2078 s->ch[i].dma = &s->dma->ch[i]; 2079 s->dma->ch[i].opaque = &s->ch[i]; 2080 } 2081 2082 memcpy(&s->irq, irqs, sizeof(s->irq)); 2083 s->intr_update = omap_dma_interrupts_4_update; 2084 2085 omap_dma_setcaps(s); 2086 omap_clk_adduser(s->clk, qemu_allocate_irq(omap_dma_clk_update, s, 0)); 2087 omap_dma_reset(s->dma); 2088 omap_dma_clk_update(s, 0, !!s->dma->freq); 2089 2090 memory_region_init_io(&s->iomem, NULL, &omap_dma4_ops, s, "omap.dma4", 0x1000); 2091 memory_region_add_subregion(sysmem, base, &s->iomem); 2092 2093 mpu->drq = s->dma->drq; 2094 2095 return s->dma; 2096 } 2097 2098 struct omap_dma_lcd_channel_s *omap_dma_get_lcdch(struct soc_dma_s *dma) 2099 { 2100 struct omap_dma_s *s = dma->opaque; 2101 2102 return &s->lcd_ch; 2103 } 2104