xref: /openbmc/qemu/hw/dma/i8257.c (revision 14a650ec)
1 /*
2  * QEMU DMA emulation
3  *
4  * Copyright (c) 2003-2004 Vassili Karpov (malc)
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/isa/isa.h"
26 #include "qemu/main-loop.h"
27 
28 /* #define DEBUG_DMA */
29 
30 #define dolog(...) fprintf (stderr, "dma: " __VA_ARGS__)
31 #ifdef DEBUG_DMA
32 #define linfo(...) fprintf (stderr, "dma: " __VA_ARGS__)
33 #define ldebug(...) fprintf (stderr, "dma: " __VA_ARGS__)
34 #else
35 #define linfo(...)
36 #define ldebug(...)
37 #endif
38 
39 struct dma_regs {
40     int now[2];
41     uint16_t base[2];
42     uint8_t mode;
43     uint8_t page;
44     uint8_t pageh;
45     uint8_t dack;
46     uint8_t eop;
47     DMA_transfer_handler transfer_handler;
48     void *opaque;
49 };
50 
51 #define ADDR 0
52 #define COUNT 1
53 
54 static struct dma_cont {
55     uint8_t status;
56     uint8_t command;
57     uint8_t mask;
58     uint8_t flip_flop;
59     int dshift;
60     struct dma_regs regs[4];
61     qemu_irq *cpu_request_exit;
62     MemoryRegion channel_io;
63     MemoryRegion cont_io;
64 } dma_controllers[2];
65 
66 enum {
67     CMD_MEMORY_TO_MEMORY = 0x01,
68     CMD_FIXED_ADDRESS    = 0x02,
69     CMD_BLOCK_CONTROLLER = 0x04,
70     CMD_COMPRESSED_TIME  = 0x08,
71     CMD_CYCLIC_PRIORITY  = 0x10,
72     CMD_EXTENDED_WRITE   = 0x20,
73     CMD_LOW_DREQ         = 0x40,
74     CMD_LOW_DACK         = 0x80,
75     CMD_NOT_SUPPORTED    = CMD_MEMORY_TO_MEMORY | CMD_FIXED_ADDRESS
76     | CMD_COMPRESSED_TIME | CMD_CYCLIC_PRIORITY | CMD_EXTENDED_WRITE
77     | CMD_LOW_DREQ | CMD_LOW_DACK
78 
79 };
80 
81 static void DMA_run (void);
82 
83 static int channels[8] = {-1, 2, 3, 1, -1, -1, -1, 0};
84 
85 static void write_page (void *opaque, uint32_t nport, uint32_t data)
86 {
87     struct dma_cont *d = opaque;
88     int ichan;
89 
90     ichan = channels[nport & 7];
91     if (-1 == ichan) {
92         dolog ("invalid channel %#x %#x\n", nport, data);
93         return;
94     }
95     d->regs[ichan].page = data;
96 }
97 
98 static void write_pageh (void *opaque, uint32_t nport, uint32_t data)
99 {
100     struct dma_cont *d = opaque;
101     int ichan;
102 
103     ichan = channels[nport & 7];
104     if (-1 == ichan) {
105         dolog ("invalid channel %#x %#x\n", nport, data);
106         return;
107     }
108     d->regs[ichan].pageh = data;
109 }
110 
111 static uint32_t read_page (void *opaque, uint32_t nport)
112 {
113     struct dma_cont *d = opaque;
114     int ichan;
115 
116     ichan = channels[nport & 7];
117     if (-1 == ichan) {
118         dolog ("invalid channel read %#x\n", nport);
119         return 0;
120     }
121     return d->regs[ichan].page;
122 }
123 
124 static uint32_t read_pageh (void *opaque, uint32_t nport)
125 {
126     struct dma_cont *d = opaque;
127     int ichan;
128 
129     ichan = channels[nport & 7];
130     if (-1 == ichan) {
131         dolog ("invalid channel read %#x\n", nport);
132         return 0;
133     }
134     return d->regs[ichan].pageh;
135 }
136 
137 static inline void init_chan (struct dma_cont *d, int ichan)
138 {
139     struct dma_regs *r;
140 
141     r = d->regs + ichan;
142     r->now[ADDR] = r->base[ADDR] << d->dshift;
143     r->now[COUNT] = 0;
144 }
145 
146 static inline int getff (struct dma_cont *d)
147 {
148     int ff;
149 
150     ff = d->flip_flop;
151     d->flip_flop = !ff;
152     return ff;
153 }
154 
155 static uint64_t read_chan(void *opaque, hwaddr nport, unsigned size)
156 {
157     struct dma_cont *d = opaque;
158     int ichan, nreg, iport, ff, val, dir;
159     struct dma_regs *r;
160 
161     iport = (nport >> d->dshift) & 0x0f;
162     ichan = iport >> 1;
163     nreg = iport & 1;
164     r = d->regs + ichan;
165 
166     dir = ((r->mode >> 5) & 1) ? -1 : 1;
167     ff = getff (d);
168     if (nreg)
169         val = (r->base[COUNT] << d->dshift) - r->now[COUNT];
170     else
171         val = r->now[ADDR] + r->now[COUNT] * dir;
172 
173     ldebug ("read_chan %#x -> %d\n", iport, val);
174     return (val >> (d->dshift + (ff << 3))) & 0xff;
175 }
176 
177 static void write_chan(void *opaque, hwaddr nport, uint64_t data,
178                        unsigned size)
179 {
180     struct dma_cont *d = opaque;
181     int iport, ichan, nreg;
182     struct dma_regs *r;
183 
184     iport = (nport >> d->dshift) & 0x0f;
185     ichan = iport >> 1;
186     nreg = iport & 1;
187     r = d->regs + ichan;
188     if (getff (d)) {
189         r->base[nreg] = (r->base[nreg] & 0xff) | ((data << 8) & 0xff00);
190         init_chan (d, ichan);
191     } else {
192         r->base[nreg] = (r->base[nreg] & 0xff00) | (data & 0xff);
193     }
194 }
195 
196 static void write_cont(void *opaque, hwaddr nport, uint64_t data,
197                        unsigned size)
198 {
199     struct dma_cont *d = opaque;
200     int iport, ichan = 0;
201 
202     iport = (nport >> d->dshift) & 0x0f;
203     switch (iport) {
204     case 0x00:                  /* command */
205         if ((data != 0) && (data & CMD_NOT_SUPPORTED)) {
206             dolog("command %"PRIx64" not supported\n", data);
207             return;
208         }
209         d->command = data;
210         break;
211 
212     case 0x01:
213         ichan = data & 3;
214         if (data & 4) {
215             d->status |= 1 << (ichan + 4);
216         }
217         else {
218             d->status &= ~(1 << (ichan + 4));
219         }
220         d->status &= ~(1 << ichan);
221         DMA_run();
222         break;
223 
224     case 0x02:                  /* single mask */
225         if (data & 4)
226             d->mask |= 1 << (data & 3);
227         else
228             d->mask &= ~(1 << (data & 3));
229         DMA_run();
230         break;
231 
232     case 0x03:                  /* mode */
233         {
234             ichan = data & 3;
235 #ifdef DEBUG_DMA
236             {
237                 int op, ai, dir, opmode;
238                 op = (data >> 2) & 3;
239                 ai = (data >> 4) & 1;
240                 dir = (data >> 5) & 1;
241                 opmode = (data >> 6) & 3;
242 
243                 linfo ("ichan %d, op %d, ai %d, dir %d, opmode %d\n",
244                        ichan, op, ai, dir, opmode);
245             }
246 #endif
247             d->regs[ichan].mode = data;
248             break;
249         }
250 
251     case 0x04:                  /* clear flip flop */
252         d->flip_flop = 0;
253         break;
254 
255     case 0x05:                  /* reset */
256         d->flip_flop = 0;
257         d->mask = ~0;
258         d->status = 0;
259         d->command = 0;
260         break;
261 
262     case 0x06:                  /* clear mask for all channels */
263         d->mask = 0;
264         DMA_run();
265         break;
266 
267     case 0x07:                  /* write mask for all channels */
268         d->mask = data;
269         DMA_run();
270         break;
271 
272     default:
273         dolog ("unknown iport %#x\n", iport);
274         break;
275     }
276 
277 #ifdef DEBUG_DMA
278     if (0xc != iport) {
279         linfo ("write_cont: nport %#06x, ichan % 2d, val %#06x\n",
280                nport, ichan, data);
281     }
282 #endif
283 }
284 
285 static uint64_t read_cont(void *opaque, hwaddr nport, unsigned size)
286 {
287     struct dma_cont *d = opaque;
288     int iport, val;
289 
290     iport = (nport >> d->dshift) & 0x0f;
291     switch (iport) {
292     case 0x00:                  /* status */
293         val = d->status;
294         d->status &= 0xf0;
295         break;
296     case 0x01:                  /* mask */
297         val = d->mask;
298         break;
299     default:
300         val = 0;
301         break;
302     }
303 
304     ldebug ("read_cont: nport %#06x, iport %#04x val %#x\n", nport, iport, val);
305     return val;
306 }
307 
308 int DMA_get_channel_mode (int nchan)
309 {
310     return dma_controllers[nchan > 3].regs[nchan & 3].mode;
311 }
312 
313 void DMA_hold_DREQ (int nchan)
314 {
315     int ncont, ichan;
316 
317     ncont = nchan > 3;
318     ichan = nchan & 3;
319     linfo ("held cont=%d chan=%d\n", ncont, ichan);
320     dma_controllers[ncont].status |= 1 << (ichan + 4);
321     DMA_run();
322 }
323 
324 void DMA_release_DREQ (int nchan)
325 {
326     int ncont, ichan;
327 
328     ncont = nchan > 3;
329     ichan = nchan & 3;
330     linfo ("released cont=%d chan=%d\n", ncont, ichan);
331     dma_controllers[ncont].status &= ~(1 << (ichan + 4));
332     DMA_run();
333 }
334 
335 static void channel_run (int ncont, int ichan)
336 {
337     int n;
338     struct dma_regs *r = &dma_controllers[ncont].regs[ichan];
339 #ifdef DEBUG_DMA
340     int dir, opmode;
341 
342     dir = (r->mode >> 5) & 1;
343     opmode = (r->mode >> 6) & 3;
344 
345     if (dir) {
346         dolog ("DMA in address decrement mode\n");
347     }
348     if (opmode != 1) {
349         dolog ("DMA not in single mode select %#x\n", opmode);
350     }
351 #endif
352 
353     n = r->transfer_handler (r->opaque, ichan + (ncont << 2),
354                              r->now[COUNT], (r->base[COUNT] + 1) << ncont);
355     r->now[COUNT] = n;
356     ldebug ("dma_pos %d size %d\n", n, (r->base[COUNT] + 1) << ncont);
357 }
358 
359 static QEMUBH *dma_bh;
360 
361 static void DMA_run (void)
362 {
363     struct dma_cont *d;
364     int icont, ichan;
365     int rearm = 0;
366     static int running = 0;
367 
368     if (running) {
369         rearm = 1;
370         goto out;
371     } else {
372         running = 1;
373     }
374 
375     d = dma_controllers;
376 
377     for (icont = 0; icont < 2; icont++, d++) {
378         for (ichan = 0; ichan < 4; ichan++) {
379             int mask;
380 
381             mask = 1 << ichan;
382 
383             if ((0 == (d->mask & mask)) && (0 != (d->status & (mask << 4)))) {
384                 channel_run (icont, ichan);
385                 rearm = 1;
386             }
387         }
388     }
389 
390     running = 0;
391 out:
392     if (rearm)
393         qemu_bh_schedule_idle(dma_bh);
394 }
395 
396 static void DMA_run_bh(void *unused)
397 {
398     DMA_run();
399 }
400 
401 void DMA_register_channel (int nchan,
402                            DMA_transfer_handler transfer_handler,
403                            void *opaque)
404 {
405     struct dma_regs *r;
406     int ichan, ncont;
407 
408     ncont = nchan > 3;
409     ichan = nchan & 3;
410 
411     r = dma_controllers[ncont].regs + ichan;
412     r->transfer_handler = transfer_handler;
413     r->opaque = opaque;
414 }
415 
416 int DMA_read_memory (int nchan, void *buf, int pos, int len)
417 {
418     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
419     hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
420 
421     if (r->mode & 0x20) {
422         int i;
423         uint8_t *p = buf;
424 
425         cpu_physical_memory_read (addr - pos - len, buf, len);
426         /* What about 16bit transfers? */
427         for (i = 0; i < len >> 1; i++) {
428             uint8_t b = p[len - i - 1];
429             p[i] = b;
430         }
431     }
432     else
433         cpu_physical_memory_read (addr + pos, buf, len);
434 
435     return len;
436 }
437 
438 int DMA_write_memory (int nchan, void *buf, int pos, int len)
439 {
440     struct dma_regs *r = &dma_controllers[nchan > 3].regs[nchan & 3];
441     hwaddr addr = ((r->pageh & 0x7f) << 24) | (r->page << 16) | r->now[ADDR];
442 
443     if (r->mode & 0x20) {
444         int i;
445         uint8_t *p = buf;
446 
447         cpu_physical_memory_write (addr - pos - len, buf, len);
448         /* What about 16bit transfers? */
449         for (i = 0; i < len; i++) {
450             uint8_t b = p[len - i - 1];
451             p[i] = b;
452         }
453     }
454     else
455         cpu_physical_memory_write (addr + pos, buf, len);
456 
457     return len;
458 }
459 
460 /* request the emulator to transfer a new DMA memory block ASAP */
461 void DMA_schedule(int nchan)
462 {
463     struct dma_cont *d = &dma_controllers[nchan > 3];
464 
465     qemu_irq_pulse(*d->cpu_request_exit);
466 }
467 
468 static void dma_reset(void *opaque)
469 {
470     struct dma_cont *d = opaque;
471     write_cont(d, (0x05 << d->dshift), 0, 1);
472 }
473 
474 static int dma_phony_handler (void *opaque, int nchan, int dma_pos, int dma_len)
475 {
476     dolog ("unregistered DMA channel used nchan=%d dma_pos=%d dma_len=%d\n",
477            nchan, dma_pos, dma_len);
478     return dma_pos;
479 }
480 
481 
482 static const MemoryRegionOps channel_io_ops = {
483     .read = read_chan,
484     .write = write_chan,
485     .endianness = DEVICE_NATIVE_ENDIAN,
486     .impl = {
487         .min_access_size = 1,
488         .max_access_size = 1,
489     },
490 };
491 
492 /* IOport from page_base */
493 static const MemoryRegionPortio page_portio_list[] = {
494     { 0x01, 3, 1, .write = write_page, .read = read_page, },
495     { 0x07, 1, 1, .write = write_page, .read = read_page, },
496     PORTIO_END_OF_LIST(),
497 };
498 
499 /* IOport from pageh_base */
500 static const MemoryRegionPortio pageh_portio_list[] = {
501     { 0x01, 3, 1, .write = write_pageh, .read = read_pageh, },
502     { 0x07, 3, 1, .write = write_pageh, .read = read_pageh, },
503     PORTIO_END_OF_LIST(),
504 };
505 
506 static const MemoryRegionOps cont_io_ops = {
507     .read = read_cont,
508     .write = write_cont,
509     .endianness = DEVICE_NATIVE_ENDIAN,
510     .impl = {
511         .min_access_size = 1,
512         .max_access_size = 1,
513     },
514 };
515 
516 /* dshift = 0: 8 bit DMA, 1 = 16 bit DMA */
517 static void dma_init2(struct dma_cont *d, int base, int dshift,
518                       int page_base, int pageh_base,
519                       qemu_irq *cpu_request_exit)
520 {
521     int i;
522 
523     d->dshift = dshift;
524     d->cpu_request_exit = cpu_request_exit;
525 
526     memory_region_init_io(&d->channel_io, NULL, &channel_io_ops, d,
527                           "dma-chan", 8 << d->dshift);
528     memory_region_add_subregion(isa_address_space_io(NULL),
529                                 base, &d->channel_io);
530 
531     isa_register_portio_list(NULL, page_base, page_portio_list, d,
532                              "dma-page");
533     if (pageh_base >= 0) {
534         isa_register_portio_list(NULL, pageh_base, pageh_portio_list, d,
535                                  "dma-pageh");
536     }
537 
538     memory_region_init_io(&d->cont_io, NULL, &cont_io_ops, d, "dma-cont",
539                           8 << d->dshift);
540     memory_region_add_subregion(isa_address_space_io(NULL),
541                                 base + (8 << d->dshift), &d->cont_io);
542 
543     qemu_register_reset(dma_reset, d);
544     dma_reset(d);
545     for (i = 0; i < ARRAY_SIZE (d->regs); ++i) {
546         d->regs[i].transfer_handler = dma_phony_handler;
547     }
548 }
549 
550 static const VMStateDescription vmstate_dma_regs = {
551     .name = "dma_regs",
552     .version_id = 1,
553     .minimum_version_id = 1,
554     .minimum_version_id_old = 1,
555     .fields      = (VMStateField []) {
556         VMSTATE_INT32_ARRAY(now, struct dma_regs, 2),
557         VMSTATE_UINT16_ARRAY(base, struct dma_regs, 2),
558         VMSTATE_UINT8(mode, struct dma_regs),
559         VMSTATE_UINT8(page, struct dma_regs),
560         VMSTATE_UINT8(pageh, struct dma_regs),
561         VMSTATE_UINT8(dack, struct dma_regs),
562         VMSTATE_UINT8(eop, struct dma_regs),
563         VMSTATE_END_OF_LIST()
564     }
565 };
566 
567 static int dma_post_load(void *opaque, int version_id)
568 {
569     DMA_run();
570 
571     return 0;
572 }
573 
574 static const VMStateDescription vmstate_dma = {
575     .name = "dma",
576     .version_id = 1,
577     .minimum_version_id = 1,
578     .minimum_version_id_old = 1,
579     .post_load = dma_post_load,
580     .fields      = (VMStateField []) {
581         VMSTATE_UINT8(command, struct dma_cont),
582         VMSTATE_UINT8(mask, struct dma_cont),
583         VMSTATE_UINT8(flip_flop, struct dma_cont),
584         VMSTATE_INT32(dshift, struct dma_cont),
585         VMSTATE_STRUCT_ARRAY(regs, struct dma_cont, 4, 1, vmstate_dma_regs, struct dma_regs),
586         VMSTATE_END_OF_LIST()
587     }
588 };
589 
590 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
591 {
592     dma_init2(&dma_controllers[0], 0x00, 0, 0x80,
593               high_page_enable ? 0x480 : -1, cpu_request_exit);
594     dma_init2(&dma_controllers[1], 0xc0, 1, 0x88,
595               high_page_enable ? 0x488 : -1, cpu_request_exit);
596     vmstate_register (NULL, 0, &vmstate_dma, &dma_controllers[0]);
597     vmstate_register (NULL, 1, &vmstate_dma, &dma_controllers[1]);
598 
599     dma_bh = qemu_bh_new(DMA_run_bh, NULL);
600 }
601