1 /* 2 * QEMU ETRAX DMA Controller. 3 * 4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/hw.h" 27 #include "hw/irq.h" 28 #include "qemu/main-loop.h" 29 #include "sysemu/runstate.h" 30 #include "exec/address-spaces.h" 31 32 #include "hw/cris/etraxfs_dma.h" 33 34 #define D(x) 35 36 #define RW_DATA (0x0 / 4) 37 #define RW_SAVED_DATA (0x58 / 4) 38 #define RW_SAVED_DATA_BUF (0x5c / 4) 39 #define RW_GROUP (0x60 / 4) 40 #define RW_GROUP_DOWN (0x7c / 4) 41 #define RW_CMD (0x80 / 4) 42 #define RW_CFG (0x84 / 4) 43 #define RW_STAT (0x88 / 4) 44 #define RW_INTR_MASK (0x8c / 4) 45 #define RW_ACK_INTR (0x90 / 4) 46 #define R_INTR (0x94 / 4) 47 #define R_MASKED_INTR (0x98 / 4) 48 #define RW_STREAM_CMD (0x9c / 4) 49 50 #define DMA_REG_MAX (0x100 / 4) 51 52 /* descriptors */ 53 54 // ------------------------------------------------------------ dma_descr_group 55 typedef struct dma_descr_group { 56 uint32_t next; 57 unsigned eol : 1; 58 unsigned tol : 1; 59 unsigned bol : 1; 60 unsigned : 1; 61 unsigned intr : 1; 62 unsigned : 2; 63 unsigned en : 1; 64 unsigned : 7; 65 unsigned dis : 1; 66 unsigned md : 16; 67 struct dma_descr_group *up; 68 union { 69 struct dma_descr_context *context; 70 struct dma_descr_group *group; 71 } down; 72 } dma_descr_group; 73 74 // ---------------------------------------------------------- dma_descr_context 75 typedef struct dma_descr_context { 76 uint32_t next; 77 unsigned eol : 1; 78 unsigned : 3; 79 unsigned intr : 1; 80 unsigned : 1; 81 unsigned store_mode : 1; 82 unsigned en : 1; 83 unsigned : 7; 84 unsigned dis : 1; 85 unsigned md0 : 16; 86 unsigned md1; 87 unsigned md2; 88 unsigned md3; 89 unsigned md4; 90 uint32_t saved_data; 91 uint32_t saved_data_buf; 92 } dma_descr_context; 93 94 // ------------------------------------------------------------- dma_descr_data 95 typedef struct dma_descr_data { 96 uint32_t next; 97 uint32_t buf; 98 unsigned eol : 1; 99 unsigned : 2; 100 unsigned out_eop : 1; 101 unsigned intr : 1; 102 unsigned wait : 1; 103 unsigned : 2; 104 unsigned : 3; 105 unsigned in_eop : 1; 106 unsigned : 4; 107 unsigned md : 16; 108 uint32_t after; 109 } dma_descr_data; 110 111 /* Constants */ 112 enum { 113 regk_dma_ack_pkt = 0x00000100, 114 regk_dma_anytime = 0x00000001, 115 regk_dma_array = 0x00000008, 116 regk_dma_burst = 0x00000020, 117 regk_dma_client = 0x00000002, 118 regk_dma_copy_next = 0x00000010, 119 regk_dma_copy_up = 0x00000020, 120 regk_dma_data_at_eol = 0x00000001, 121 regk_dma_dis_c = 0x00000010, 122 regk_dma_dis_g = 0x00000020, 123 regk_dma_idle = 0x00000001, 124 regk_dma_intern = 0x00000004, 125 regk_dma_load_c = 0x00000200, 126 regk_dma_load_c_n = 0x00000280, 127 regk_dma_load_c_next = 0x00000240, 128 regk_dma_load_d = 0x00000140, 129 regk_dma_load_g = 0x00000300, 130 regk_dma_load_g_down = 0x000003c0, 131 regk_dma_load_g_next = 0x00000340, 132 regk_dma_load_g_up = 0x00000380, 133 regk_dma_next_en = 0x00000010, 134 regk_dma_next_pkt = 0x00000010, 135 regk_dma_no = 0x00000000, 136 regk_dma_only_at_wait = 0x00000000, 137 regk_dma_restore = 0x00000020, 138 regk_dma_rst = 0x00000001, 139 regk_dma_running = 0x00000004, 140 regk_dma_rw_cfg_default = 0x00000000, 141 regk_dma_rw_cmd_default = 0x00000000, 142 regk_dma_rw_intr_mask_default = 0x00000000, 143 regk_dma_rw_stat_default = 0x00000101, 144 regk_dma_rw_stream_cmd_default = 0x00000000, 145 regk_dma_save_down = 0x00000020, 146 regk_dma_save_up = 0x00000020, 147 regk_dma_set_reg = 0x00000050, 148 regk_dma_set_w_size1 = 0x00000190, 149 regk_dma_set_w_size2 = 0x000001a0, 150 regk_dma_set_w_size4 = 0x000001c0, 151 regk_dma_stopped = 0x00000002, 152 regk_dma_store_c = 0x00000002, 153 regk_dma_store_descr = 0x00000000, 154 regk_dma_store_g = 0x00000004, 155 regk_dma_store_md = 0x00000001, 156 regk_dma_sw = 0x00000008, 157 regk_dma_update_down = 0x00000020, 158 regk_dma_yes = 0x00000001 159 }; 160 161 enum dma_ch_state 162 { 163 RST = 1, 164 STOPPED = 2, 165 RUNNING = 4 166 }; 167 168 struct fs_dma_channel 169 { 170 qemu_irq irq; 171 struct etraxfs_dma_client *client; 172 173 /* Internal status. */ 174 int stream_cmd_src; 175 enum dma_ch_state state; 176 177 unsigned int input : 1; 178 unsigned int eol : 1; 179 180 struct dma_descr_group current_g; 181 struct dma_descr_context current_c; 182 struct dma_descr_data current_d; 183 184 /* Control registers. */ 185 uint32_t regs[DMA_REG_MAX]; 186 }; 187 188 struct fs_dma_ctrl 189 { 190 MemoryRegion mmio; 191 int nr_channels; 192 struct fs_dma_channel *channels; 193 194 QEMUBH *bh; 195 }; 196 197 static void DMA_run(void *opaque); 198 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c); 199 200 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg) 201 { 202 return ctrl->channels[c].regs[reg]; 203 } 204 205 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c) 206 { 207 return channel_reg(ctrl, c, RW_CFG) & 2; 208 } 209 210 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c) 211 { 212 return (channel_reg(ctrl, c, RW_CFG) & 1) 213 && ctrl->channels[c].client; 214 } 215 216 static inline int fs_channel(hwaddr addr) 217 { 218 /* Every channel has a 0x2000 ctrl register map. */ 219 return addr >> 13; 220 } 221 222 #ifdef USE_THIS_DEAD_CODE 223 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c) 224 { 225 hwaddr addr = channel_reg(ctrl, c, RW_GROUP); 226 227 /* Load and decode. FIXME: handle endianness. */ 228 cpu_physical_memory_read(addr, &ctrl->channels[c].current_g, 229 sizeof(ctrl->channels[c].current_g)); 230 } 231 232 static void dump_c(int ch, struct dma_descr_context *c) 233 { 234 printf("%s ch=%d\n", __func__, ch); 235 printf("next=%x\n", c->next); 236 printf("saved_data=%x\n", c->saved_data); 237 printf("saved_data_buf=%x\n", c->saved_data_buf); 238 printf("eol=%x\n", (uint32_t) c->eol); 239 } 240 241 static void dump_d(int ch, struct dma_descr_data *d) 242 { 243 printf("%s ch=%d\n", __func__, ch); 244 printf("next=%x\n", d->next); 245 printf("buf=%x\n", d->buf); 246 printf("after=%x\n", d->after); 247 printf("intr=%x\n", (uint32_t) d->intr); 248 printf("out_eop=%x\n", (uint32_t) d->out_eop); 249 printf("in_eop=%x\n", (uint32_t) d->in_eop); 250 printf("eol=%x\n", (uint32_t) d->eol); 251 } 252 #endif 253 254 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c) 255 { 256 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN); 257 258 /* Load and decode. FIXME: handle endianness. */ 259 cpu_physical_memory_read(addr, &ctrl->channels[c].current_c, 260 sizeof(ctrl->channels[c].current_c)); 261 262 D(dump_c(c, &ctrl->channels[c].current_c)); 263 /* I guess this should update the current pos. */ 264 ctrl->channels[c].regs[RW_SAVED_DATA] = 265 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data; 266 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 267 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf; 268 } 269 270 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c) 271 { 272 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA); 273 274 /* Load and decode. FIXME: handle endianness. */ 275 D(printf("%s ch=%d addr=" HWADDR_FMT_plx "\n", __func__, c, addr)); 276 cpu_physical_memory_read(addr, &ctrl->channels[c].current_d, 277 sizeof(ctrl->channels[c].current_d)); 278 279 D(dump_d(c, &ctrl->channels[c].current_d)); 280 ctrl->channels[c].regs[RW_DATA] = addr; 281 } 282 283 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c) 284 { 285 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN); 286 287 /* Encode and store. FIXME: handle endianness. */ 288 D(printf("%s ch=%d addr=" HWADDR_FMT_plx "\n", __func__, c, addr)); 289 D(dump_d(c, &ctrl->channels[c].current_d)); 290 cpu_physical_memory_write(addr, &ctrl->channels[c].current_c, 291 sizeof(ctrl->channels[c].current_c)); 292 } 293 294 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c) 295 { 296 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA); 297 298 /* Encode and store. FIXME: handle endianness. */ 299 D(printf("%s ch=%d addr=" HWADDR_FMT_plx "\n", __func__, c, addr)); 300 cpu_physical_memory_write(addr, &ctrl->channels[c].current_d, 301 sizeof(ctrl->channels[c].current_d)); 302 } 303 304 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c) 305 { 306 /* FIXME: */ 307 } 308 309 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c) 310 { 311 if (ctrl->channels[c].client) 312 { 313 ctrl->channels[c].eol = 0; 314 ctrl->channels[c].state = RUNNING; 315 if (!ctrl->channels[c].input) 316 channel_out_run(ctrl, c); 317 } else 318 printf("WARNING: starting DMA ch %d with no client\n", c); 319 320 qemu_bh_schedule_idle(ctrl->bh); 321 } 322 323 static void channel_continue(struct fs_dma_ctrl *ctrl, int c) 324 { 325 if (!channel_en(ctrl, c) 326 || channel_stopped(ctrl, c) 327 || ctrl->channels[c].state != RUNNING 328 /* Only reload the current data descriptor if it has eol set. */ 329 || !ctrl->channels[c].current_d.eol) { 330 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 331 c, ctrl->channels[c].state, 332 channel_stopped(ctrl, c), 333 channel_en(ctrl,c), 334 ctrl->channels[c].eol)); 335 D(dump_d(c, &ctrl->channels[c].current_d)); 336 return; 337 } 338 339 /* Reload the current descriptor. */ 340 channel_load_d(ctrl, c); 341 342 /* If the current descriptor cleared the eol flag and we had already 343 reached eol state, do the continue. */ 344 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) { 345 D(printf("continue %d ok %x\n", c, 346 ctrl->channels[c].current_d.next)); 347 ctrl->channels[c].regs[RW_SAVED_DATA] = 348 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next; 349 channel_load_d(ctrl, c); 350 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 351 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf; 352 353 channel_start(ctrl, c); 354 } 355 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 356 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf; 357 } 358 359 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v) 360 { 361 unsigned int cmd = v & ((1 << 10) - 1); 362 363 D(printf("%s ch=%d cmd=%x\n", 364 __func__, c, cmd)); 365 if (cmd & regk_dma_load_d) { 366 channel_load_d(ctrl, c); 367 if (cmd & regk_dma_burst) 368 channel_start(ctrl, c); 369 } 370 371 if (cmd & regk_dma_load_c) { 372 channel_load_c(ctrl, c); 373 } 374 } 375 376 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c) 377 { 378 D(printf("%s %d\n", __func__, c)); 379 ctrl->channels[c].regs[R_INTR] &= 380 ~(ctrl->channels[c].regs[RW_ACK_INTR]); 381 382 ctrl->channels[c].regs[R_MASKED_INTR] = 383 ctrl->channels[c].regs[R_INTR] 384 & ctrl->channels[c].regs[RW_INTR_MASK]; 385 386 D(printf("%s: chan=%d masked_intr=%x\n", __func__, 387 c, 388 ctrl->channels[c].regs[R_MASKED_INTR])); 389 390 qemu_set_irq(ctrl->channels[c].irq, 391 !!ctrl->channels[c].regs[R_MASKED_INTR]); 392 } 393 394 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c) 395 { 396 uint32_t len; 397 uint32_t saved_data_buf; 398 unsigned char buf[2 * 1024]; 399 400 struct dma_context_metadata meta; 401 bool send_context = true; 402 403 if (ctrl->channels[c].eol) 404 return 0; 405 406 do { 407 bool out_eop; 408 D(printf("ch=%d buf=%x after=%x\n", 409 c, 410 (uint32_t)ctrl->channels[c].current_d.buf, 411 (uint32_t)ctrl->channels[c].current_d.after)); 412 413 if (send_context) { 414 if (ctrl->channels[c].client->client.metadata_push) { 415 meta.metadata = ctrl->channels[c].current_d.md; 416 ctrl->channels[c].client->client.metadata_push( 417 ctrl->channels[c].client->client.opaque, 418 &meta); 419 } 420 send_context = false; 421 } 422 423 channel_load_d(ctrl, c); 424 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF); 425 len = (uint32_t)(unsigned long) 426 ctrl->channels[c].current_d.after; 427 len -= saved_data_buf; 428 429 if (len > sizeof buf) 430 len = sizeof buf; 431 cpu_physical_memory_read (saved_data_buf, buf, len); 432 433 out_eop = ((saved_data_buf + len) == 434 ctrl->channels[c].current_d.after) && 435 ctrl->channels[c].current_d.out_eop; 436 437 D(printf("channel %d pushes %x %u bytes eop=%u\n", c, 438 saved_data_buf, len, out_eop)); 439 440 if (ctrl->channels[c].client->client.push) { 441 if (len > 0) { 442 ctrl->channels[c].client->client.push( 443 ctrl->channels[c].client->client.opaque, 444 buf, len, out_eop); 445 } 446 } else { 447 printf("WARNING: DMA ch%d dataloss," 448 " no attached client.\n", c); 449 } 450 451 saved_data_buf += len; 452 453 if (saved_data_buf == (uint32_t)(unsigned long) 454 ctrl->channels[c].current_d.after) { 455 /* Done. Step to next. */ 456 if (ctrl->channels[c].current_d.out_eop) { 457 send_context = true; 458 } 459 if (ctrl->channels[c].current_d.intr) { 460 /* data intr. */ 461 D(printf("signal intr %d eol=%d\n", 462 len, ctrl->channels[c].current_d.eol)); 463 ctrl->channels[c].regs[R_INTR] |= (1 << 2); 464 channel_update_irq(ctrl, c); 465 } 466 channel_store_d(ctrl, c); 467 if (ctrl->channels[c].current_d.eol) { 468 D(printf("channel %d EOL\n", c)); 469 ctrl->channels[c].eol = 1; 470 471 /* Mark the context as disabled. */ 472 ctrl->channels[c].current_c.dis = 1; 473 channel_store_c(ctrl, c); 474 475 channel_stop(ctrl, c); 476 } else { 477 ctrl->channels[c].regs[RW_SAVED_DATA] = 478 (uint32_t)(unsigned long)ctrl-> 479 channels[c].current_d.next; 480 /* Load new descriptor. */ 481 channel_load_d(ctrl, c); 482 saved_data_buf = (uint32_t)(unsigned long) 483 ctrl->channels[c].current_d.buf; 484 } 485 486 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 487 saved_data_buf; 488 D(dump_d(c, &ctrl->channels[c].current_d)); 489 } 490 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf; 491 } while (!ctrl->channels[c].eol); 492 return 1; 493 } 494 495 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 496 unsigned char *buf, int buflen, int eop) 497 { 498 uint32_t len; 499 uint32_t saved_data_buf; 500 501 if (ctrl->channels[c].eol == 1) 502 return 0; 503 504 channel_load_d(ctrl, c); 505 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF); 506 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after; 507 len -= saved_data_buf; 508 509 if (len > buflen) 510 len = buflen; 511 512 cpu_physical_memory_write (saved_data_buf, buf, len); 513 saved_data_buf += len; 514 515 if (saved_data_buf == 516 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after 517 || eop) { 518 uint32_t r_intr = ctrl->channels[c].regs[R_INTR]; 519 520 D(printf("in dscr end len=%d\n", 521 ctrl->channels[c].current_d.after 522 - ctrl->channels[c].current_d.buf)); 523 ctrl->channels[c].current_d.after = saved_data_buf; 524 525 /* Done. Step to next. */ 526 if (ctrl->channels[c].current_d.intr) { 527 /* TODO: signal eop to the client. */ 528 /* data intr. */ 529 ctrl->channels[c].regs[R_INTR] |= 3; 530 } 531 if (eop) { 532 ctrl->channels[c].current_d.in_eop = 1; 533 ctrl->channels[c].regs[R_INTR] |= 8; 534 } 535 if (r_intr != ctrl->channels[c].regs[R_INTR]) 536 channel_update_irq(ctrl, c); 537 538 channel_store_d(ctrl, c); 539 D(dump_d(c, &ctrl->channels[c].current_d)); 540 541 if (ctrl->channels[c].current_d.eol) { 542 D(printf("channel %d EOL\n", c)); 543 ctrl->channels[c].eol = 1; 544 545 /* Mark the context as disabled. */ 546 ctrl->channels[c].current_c.dis = 1; 547 channel_store_c(ctrl, c); 548 549 channel_stop(ctrl, c); 550 } else { 551 ctrl->channels[c].regs[RW_SAVED_DATA] = 552 (uint32_t)(unsigned long)ctrl-> 553 channels[c].current_d.next; 554 /* Load new descriptor. */ 555 channel_load_d(ctrl, c); 556 saved_data_buf = (uint32_t)(unsigned long) 557 ctrl->channels[c].current_d.buf; 558 } 559 } 560 561 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf; 562 return len; 563 } 564 565 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c) 566 { 567 if (ctrl->channels[c].client->client.pull) { 568 ctrl->channels[c].client->client.pull( 569 ctrl->channels[c].client->client.opaque); 570 return 1; 571 } else 572 return 0; 573 } 574 575 static uint32_t dma_rinvalid (void *opaque, hwaddr addr) 576 { 577 hw_error("Unsupported short raccess. reg=" HWADDR_FMT_plx "\n", addr); 578 return 0; 579 } 580 581 static uint64_t 582 dma_read(void *opaque, hwaddr addr, unsigned int size) 583 { 584 struct fs_dma_ctrl *ctrl = opaque; 585 int c; 586 uint32_t r = 0; 587 588 if (size != 4) { 589 dma_rinvalid(opaque, addr); 590 } 591 592 /* Make addr relative to this channel and bounded to nr regs. */ 593 c = fs_channel(addr); 594 addr &= 0xff; 595 addr >>= 2; 596 switch (addr) 597 { 598 case RW_STAT: 599 r = ctrl->channels[c].state & 7; 600 r |= ctrl->channels[c].eol << 5; 601 r |= ctrl->channels[c].stream_cmd_src << 8; 602 break; 603 604 default: 605 r = ctrl->channels[c].regs[addr]; 606 D(printf("%s c=%d addr=" HWADDR_FMT_plx "\n", 607 __func__, c, addr)); 608 break; 609 } 610 return r; 611 } 612 613 static void 614 dma_winvalid (void *opaque, hwaddr addr, uint32_t value) 615 { 616 hw_error("Unsupported short waccess. reg=" HWADDR_FMT_plx "\n", addr); 617 } 618 619 static void 620 dma_update_state(struct fs_dma_ctrl *ctrl, int c) 621 { 622 if (ctrl->channels[c].regs[RW_CFG] & 2) 623 ctrl->channels[c].state = STOPPED; 624 if (!(ctrl->channels[c].regs[RW_CFG] & 1)) 625 ctrl->channels[c].state = RST; 626 } 627 628 static void 629 dma_write(void *opaque, hwaddr addr, 630 uint64_t val64, unsigned int size) 631 { 632 struct fs_dma_ctrl *ctrl = opaque; 633 uint32_t value = val64; 634 int c; 635 636 if (size != 4) { 637 dma_winvalid(opaque, addr, value); 638 } 639 640 /* Make addr relative to this channel and bounded to nr regs. */ 641 c = fs_channel(addr); 642 addr &= 0xff; 643 addr >>= 2; 644 switch (addr) 645 { 646 case RW_DATA: 647 ctrl->channels[c].regs[addr] = value; 648 break; 649 650 case RW_CFG: 651 ctrl->channels[c].regs[addr] = value; 652 dma_update_state(ctrl, c); 653 break; 654 case RW_CMD: 655 /* continue. */ 656 if (value & ~1) 657 printf("Invalid store to ch=%d RW_CMD %x\n", 658 c, value); 659 ctrl->channels[c].regs[addr] = value; 660 channel_continue(ctrl, c); 661 break; 662 663 case RW_SAVED_DATA: 664 case RW_SAVED_DATA_BUF: 665 case RW_GROUP: 666 case RW_GROUP_DOWN: 667 ctrl->channels[c].regs[addr] = value; 668 break; 669 670 case RW_ACK_INTR: 671 case RW_INTR_MASK: 672 ctrl->channels[c].regs[addr] = value; 673 channel_update_irq(ctrl, c); 674 if (addr == RW_ACK_INTR) 675 ctrl->channels[c].regs[RW_ACK_INTR] = 0; 676 break; 677 678 case RW_STREAM_CMD: 679 if (value & ~1023) 680 printf("Invalid store to ch=%d " 681 "RW_STREAMCMD %x\n", 682 c, value); 683 ctrl->channels[c].regs[addr] = value; 684 D(printf("stream_cmd ch=%d\n", c)); 685 channel_stream_cmd(ctrl, c, value); 686 break; 687 688 default: 689 D(printf("%s c=%d " HWADDR_FMT_plx "\n", 690 __func__, c, addr)); 691 break; 692 } 693 } 694 695 static const MemoryRegionOps dma_ops = { 696 .read = dma_read, 697 .write = dma_write, 698 .endianness = DEVICE_NATIVE_ENDIAN, 699 .valid = { 700 .min_access_size = 1, 701 .max_access_size = 4 702 } 703 }; 704 705 static int etraxfs_dmac_run(void *opaque) 706 { 707 struct fs_dma_ctrl *ctrl = opaque; 708 int i; 709 int p = 0; 710 711 for (i = 0; 712 i < ctrl->nr_channels; 713 i++) 714 { 715 if (ctrl->channels[i].state == RUNNING) 716 { 717 if (ctrl->channels[i].input) { 718 p += channel_in_run(ctrl, i); 719 } else { 720 p += channel_out_run(ctrl, i); 721 } 722 } 723 } 724 return p; 725 } 726 727 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 728 void *buf, int len, int eop) 729 { 730 return channel_in_process(client->ctrl, client->channel, 731 buf, len, eop); 732 } 733 734 /* Connect an IRQ line with a channel. */ 735 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input) 736 { 737 struct fs_dma_ctrl *ctrl = opaque; 738 ctrl->channels[c].irq = *line; 739 ctrl->channels[c].input = input; 740 } 741 742 void etraxfs_dmac_connect_client(void *opaque, int c, 743 struct etraxfs_dma_client *cl) 744 { 745 struct fs_dma_ctrl *ctrl = opaque; 746 cl->ctrl = ctrl; 747 cl->channel = c; 748 ctrl->channels[c].client = cl; 749 } 750 751 752 static void DMA_run(void *opaque) 753 { 754 struct fs_dma_ctrl *etraxfs_dmac = opaque; 755 int p = 1; 756 757 if (runstate_is_running()) 758 p = etraxfs_dmac_run(etraxfs_dmac); 759 760 if (p) 761 qemu_bh_schedule_idle(etraxfs_dmac->bh); 762 } 763 764 void *etraxfs_dmac_init(hwaddr base, int nr_channels) 765 { 766 struct fs_dma_ctrl *ctrl = NULL; 767 768 ctrl = g_malloc0(sizeof *ctrl); 769 770 ctrl->bh = qemu_bh_new(DMA_run, ctrl); 771 772 ctrl->nr_channels = nr_channels; 773 ctrl->channels = g_malloc0(sizeof ctrl->channels[0] * nr_channels); 774 775 memory_region_init_io(&ctrl->mmio, NULL, &dma_ops, ctrl, "etraxfs-dma", 776 nr_channels * 0x2000); 777 memory_region_add_subregion(get_system_memory(), base, &ctrl->mmio); 778 779 return ctrl; 780 } 781