1 /* 2 * QEMU ETRAX DMA Controller. 3 * 4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include <stdio.h> 25 #include <sys/time.h> 26 #include "hw/hw.h" 27 #include "exec/address-spaces.h" 28 #include "qemu-common.h" 29 #include "sysemu/sysemu.h" 30 31 #include "hw/cris/etraxfs_dma.h" 32 33 #define D(x) 34 35 #define RW_DATA (0x0 / 4) 36 #define RW_SAVED_DATA (0x58 / 4) 37 #define RW_SAVED_DATA_BUF (0x5c / 4) 38 #define RW_GROUP (0x60 / 4) 39 #define RW_GROUP_DOWN (0x7c / 4) 40 #define RW_CMD (0x80 / 4) 41 #define RW_CFG (0x84 / 4) 42 #define RW_STAT (0x88 / 4) 43 #define RW_INTR_MASK (0x8c / 4) 44 #define RW_ACK_INTR (0x90 / 4) 45 #define R_INTR (0x94 / 4) 46 #define R_MASKED_INTR (0x98 / 4) 47 #define RW_STREAM_CMD (0x9c / 4) 48 49 #define DMA_REG_MAX (0x100 / 4) 50 51 /* descriptors */ 52 53 // ------------------------------------------------------------ dma_descr_group 54 typedef struct dma_descr_group { 55 uint32_t next; 56 unsigned eol : 1; 57 unsigned tol : 1; 58 unsigned bol : 1; 59 unsigned : 1; 60 unsigned intr : 1; 61 unsigned : 2; 62 unsigned en : 1; 63 unsigned : 7; 64 unsigned dis : 1; 65 unsigned md : 16; 66 struct dma_descr_group *up; 67 union { 68 struct dma_descr_context *context; 69 struct dma_descr_group *group; 70 } down; 71 } dma_descr_group; 72 73 // ---------------------------------------------------------- dma_descr_context 74 typedef struct dma_descr_context { 75 uint32_t next; 76 unsigned eol : 1; 77 unsigned : 3; 78 unsigned intr : 1; 79 unsigned : 1; 80 unsigned store_mode : 1; 81 unsigned en : 1; 82 unsigned : 7; 83 unsigned dis : 1; 84 unsigned md0 : 16; 85 unsigned md1; 86 unsigned md2; 87 unsigned md3; 88 unsigned md4; 89 uint32_t saved_data; 90 uint32_t saved_data_buf; 91 } dma_descr_context; 92 93 // ------------------------------------------------------------- dma_descr_data 94 typedef struct dma_descr_data { 95 uint32_t next; 96 uint32_t buf; 97 unsigned eol : 1; 98 unsigned : 2; 99 unsigned out_eop : 1; 100 unsigned intr : 1; 101 unsigned wait : 1; 102 unsigned : 2; 103 unsigned : 3; 104 unsigned in_eop : 1; 105 unsigned : 4; 106 unsigned md : 16; 107 uint32_t after; 108 } dma_descr_data; 109 110 /* Constants */ 111 enum { 112 regk_dma_ack_pkt = 0x00000100, 113 regk_dma_anytime = 0x00000001, 114 regk_dma_array = 0x00000008, 115 regk_dma_burst = 0x00000020, 116 regk_dma_client = 0x00000002, 117 regk_dma_copy_next = 0x00000010, 118 regk_dma_copy_up = 0x00000020, 119 regk_dma_data_at_eol = 0x00000001, 120 regk_dma_dis_c = 0x00000010, 121 regk_dma_dis_g = 0x00000020, 122 regk_dma_idle = 0x00000001, 123 regk_dma_intern = 0x00000004, 124 regk_dma_load_c = 0x00000200, 125 regk_dma_load_c_n = 0x00000280, 126 regk_dma_load_c_next = 0x00000240, 127 regk_dma_load_d = 0x00000140, 128 regk_dma_load_g = 0x00000300, 129 regk_dma_load_g_down = 0x000003c0, 130 regk_dma_load_g_next = 0x00000340, 131 regk_dma_load_g_up = 0x00000380, 132 regk_dma_next_en = 0x00000010, 133 regk_dma_next_pkt = 0x00000010, 134 regk_dma_no = 0x00000000, 135 regk_dma_only_at_wait = 0x00000000, 136 regk_dma_restore = 0x00000020, 137 regk_dma_rst = 0x00000001, 138 regk_dma_running = 0x00000004, 139 regk_dma_rw_cfg_default = 0x00000000, 140 regk_dma_rw_cmd_default = 0x00000000, 141 regk_dma_rw_intr_mask_default = 0x00000000, 142 regk_dma_rw_stat_default = 0x00000101, 143 regk_dma_rw_stream_cmd_default = 0x00000000, 144 regk_dma_save_down = 0x00000020, 145 regk_dma_save_up = 0x00000020, 146 regk_dma_set_reg = 0x00000050, 147 regk_dma_set_w_size1 = 0x00000190, 148 regk_dma_set_w_size2 = 0x000001a0, 149 regk_dma_set_w_size4 = 0x000001c0, 150 regk_dma_stopped = 0x00000002, 151 regk_dma_store_c = 0x00000002, 152 regk_dma_store_descr = 0x00000000, 153 regk_dma_store_g = 0x00000004, 154 regk_dma_store_md = 0x00000001, 155 regk_dma_sw = 0x00000008, 156 regk_dma_update_down = 0x00000020, 157 regk_dma_yes = 0x00000001 158 }; 159 160 enum dma_ch_state 161 { 162 RST = 1, 163 STOPPED = 2, 164 RUNNING = 4 165 }; 166 167 struct fs_dma_channel 168 { 169 qemu_irq irq; 170 struct etraxfs_dma_client *client; 171 172 /* Internal status. */ 173 int stream_cmd_src; 174 enum dma_ch_state state; 175 176 unsigned int input : 1; 177 unsigned int eol : 1; 178 179 struct dma_descr_group current_g; 180 struct dma_descr_context current_c; 181 struct dma_descr_data current_d; 182 183 /* Control registers. */ 184 uint32_t regs[DMA_REG_MAX]; 185 }; 186 187 struct fs_dma_ctrl 188 { 189 MemoryRegion mmio; 190 int nr_channels; 191 struct fs_dma_channel *channels; 192 193 QEMUBH *bh; 194 }; 195 196 static void DMA_run(void *opaque); 197 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c); 198 199 static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg) 200 { 201 return ctrl->channels[c].regs[reg]; 202 } 203 204 static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c) 205 { 206 return channel_reg(ctrl, c, RW_CFG) & 2; 207 } 208 209 static inline int channel_en(struct fs_dma_ctrl *ctrl, int c) 210 { 211 return (channel_reg(ctrl, c, RW_CFG) & 1) 212 && ctrl->channels[c].client; 213 } 214 215 static inline int fs_channel(hwaddr addr) 216 { 217 /* Every channel has a 0x2000 ctrl register map. */ 218 return addr >> 13; 219 } 220 221 #ifdef USE_THIS_DEAD_CODE 222 static void channel_load_g(struct fs_dma_ctrl *ctrl, int c) 223 { 224 hwaddr addr = channel_reg(ctrl, c, RW_GROUP); 225 226 /* Load and decode. FIXME: handle endianness. */ 227 cpu_physical_memory_read (addr, 228 (void *) &ctrl->channels[c].current_g, 229 sizeof ctrl->channels[c].current_g); 230 } 231 232 static void dump_c(int ch, struct dma_descr_context *c) 233 { 234 printf("%s ch=%d\n", __func__, ch); 235 printf("next=%x\n", c->next); 236 printf("saved_data=%x\n", c->saved_data); 237 printf("saved_data_buf=%x\n", c->saved_data_buf); 238 printf("eol=%x\n", (uint32_t) c->eol); 239 } 240 241 static void dump_d(int ch, struct dma_descr_data *d) 242 { 243 printf("%s ch=%d\n", __func__, ch); 244 printf("next=%x\n", d->next); 245 printf("buf=%x\n", d->buf); 246 printf("after=%x\n", d->after); 247 printf("intr=%x\n", (uint32_t) d->intr); 248 printf("out_eop=%x\n", (uint32_t) d->out_eop); 249 printf("in_eop=%x\n", (uint32_t) d->in_eop); 250 printf("eol=%x\n", (uint32_t) d->eol); 251 } 252 #endif 253 254 static void channel_load_c(struct fs_dma_ctrl *ctrl, int c) 255 { 256 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN); 257 258 /* Load and decode. FIXME: handle endianness. */ 259 cpu_physical_memory_read (addr, 260 (void *) &ctrl->channels[c].current_c, 261 sizeof ctrl->channels[c].current_c); 262 263 D(dump_c(c, &ctrl->channels[c].current_c)); 264 /* I guess this should update the current pos. */ 265 ctrl->channels[c].regs[RW_SAVED_DATA] = 266 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data; 267 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 268 (uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf; 269 } 270 271 static void channel_load_d(struct fs_dma_ctrl *ctrl, int c) 272 { 273 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA); 274 275 /* Load and decode. FIXME: handle endianness. */ 276 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr)); 277 cpu_physical_memory_read (addr, 278 (void *) &ctrl->channels[c].current_d, 279 sizeof ctrl->channels[c].current_d); 280 281 D(dump_d(c, &ctrl->channels[c].current_d)); 282 ctrl->channels[c].regs[RW_DATA] = addr; 283 } 284 285 static void channel_store_c(struct fs_dma_ctrl *ctrl, int c) 286 { 287 hwaddr addr = channel_reg(ctrl, c, RW_GROUP_DOWN); 288 289 /* Encode and store. FIXME: handle endianness. */ 290 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr)); 291 D(dump_d(c, &ctrl->channels[c].current_d)); 292 cpu_physical_memory_write (addr, 293 (void *) &ctrl->channels[c].current_c, 294 sizeof ctrl->channels[c].current_c); 295 } 296 297 static void channel_store_d(struct fs_dma_ctrl *ctrl, int c) 298 { 299 hwaddr addr = channel_reg(ctrl, c, RW_SAVED_DATA); 300 301 /* Encode and store. FIXME: handle endianness. */ 302 D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr)); 303 cpu_physical_memory_write (addr, 304 (void *) &ctrl->channels[c].current_d, 305 sizeof ctrl->channels[c].current_d); 306 } 307 308 static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c) 309 { 310 /* FIXME: */ 311 } 312 313 static inline void channel_start(struct fs_dma_ctrl *ctrl, int c) 314 { 315 if (ctrl->channels[c].client) 316 { 317 ctrl->channels[c].eol = 0; 318 ctrl->channels[c].state = RUNNING; 319 if (!ctrl->channels[c].input) 320 channel_out_run(ctrl, c); 321 } else 322 printf("WARNING: starting DMA ch %d with no client\n", c); 323 324 qemu_bh_schedule_idle(ctrl->bh); 325 } 326 327 static void channel_continue(struct fs_dma_ctrl *ctrl, int c) 328 { 329 if (!channel_en(ctrl, c) 330 || channel_stopped(ctrl, c) 331 || ctrl->channels[c].state != RUNNING 332 /* Only reload the current data descriptor if it has eol set. */ 333 || !ctrl->channels[c].current_d.eol) { 334 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 335 c, ctrl->channels[c].state, 336 channel_stopped(ctrl, c), 337 channel_en(ctrl,c), 338 ctrl->channels[c].eol)); 339 D(dump_d(c, &ctrl->channels[c].current_d)); 340 return; 341 } 342 343 /* Reload the current descriptor. */ 344 channel_load_d(ctrl, c); 345 346 /* If the current descriptor cleared the eol flag and we had already 347 reached eol state, do the continue. */ 348 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) { 349 D(printf("continue %d ok %x\n", c, 350 ctrl->channels[c].current_d.next)); 351 ctrl->channels[c].regs[RW_SAVED_DATA] = 352 (uint32_t)(unsigned long)ctrl->channels[c].current_d.next; 353 channel_load_d(ctrl, c); 354 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 355 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf; 356 357 channel_start(ctrl, c); 358 } 359 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 360 (uint32_t)(unsigned long)ctrl->channels[c].current_d.buf; 361 } 362 363 static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v) 364 { 365 unsigned int cmd = v & ((1 << 10) - 1); 366 367 D(printf("%s ch=%d cmd=%x\n", 368 __func__, c, cmd)); 369 if (cmd & regk_dma_load_d) { 370 channel_load_d(ctrl, c); 371 if (cmd & regk_dma_burst) 372 channel_start(ctrl, c); 373 } 374 375 if (cmd & regk_dma_load_c) { 376 channel_load_c(ctrl, c); 377 } 378 } 379 380 static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c) 381 { 382 D(printf("%s %d\n", __func__, c)); 383 ctrl->channels[c].regs[R_INTR] &= 384 ~(ctrl->channels[c].regs[RW_ACK_INTR]); 385 386 ctrl->channels[c].regs[R_MASKED_INTR] = 387 ctrl->channels[c].regs[R_INTR] 388 & ctrl->channels[c].regs[RW_INTR_MASK]; 389 390 D(printf("%s: chan=%d masked_intr=%x\n", __func__, 391 c, 392 ctrl->channels[c].regs[R_MASKED_INTR])); 393 394 qemu_set_irq(ctrl->channels[c].irq, 395 !!ctrl->channels[c].regs[R_MASKED_INTR]); 396 } 397 398 static int channel_out_run(struct fs_dma_ctrl *ctrl, int c) 399 { 400 uint32_t len; 401 uint32_t saved_data_buf; 402 unsigned char buf[2 * 1024]; 403 404 struct dma_context_metadata meta; 405 bool send_context = true; 406 407 if (ctrl->channels[c].eol) 408 return 0; 409 410 do { 411 bool out_eop; 412 D(printf("ch=%d buf=%x after=%x\n", 413 c, 414 (uint32_t)ctrl->channels[c].current_d.buf, 415 (uint32_t)ctrl->channels[c].current_d.after)); 416 417 if (send_context) { 418 if (ctrl->channels[c].client->client.metadata_push) { 419 meta.metadata = ctrl->channels[c].current_d.md; 420 ctrl->channels[c].client->client.metadata_push( 421 ctrl->channels[c].client->client.opaque, 422 &meta); 423 } 424 send_context = false; 425 } 426 427 channel_load_d(ctrl, c); 428 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF); 429 len = (uint32_t)(unsigned long) 430 ctrl->channels[c].current_d.after; 431 len -= saved_data_buf; 432 433 if (len > sizeof buf) 434 len = sizeof buf; 435 cpu_physical_memory_read (saved_data_buf, buf, len); 436 437 out_eop = ((saved_data_buf + len) == 438 ctrl->channels[c].current_d.after) && 439 ctrl->channels[c].current_d.out_eop; 440 441 D(printf("channel %d pushes %x %u bytes eop=%u\n", c, 442 saved_data_buf, len, out_eop)); 443 444 if (ctrl->channels[c].client->client.push) 445 ctrl->channels[c].client->client.push( 446 ctrl->channels[c].client->client.opaque, 447 buf, len, out_eop); 448 else 449 printf("WARNING: DMA ch%d dataloss," 450 " no attached client.\n", c); 451 452 saved_data_buf += len; 453 454 if (saved_data_buf == (uint32_t)(unsigned long) 455 ctrl->channels[c].current_d.after) { 456 /* Done. Step to next. */ 457 if (ctrl->channels[c].current_d.out_eop) { 458 send_context = true; 459 } 460 if (ctrl->channels[c].current_d.intr) { 461 /* data intr. */ 462 D(printf("signal intr %d eol=%d\n", 463 len, ctrl->channels[c].current_d.eol)); 464 ctrl->channels[c].regs[R_INTR] |= (1 << 2); 465 channel_update_irq(ctrl, c); 466 } 467 channel_store_d(ctrl, c); 468 if (ctrl->channels[c].current_d.eol) { 469 D(printf("channel %d EOL\n", c)); 470 ctrl->channels[c].eol = 1; 471 472 /* Mark the context as disabled. */ 473 ctrl->channels[c].current_c.dis = 1; 474 channel_store_c(ctrl, c); 475 476 channel_stop(ctrl, c); 477 } else { 478 ctrl->channels[c].regs[RW_SAVED_DATA] = 479 (uint32_t)(unsigned long)ctrl-> 480 channels[c].current_d.next; 481 /* Load new descriptor. */ 482 channel_load_d(ctrl, c); 483 saved_data_buf = (uint32_t)(unsigned long) 484 ctrl->channels[c].current_d.buf; 485 } 486 487 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = 488 saved_data_buf; 489 D(dump_d(c, &ctrl->channels[c].current_d)); 490 } 491 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf; 492 } while (!ctrl->channels[c].eol); 493 return 1; 494 } 495 496 static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 497 unsigned char *buf, int buflen, int eop) 498 { 499 uint32_t len; 500 uint32_t saved_data_buf; 501 502 if (ctrl->channels[c].eol == 1) 503 return 0; 504 505 channel_load_d(ctrl, c); 506 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF); 507 len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after; 508 len -= saved_data_buf; 509 510 if (len > buflen) 511 len = buflen; 512 513 cpu_physical_memory_write (saved_data_buf, buf, len); 514 saved_data_buf += len; 515 516 if (saved_data_buf == 517 (uint32_t)(unsigned long)ctrl->channels[c].current_d.after 518 || eop) { 519 uint32_t r_intr = ctrl->channels[c].regs[R_INTR]; 520 521 D(printf("in dscr end len=%d\n", 522 ctrl->channels[c].current_d.after 523 - ctrl->channels[c].current_d.buf)); 524 ctrl->channels[c].current_d.after = saved_data_buf; 525 526 /* Done. Step to next. */ 527 if (ctrl->channels[c].current_d.intr) { 528 /* TODO: signal eop to the client. */ 529 /* data intr. */ 530 ctrl->channels[c].regs[R_INTR] |= 3; 531 } 532 if (eop) { 533 ctrl->channels[c].current_d.in_eop = 1; 534 ctrl->channels[c].regs[R_INTR] |= 8; 535 } 536 if (r_intr != ctrl->channels[c].regs[R_INTR]) 537 channel_update_irq(ctrl, c); 538 539 channel_store_d(ctrl, c); 540 D(dump_d(c, &ctrl->channels[c].current_d)); 541 542 if (ctrl->channels[c].current_d.eol) { 543 D(printf("channel %d EOL\n", c)); 544 ctrl->channels[c].eol = 1; 545 546 /* Mark the context as disabled. */ 547 ctrl->channels[c].current_c.dis = 1; 548 channel_store_c(ctrl, c); 549 550 channel_stop(ctrl, c); 551 } else { 552 ctrl->channels[c].regs[RW_SAVED_DATA] = 553 (uint32_t)(unsigned long)ctrl-> 554 channels[c].current_d.next; 555 /* Load new descriptor. */ 556 channel_load_d(ctrl, c); 557 saved_data_buf = (uint32_t)(unsigned long) 558 ctrl->channels[c].current_d.buf; 559 } 560 } 561 562 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf; 563 return len; 564 } 565 566 static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c) 567 { 568 if (ctrl->channels[c].client->client.pull) { 569 ctrl->channels[c].client->client.pull( 570 ctrl->channels[c].client->client.opaque); 571 return 1; 572 } else 573 return 0; 574 } 575 576 static uint32_t dma_rinvalid (void *opaque, hwaddr addr) 577 { 578 hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr); 579 return 0; 580 } 581 582 static uint64_t 583 dma_read(void *opaque, hwaddr addr, unsigned int size) 584 { 585 struct fs_dma_ctrl *ctrl = opaque; 586 int c; 587 uint32_t r = 0; 588 589 if (size != 4) { 590 dma_rinvalid(opaque, addr); 591 } 592 593 /* Make addr relative to this channel and bounded to nr regs. */ 594 c = fs_channel(addr); 595 addr &= 0xff; 596 addr >>= 2; 597 switch (addr) 598 { 599 case RW_STAT: 600 r = ctrl->channels[c].state & 7; 601 r |= ctrl->channels[c].eol << 5; 602 r |= ctrl->channels[c].stream_cmd_src << 8; 603 break; 604 605 default: 606 r = ctrl->channels[c].regs[addr]; 607 D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n", 608 __func__, c, addr)); 609 break; 610 } 611 return r; 612 } 613 614 static void 615 dma_winvalid (void *opaque, hwaddr addr, uint32_t value) 616 { 617 hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr); 618 } 619 620 static void 621 dma_update_state(struct fs_dma_ctrl *ctrl, int c) 622 { 623 if (ctrl->channels[c].regs[RW_CFG] & 2) 624 ctrl->channels[c].state = STOPPED; 625 if (!(ctrl->channels[c].regs[RW_CFG] & 1)) 626 ctrl->channels[c].state = RST; 627 } 628 629 static void 630 dma_write(void *opaque, hwaddr addr, 631 uint64_t val64, unsigned int size) 632 { 633 struct fs_dma_ctrl *ctrl = opaque; 634 uint32_t value = val64; 635 int c; 636 637 if (size != 4) { 638 dma_winvalid(opaque, addr, value); 639 } 640 641 /* Make addr relative to this channel and bounded to nr regs. */ 642 c = fs_channel(addr); 643 addr &= 0xff; 644 addr >>= 2; 645 switch (addr) 646 { 647 case RW_DATA: 648 ctrl->channels[c].regs[addr] = value; 649 break; 650 651 case RW_CFG: 652 ctrl->channels[c].regs[addr] = value; 653 dma_update_state(ctrl, c); 654 break; 655 case RW_CMD: 656 /* continue. */ 657 if (value & ~1) 658 printf("Invalid store to ch=%d RW_CMD %x\n", 659 c, value); 660 ctrl->channels[c].regs[addr] = value; 661 channel_continue(ctrl, c); 662 break; 663 664 case RW_SAVED_DATA: 665 case RW_SAVED_DATA_BUF: 666 case RW_GROUP: 667 case RW_GROUP_DOWN: 668 ctrl->channels[c].regs[addr] = value; 669 break; 670 671 case RW_ACK_INTR: 672 case RW_INTR_MASK: 673 ctrl->channels[c].regs[addr] = value; 674 channel_update_irq(ctrl, c); 675 if (addr == RW_ACK_INTR) 676 ctrl->channels[c].regs[RW_ACK_INTR] = 0; 677 break; 678 679 case RW_STREAM_CMD: 680 if (value & ~1023) 681 printf("Invalid store to ch=%d " 682 "RW_STREAMCMD %x\n", 683 c, value); 684 ctrl->channels[c].regs[addr] = value; 685 D(printf("stream_cmd ch=%d\n", c)); 686 channel_stream_cmd(ctrl, c, value); 687 break; 688 689 default: 690 D(printf ("%s c=%d " TARGET_FMT_plx "\n", 691 __func__, c, addr)); 692 break; 693 } 694 } 695 696 static const MemoryRegionOps dma_ops = { 697 .read = dma_read, 698 .write = dma_write, 699 .endianness = DEVICE_NATIVE_ENDIAN, 700 .valid = { 701 .min_access_size = 1, 702 .max_access_size = 4 703 } 704 }; 705 706 static int etraxfs_dmac_run(void *opaque) 707 { 708 struct fs_dma_ctrl *ctrl = opaque; 709 int i; 710 int p = 0; 711 712 for (i = 0; 713 i < ctrl->nr_channels; 714 i++) 715 { 716 if (ctrl->channels[i].state == RUNNING) 717 { 718 if (ctrl->channels[i].input) { 719 p += channel_in_run(ctrl, i); 720 } else { 721 p += channel_out_run(ctrl, i); 722 } 723 } 724 } 725 return p; 726 } 727 728 int etraxfs_dmac_input(struct etraxfs_dma_client *client, 729 void *buf, int len, int eop) 730 { 731 return channel_in_process(client->ctrl, client->channel, 732 buf, len, eop); 733 } 734 735 /* Connect an IRQ line with a channel. */ 736 void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input) 737 { 738 struct fs_dma_ctrl *ctrl = opaque; 739 ctrl->channels[c].irq = *line; 740 ctrl->channels[c].input = input; 741 } 742 743 void etraxfs_dmac_connect_client(void *opaque, int c, 744 struct etraxfs_dma_client *cl) 745 { 746 struct fs_dma_ctrl *ctrl = opaque; 747 cl->ctrl = ctrl; 748 cl->channel = c; 749 ctrl->channels[c].client = cl; 750 } 751 752 753 static void DMA_run(void *opaque) 754 { 755 struct fs_dma_ctrl *etraxfs_dmac = opaque; 756 int p = 1; 757 758 if (runstate_is_running()) 759 p = etraxfs_dmac_run(etraxfs_dmac); 760 761 if (p) 762 qemu_bh_schedule_idle(etraxfs_dmac->bh); 763 } 764 765 void *etraxfs_dmac_init(hwaddr base, int nr_channels) 766 { 767 struct fs_dma_ctrl *ctrl = NULL; 768 769 ctrl = g_malloc0(sizeof *ctrl); 770 771 ctrl->bh = qemu_bh_new(DMA_run, ctrl); 772 773 ctrl->nr_channels = nr_channels; 774 ctrl->channels = g_malloc0(sizeof ctrl->channels[0] * nr_channels); 775 776 memory_region_init_io(&ctrl->mmio, &dma_ops, ctrl, "etraxfs-dma", 777 nr_channels * 0x2000); 778 memory_region_add_subregion(get_system_memory(), base, &ctrl->mmio); 779 780 return ctrl; 781 } 782