1 /* 2 * Xilinx Display Port 3 * 4 * Copyright (C) 2015 : GreenSocs Ltd 5 * http://www.greensocs.com/ , email: info@greensocs.com 6 * 7 * Developed by : 8 * Frederic Konrad <fred.konrad@greensocs.com> 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option)any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 * 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu/error-report.h" 28 #include "qemu/log.h" 29 #include "qemu/module.h" 30 #include "hw/display/xlnx_dp.h" 31 #include "hw/irq.h" 32 #include "migration/vmstate.h" 33 34 #ifndef DEBUG_DP 35 #define DEBUG_DP 0 36 #endif 37 38 #define DPRINTF(fmt, ...) do { \ 39 if (DEBUG_DP) { \ 40 qemu_log("xlnx_dp: " fmt , ## __VA_ARGS__); \ 41 } \ 42 } while (0) 43 44 /* 45 * Register offset for DP. 46 */ 47 #define DP_LINK_BW_SET (0x0000 >> 2) 48 #define DP_LANE_COUNT_SET (0x0004 >> 2) 49 #define DP_ENHANCED_FRAME_EN (0x0008 >> 2) 50 #define DP_TRAINING_PATTERN_SET (0x000C >> 2) 51 #define DP_LINK_QUAL_PATTERN_SET (0x0010 >> 2) 52 #define DP_SCRAMBLING_DISABLE (0x0014 >> 2) 53 #define DP_DOWNSPREAD_CTRL (0x0018 >> 2) 54 #define DP_SOFTWARE_RESET (0x001C >> 2) 55 #define DP_TRANSMITTER_ENABLE (0x0080 >> 2) 56 #define DP_MAIN_STREAM_ENABLE (0x0084 >> 2) 57 #define DP_FORCE_SCRAMBLER_RESET (0x00C0 >> 2) 58 #define DP_VERSION_REGISTER (0x00F8 >> 2) 59 #define DP_CORE_ID (0x00FC >> 2) 60 61 #define DP_AUX_COMMAND_REGISTER (0x0100 >> 2) 62 #define AUX_ADDR_ONLY_MASK (0x1000) 63 #define AUX_COMMAND_MASK (0x0F00) 64 #define AUX_COMMAND_SHIFT (8) 65 #define AUX_COMMAND_NBYTES (0x000F) 66 67 #define DP_AUX_WRITE_FIFO (0x0104 >> 2) 68 #define DP_AUX_ADDRESS (0x0108 >> 2) 69 #define DP_AUX_CLOCK_DIVIDER (0x010C >> 2) 70 #define DP_TX_USER_FIFO_OVERFLOW (0x0110 >> 2) 71 #define DP_INTERRUPT_SIGNAL_STATE (0x0130 >> 2) 72 #define DP_AUX_REPLY_DATA (0x0134 >> 2) 73 #define DP_AUX_REPLY_CODE (0x0138 >> 2) 74 #define DP_AUX_REPLY_COUNT (0x013C >> 2) 75 #define DP_REPLY_DATA_COUNT (0x0148 >> 2) 76 #define DP_REPLY_STATUS (0x014C >> 2) 77 #define DP_HPD_DURATION (0x0150 >> 2) 78 #define DP_MAIN_STREAM_HTOTAL (0x0180 >> 2) 79 #define DP_MAIN_STREAM_VTOTAL (0x0184 >> 2) 80 #define DP_MAIN_STREAM_POLARITY (0x0188 >> 2) 81 #define DP_MAIN_STREAM_HSWIDTH (0x018C >> 2) 82 #define DP_MAIN_STREAM_VSWIDTH (0x0190 >> 2) 83 #define DP_MAIN_STREAM_HRES (0x0194 >> 2) 84 #define DP_MAIN_STREAM_VRES (0x0198 >> 2) 85 #define DP_MAIN_STREAM_HSTART (0x019C >> 2) 86 #define DP_MAIN_STREAM_VSTART (0x01A0 >> 2) 87 #define DP_MAIN_STREAM_MISC0 (0x01A4 >> 2) 88 #define DP_MAIN_STREAM_MISC1 (0x01A8 >> 2) 89 #define DP_MAIN_STREAM_M_VID (0x01AC >> 2) 90 #define DP_MSA_TRANSFER_UNIT_SIZE (0x01B0 >> 2) 91 #define DP_MAIN_STREAM_N_VID (0x01B4 >> 2) 92 #define DP_USER_DATA_COUNT_PER_LANE (0x01BC >> 2) 93 #define DP_MIN_BYTES_PER_TU (0x01C4 >> 2) 94 #define DP_FRAC_BYTES_PER_TU (0x01C8 >> 2) 95 #define DP_INIT_WAIT (0x01CC >> 2) 96 #define DP_PHY_RESET (0x0200 >> 2) 97 #define DP_PHY_VOLTAGE_DIFF_LANE_0 (0x0220 >> 2) 98 #define DP_PHY_VOLTAGE_DIFF_LANE_1 (0x0224 >> 2) 99 #define DP_TRANSMIT_PRBS7 (0x0230 >> 2) 100 #define DP_PHY_CLOCK_SELECT (0x0234 >> 2) 101 #define DP_TX_PHY_POWER_DOWN (0x0238 >> 2) 102 #define DP_PHY_PRECURSOR_LANE_0 (0x023C >> 2) 103 #define DP_PHY_PRECURSOR_LANE_1 (0x0240 >> 2) 104 #define DP_PHY_POSTCURSOR_LANE_0 (0x024C >> 2) 105 #define DP_PHY_POSTCURSOR_LANE_1 (0x0250 >> 2) 106 #define DP_PHY_STATUS (0x0280 >> 2) 107 108 #define DP_TX_AUDIO_CONTROL (0x0300 >> 2) 109 #define DP_TX_AUD_CTRL (1) 110 111 #define DP_TX_AUDIO_CHANNELS (0x0304 >> 2) 112 #define DP_TX_AUDIO_INFO_DATA(n) ((0x0308 + 4 * n) >> 2) 113 #define DP_TX_M_AUD (0x0328 >> 2) 114 #define DP_TX_N_AUD (0x032C >> 2) 115 #define DP_TX_AUDIO_EXT_DATA(n) ((0x0330 + 4 * n) >> 2) 116 #define DP_INT_STATUS (0x03A0 >> 2) 117 #define DP_INT_MASK (0x03A4 >> 2) 118 #define DP_INT_EN (0x03A8 >> 2) 119 #define DP_INT_DS (0x03AC >> 2) 120 121 /* 122 * Registers offset for Audio Video Buffer configuration. 123 */ 124 #define V_BLEND_OFFSET (0xA000) 125 #define V_BLEND_BG_CLR_0 (0x0000 >> 2) 126 #define V_BLEND_BG_CLR_1 (0x0004 >> 2) 127 #define V_BLEND_BG_CLR_2 (0x0008 >> 2) 128 #define V_BLEND_SET_GLOBAL_ALPHA_REG (0x000C >> 2) 129 #define V_BLEND_OUTPUT_VID_FORMAT (0x0014 >> 2) 130 #define V_BLEND_LAYER0_CONTROL (0x0018 >> 2) 131 #define V_BLEND_LAYER1_CONTROL (0x001C >> 2) 132 133 #define V_BLEND_RGB2YCBCR_COEFF(n) ((0x0020 + 4 * n) >> 2) 134 #define V_BLEND_IN1CSC_COEFF(n) ((0x0044 + 4 * n) >> 2) 135 136 #define V_BLEND_LUMA_IN1CSC_OFFSET (0x0068 >> 2) 137 #define V_BLEND_CR_IN1CSC_OFFSET (0x006C >> 2) 138 #define V_BLEND_CB_IN1CSC_OFFSET (0x0070 >> 2) 139 #define V_BLEND_LUMA_OUTCSC_OFFSET (0x0074 >> 2) 140 #define V_BLEND_CR_OUTCSC_OFFSET (0x0078 >> 2) 141 #define V_BLEND_CB_OUTCSC_OFFSET (0x007C >> 2) 142 143 #define V_BLEND_IN2CSC_COEFF(n) ((0x0080 + 4 * n) >> 2) 144 145 #define V_BLEND_LUMA_IN2CSC_OFFSET (0x00A4 >> 2) 146 #define V_BLEND_CR_IN2CSC_OFFSET (0x00A8 >> 2) 147 #define V_BLEND_CB_IN2CSC_OFFSET (0x00AC >> 2) 148 #define V_BLEND_CHROMA_KEY_ENABLE (0x01D0 >> 2) 149 #define V_BLEND_CHROMA_KEY_COMP1 (0x01D4 >> 2) 150 #define V_BLEND_CHROMA_KEY_COMP2 (0x01D8 >> 2) 151 #define V_BLEND_CHROMA_KEY_COMP3 (0x01DC >> 2) 152 153 /* 154 * Registers offset for Audio Video Buffer configuration. 155 */ 156 #define AV_BUF_MANAGER_OFFSET (0xB000) 157 #define AV_BUF_FORMAT (0x0000 >> 2) 158 #define AV_BUF_NON_LIVE_LATENCY (0x0008 >> 2) 159 #define AV_CHBUF0 (0x0010 >> 2) 160 #define AV_CHBUF1 (0x0014 >> 2) 161 #define AV_CHBUF2 (0x0018 >> 2) 162 #define AV_CHBUF3 (0x001C >> 2) 163 #define AV_CHBUF4 (0x0020 >> 2) 164 #define AV_CHBUF5 (0x0024 >> 2) 165 #define AV_BUF_STC_CONTROL (0x002C >> 2) 166 #define AV_BUF_STC_INIT_VALUE0 (0x0030 >> 2) 167 #define AV_BUF_STC_INIT_VALUE1 (0x0034 >> 2) 168 #define AV_BUF_STC_ADJ (0x0038 >> 2) 169 #define AV_BUF_STC_VIDEO_VSYNC_TS_REG0 (0x003C >> 2) 170 #define AV_BUF_STC_VIDEO_VSYNC_TS_REG1 (0x0040 >> 2) 171 #define AV_BUF_STC_EXT_VSYNC_TS_REG0 (0x0044 >> 2) 172 #define AV_BUF_STC_EXT_VSYNC_TS_REG1 (0x0048 >> 2) 173 #define AV_BUF_STC_CUSTOM_EVENT_TS_REG0 (0x004C >> 2) 174 #define AV_BUF_STC_CUSTOM_EVENT_TS_REG1 (0x0050 >> 2) 175 #define AV_BUF_STC_CUSTOM_EVENT2_TS_REG0 (0x0054 >> 2) 176 #define AV_BUF_STC_CUSTOM_EVENT2_TS_REG1 (0x0058 >> 2) 177 #define AV_BUF_STC_SNAPSHOT0 (0x0060 >> 2) 178 #define AV_BUF_STC_SNAPSHOT1 (0x0064 >> 2) 179 #define AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT (0x0070 >> 2) 180 #define AV_BUF_HCOUNT_VCOUNT_INT0 (0x0074 >> 2) 181 #define AV_BUF_HCOUNT_VCOUNT_INT1 (0x0078 >> 2) 182 #define AV_BUF_DITHER_CONFIG (0x007C >> 2) 183 #define AV_BUF_DITHER_CONFIG_MAX (0x008C >> 2) 184 #define AV_BUF_DITHER_CONFIG_MIN (0x0090 >> 2) 185 #define AV_BUF_PATTERN_GEN_SELECT (0x0100 >> 2) 186 #define AV_BUF_AUD_VID_CLK_SOURCE (0x0120 >> 2) 187 #define AV_BUF_SRST_REG (0x0124 >> 2) 188 #define AV_BUF_AUDIO_RDY_INTERVAL (0x0128 >> 2) 189 #define AV_BUF_AUDIO_CH_CONFIG (0x012C >> 2) 190 191 #define AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(n)((0x0200 + 4 * n) >> 2) 192 193 #define AV_BUF_VIDEO_COMP_SCALE_FACTOR(n) ((0x020C + 4 * n) >> 2) 194 195 #define AV_BUF_LIVE_VIDEO_COMP_SF(n) ((0x0218 + 4 * n) >> 2) 196 197 #define AV_BUF_LIVE_VID_CONFIG (0x0224 >> 2) 198 199 #define AV_BUF_LIVE_GFX_COMP_SF(n) ((0x0228 + 4 * n) >> 2) 200 201 #define AV_BUF_LIVE_GFX_CONFIG (0x0234 >> 2) 202 203 #define AUDIO_MIXER_REGISTER_OFFSET (0xC000) 204 #define AUDIO_MIXER_VOLUME_CONTROL (0x0000 >> 2) 205 #define AUDIO_MIXER_META_DATA (0x0004 >> 2) 206 #define AUD_CH_STATUS_REG(n) ((0x0008 + 4 * n) >> 2) 207 #define AUD_CH_A_DATA_REG(n) ((0x0020 + 4 * n) >> 2) 208 #define AUD_CH_B_DATA_REG(n) ((0x0038 + 4 * n) >> 2) 209 210 #define DP_AUDIO_DMA_CHANNEL(n) (4 + n) 211 #define DP_GRAPHIC_DMA_CHANNEL (3) 212 #define DP_VIDEO_DMA_CHANNEL (0) 213 214 enum DPGraphicFmt { 215 DP_GRAPHIC_RGBA8888 = 0 << 8, 216 DP_GRAPHIC_ABGR8888 = 1 << 8, 217 DP_GRAPHIC_RGB888 = 2 << 8, 218 DP_GRAPHIC_BGR888 = 3 << 8, 219 DP_GRAPHIC_RGBA5551 = 4 << 8, 220 DP_GRAPHIC_RGBA4444 = 5 << 8, 221 DP_GRAPHIC_RGB565 = 6 << 8, 222 DP_GRAPHIC_8BPP = 7 << 8, 223 DP_GRAPHIC_4BPP = 8 << 8, 224 DP_GRAPHIC_2BPP = 9 << 8, 225 DP_GRAPHIC_1BPP = 10 << 8, 226 DP_GRAPHIC_MASK = 0xF << 8 227 }; 228 229 enum DPVideoFmt { 230 DP_NL_VID_CB_Y0_CR_Y1 = 0, 231 DP_NL_VID_CR_Y0_CB_Y1 = 1, 232 DP_NL_VID_Y0_CR_Y1_CB = 2, 233 DP_NL_VID_Y0_CB_Y1_CR = 3, 234 DP_NL_VID_YV16 = 4, 235 DP_NL_VID_YV24 = 5, 236 DP_NL_VID_YV16CL = 6, 237 DP_NL_VID_MONO = 7, 238 DP_NL_VID_YV16CL2 = 8, 239 DP_NL_VID_YUV444 = 9, 240 DP_NL_VID_RGB888 = 10, 241 DP_NL_VID_RGBA8880 = 11, 242 DP_NL_VID_RGB888_10BPC = 12, 243 DP_NL_VID_YUV444_10BPC = 13, 244 DP_NL_VID_YV16CL2_10BPC = 14, 245 DP_NL_VID_YV16CL_10BPC = 15, 246 DP_NL_VID_YV16_10BPC = 16, 247 DP_NL_VID_YV24_10BPC = 17, 248 DP_NL_VID_Y_ONLY_10BPC = 18, 249 DP_NL_VID_YV16_420 = 19, 250 DP_NL_VID_YV16CL_420 = 20, 251 DP_NL_VID_YV16CL2_420 = 21, 252 DP_NL_VID_YV16_420_10BPC = 22, 253 DP_NL_VID_YV16CL_420_10BPC = 23, 254 DP_NL_VID_YV16CL2_420_10BPC = 24, 255 DP_NL_VID_FMT_MASK = 0x1F 256 }; 257 258 typedef enum DPGraphicFmt DPGraphicFmt; 259 typedef enum DPVideoFmt DPVideoFmt; 260 261 static const VMStateDescription vmstate_dp = { 262 .name = TYPE_XLNX_DP, 263 .version_id = 1, 264 .fields = (VMStateField[]){ 265 VMSTATE_UINT32_ARRAY(core_registers, XlnxDPState, 266 DP_CORE_REG_ARRAY_SIZE), 267 VMSTATE_UINT32_ARRAY(avbufm_registers, XlnxDPState, 268 DP_AVBUF_REG_ARRAY_SIZE), 269 VMSTATE_UINT32_ARRAY(vblend_registers, XlnxDPState, 270 DP_VBLEND_REG_ARRAY_SIZE), 271 VMSTATE_UINT32_ARRAY(audio_registers, XlnxDPState, 272 DP_AUDIO_REG_ARRAY_SIZE), 273 VMSTATE_END_OF_LIST() 274 } 275 }; 276 277 static void xlnx_dp_update_irq(XlnxDPState *s); 278 279 static uint64_t xlnx_dp_audio_read(void *opaque, hwaddr offset, unsigned size) 280 { 281 XlnxDPState *s = XLNX_DP(opaque); 282 283 offset = offset >> 2; 284 return s->audio_registers[offset]; 285 } 286 287 static void xlnx_dp_audio_write(void *opaque, hwaddr offset, uint64_t value, 288 unsigned size) 289 { 290 XlnxDPState *s = XLNX_DP(opaque); 291 292 offset = offset >> 2; 293 294 switch (offset) { 295 case AUDIO_MIXER_META_DATA: 296 s->audio_registers[offset] = value & 0x00000001; 297 break; 298 default: 299 s->audio_registers[offset] = value; 300 break; 301 } 302 } 303 304 static const MemoryRegionOps audio_ops = { 305 .read = xlnx_dp_audio_read, 306 .write = xlnx_dp_audio_write, 307 .endianness = DEVICE_NATIVE_ENDIAN, 308 }; 309 310 static inline uint32_t xlnx_dp_audio_get_volume(XlnxDPState *s, 311 uint8_t channel) 312 { 313 switch (channel) { 314 case 0: 315 return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 0, 16); 316 case 1: 317 return extract32(s->audio_registers[AUDIO_MIXER_VOLUME_CONTROL], 16, 318 16); 319 default: 320 return 0; 321 } 322 } 323 324 static inline void xlnx_dp_audio_activate(XlnxDPState *s) 325 { 326 bool activated = ((s->core_registers[DP_TX_AUDIO_CONTROL] 327 & DP_TX_AUD_CTRL) != 0); 328 AUD_set_active_out(s->amixer_output_stream, activated); 329 xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(0), 330 &s->audio_buffer_0); 331 xlnx_dpdma_set_host_data_location(s->dpdma, DP_AUDIO_DMA_CHANNEL(1), 332 &s->audio_buffer_1); 333 } 334 335 static inline void xlnx_dp_audio_mix_buffer(XlnxDPState *s) 336 { 337 /* 338 * Audio packets are signed and have this shape: 339 * | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 340 * | R3 | L3 | R2 | L2 | R1 | L1 | R0 | L0 | 341 * 342 * Output audio is 16bits saturated. 343 */ 344 int i; 345 346 if ((s->audio_data_available[0]) && (xlnx_dp_audio_get_volume(s, 0))) { 347 for (i = 0; i < s->audio_data_available[0] / 2; i++) { 348 s->temp_buffer[i] = (int64_t)(s->audio_buffer_0[i]) 349 * xlnx_dp_audio_get_volume(s, 0) / 8192; 350 } 351 s->byte_left = s->audio_data_available[0]; 352 } else { 353 memset(s->temp_buffer, 0, s->audio_data_available[1] / 2); 354 } 355 356 if ((s->audio_data_available[1]) && (xlnx_dp_audio_get_volume(s, 1))) { 357 if ((s->audio_data_available[0] == 0) 358 || (s->audio_data_available[1] == s->audio_data_available[0])) { 359 for (i = 0; i < s->audio_data_available[1] / 2; i++) { 360 s->temp_buffer[i] += (int64_t)(s->audio_buffer_1[i]) 361 * xlnx_dp_audio_get_volume(s, 1) / 8192; 362 } 363 s->byte_left = s->audio_data_available[1]; 364 } 365 } 366 367 for (i = 0; i < s->byte_left / 2; i++) { 368 s->out_buffer[i] = MAX(-32767, MIN(s->temp_buffer[i], 32767)); 369 } 370 371 s->data_ptr = 0; 372 } 373 374 static void xlnx_dp_audio_callback(void *opaque, int avail) 375 { 376 /* 377 * Get some data from the DPDMA and compute these datas. 378 * Then wait for QEMU's audio subsystem to call this callback. 379 */ 380 XlnxDPState *s = XLNX_DP(opaque); 381 size_t written = 0; 382 383 /* If there are already some data don't get more data. */ 384 if (s->byte_left == 0) { 385 s->audio_data_available[0] = xlnx_dpdma_start_operation(s->dpdma, 4, 386 true); 387 s->audio_data_available[1] = xlnx_dpdma_start_operation(s->dpdma, 5, 388 true); 389 xlnx_dp_audio_mix_buffer(s); 390 } 391 392 /* Send the buffer through the audio. */ 393 if (s->byte_left <= MAX_QEMU_BUFFER_SIZE) { 394 if (s->byte_left != 0) { 395 written = AUD_write(s->amixer_output_stream, 396 &s->out_buffer[s->data_ptr], s->byte_left); 397 } else { 398 int len_to_copy; 399 /* 400 * There is nothing to play.. We don't have any data! Fill the 401 * buffer with zero's and send it. 402 */ 403 written = 0; 404 while (avail) { 405 len_to_copy = MIN(AUD_CHBUF_MAX_DEPTH, avail); 406 memset(s->out_buffer, 0, len_to_copy); 407 avail -= AUD_write(s->amixer_output_stream, s->out_buffer, 408 len_to_copy); 409 } 410 } 411 } else { 412 written = AUD_write(s->amixer_output_stream, 413 &s->out_buffer[s->data_ptr], MAX_QEMU_BUFFER_SIZE); 414 } 415 s->byte_left -= written; 416 s->data_ptr += written; 417 } 418 419 /* 420 * AUX channel related function. 421 */ 422 static void xlnx_dp_aux_clear_rx_fifo(XlnxDPState *s) 423 { 424 fifo8_reset(&s->rx_fifo); 425 } 426 427 static void xlnx_dp_aux_push_rx_fifo(XlnxDPState *s, uint8_t *buf, size_t len) 428 { 429 DPRINTF("Push %u data in rx_fifo\n", (unsigned)len); 430 fifo8_push_all(&s->rx_fifo, buf, len); 431 } 432 433 static uint8_t xlnx_dp_aux_pop_rx_fifo(XlnxDPState *s) 434 { 435 uint8_t ret; 436 437 if (fifo8_is_empty(&s->rx_fifo)) { 438 qemu_log_mask(LOG_GUEST_ERROR, 439 "%s: Reading empty RX_FIFO\n", 440 __func__); 441 /* 442 * The datasheet is not clear about the reset value, it seems 443 * to be unspecified. We choose to return '0'. 444 */ 445 ret = 0; 446 } else { 447 ret = fifo8_pop(&s->rx_fifo); 448 DPRINTF("pop 0x%" PRIX8 " from rx_fifo.\n", ret); 449 } 450 return ret; 451 } 452 453 static void xlnx_dp_aux_clear_tx_fifo(XlnxDPState *s) 454 { 455 fifo8_reset(&s->tx_fifo); 456 } 457 458 static void xlnx_dp_aux_push_tx_fifo(XlnxDPState *s, uint8_t *buf, size_t len) 459 { 460 DPRINTF("Push %u data in tx_fifo\n", (unsigned)len); 461 fifo8_push_all(&s->tx_fifo, buf, len); 462 } 463 464 static uint8_t xlnx_dp_aux_pop_tx_fifo(XlnxDPState *s) 465 { 466 uint8_t ret; 467 468 if (fifo8_is_empty(&s->tx_fifo)) { 469 error_report("%s: TX_FIFO underflow", __func__); 470 abort(); 471 } 472 ret = fifo8_pop(&s->tx_fifo); 473 DPRINTF("pop 0x%2.2X from tx_fifo.\n", ret); 474 return ret; 475 } 476 477 static uint32_t xlnx_dp_aux_get_address(XlnxDPState *s) 478 { 479 return s->core_registers[DP_AUX_ADDRESS]; 480 } 481 482 /* 483 * Get command from the register. 484 */ 485 static void xlnx_dp_aux_set_command(XlnxDPState *s, uint32_t value) 486 { 487 bool address_only = (value & AUX_ADDR_ONLY_MASK) != 0; 488 AUXCommand cmd = (value & AUX_COMMAND_MASK) >> AUX_COMMAND_SHIFT; 489 uint8_t nbytes = (value & AUX_COMMAND_NBYTES) + 1; 490 uint8_t buf[16]; 491 int i; 492 493 /* 494 * When an address_only command is executed nothing happen to the fifo, so 495 * just make nbytes = 0. 496 */ 497 if (address_only) { 498 nbytes = 0; 499 } 500 501 switch (cmd) { 502 case READ_AUX: 503 case READ_I2C: 504 case READ_I2C_MOT: 505 s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd, 506 xlnx_dp_aux_get_address(s), 507 nbytes, buf); 508 s->core_registers[DP_REPLY_DATA_COUNT] = nbytes; 509 510 if (s->core_registers[DP_AUX_REPLY_CODE] == AUX_I2C_ACK) { 511 xlnx_dp_aux_push_rx_fifo(s, buf, nbytes); 512 } 513 break; 514 case WRITE_AUX: 515 case WRITE_I2C: 516 case WRITE_I2C_MOT: 517 for (i = 0; i < nbytes; i++) { 518 buf[i] = xlnx_dp_aux_pop_tx_fifo(s); 519 } 520 s->core_registers[DP_AUX_REPLY_CODE] = aux_request(s->aux_bus, cmd, 521 xlnx_dp_aux_get_address(s), 522 nbytes, buf); 523 xlnx_dp_aux_clear_tx_fifo(s); 524 break; 525 case WRITE_I2C_STATUS: 526 qemu_log_mask(LOG_UNIMP, "xlnx_dp: Write i2c status not implemented\n"); 527 break; 528 default: 529 error_report("%s: invalid command: %u", __func__, cmd); 530 abort(); 531 } 532 533 s->core_registers[DP_INTERRUPT_SIGNAL_STATE] |= 0x04; 534 } 535 536 static void xlnx_dp_set_dpdma(const Object *obj, const char *name, Object *val, 537 Error **errp) 538 { 539 XlnxDPState *s = XLNX_DP(obj); 540 if (s->console) { 541 DisplaySurface *surface = qemu_console_surface(s->console); 542 XlnxDPDMAState *dma = XLNX_DPDMA(val); 543 xlnx_dpdma_set_host_data_location(dma, DP_GRAPHIC_DMA_CHANNEL, 544 surface_data(surface)); 545 } 546 } 547 548 static inline uint8_t xlnx_dp_global_alpha_value(XlnxDPState *s) 549 { 550 return (s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x1FE) >> 1; 551 } 552 553 static inline bool xlnx_dp_global_alpha_enabled(XlnxDPState *s) 554 { 555 /* 556 * If the alpha is totally opaque (255) we consider the alpha is disabled to 557 * reduce CPU consumption. 558 */ 559 return ((xlnx_dp_global_alpha_value(s) != 0xFF) && 560 ((s->vblend_registers[V_BLEND_SET_GLOBAL_ALPHA_REG] & 0x01) != 0)); 561 } 562 563 static void xlnx_dp_recreate_surface(XlnxDPState *s) 564 { 565 /* 566 * Two possibilities, if blending is enabled the console displays 567 * bout_plane, if not g_plane is displayed. 568 */ 569 uint16_t width = s->core_registers[DP_MAIN_STREAM_HRES]; 570 uint16_t height = s->core_registers[DP_MAIN_STREAM_VRES]; 571 DisplaySurface *current_console_surface = qemu_console_surface(s->console); 572 573 if ((width != 0) && (height != 0)) { 574 /* 575 * As dpy_gfx_replace_surface calls qemu_free_displaysurface on the 576 * surface we need to be careful and don't free the surface associated 577 * to the console or double free will happen. 578 */ 579 if (s->bout_plane.surface != current_console_surface) { 580 qemu_free_displaysurface(s->bout_plane.surface); 581 } 582 if (s->v_plane.surface != current_console_surface) { 583 qemu_free_displaysurface(s->v_plane.surface); 584 } 585 if (s->g_plane.surface != current_console_surface) { 586 qemu_free_displaysurface(s->g_plane.surface); 587 } 588 589 s->g_plane.surface 590 = qemu_create_displaysurface_from(width, height, 591 s->g_plane.format, 0, NULL); 592 s->v_plane.surface 593 = qemu_create_displaysurface_from(width, height, 594 s->v_plane.format, 0, NULL); 595 if (xlnx_dp_global_alpha_enabled(s)) { 596 s->bout_plane.surface = 597 qemu_create_displaysurface_from(width, 598 height, 599 s->g_plane.format, 600 0, NULL); 601 dpy_gfx_replace_surface(s->console, s->bout_plane.surface); 602 } else { 603 s->bout_plane.surface = NULL; 604 dpy_gfx_replace_surface(s->console, s->g_plane.surface); 605 } 606 607 xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL, 608 surface_data(s->g_plane.surface)); 609 xlnx_dpdma_set_host_data_location(s->dpdma, DP_VIDEO_DMA_CHANNEL, 610 surface_data(s->v_plane.surface)); 611 } 612 } 613 614 /* 615 * Change the graphic format of the surface. 616 */ 617 static void xlnx_dp_change_graphic_fmt(XlnxDPState *s) 618 { 619 switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK) { 620 case DP_GRAPHIC_RGBA8888: 621 s->g_plane.format = PIXMAN_r8g8b8a8; 622 break; 623 case DP_GRAPHIC_ABGR8888: 624 s->g_plane.format = PIXMAN_a8b8g8r8; 625 break; 626 case DP_GRAPHIC_RGB565: 627 s->g_plane.format = PIXMAN_r5g6b5; 628 break; 629 case DP_GRAPHIC_RGB888: 630 s->g_plane.format = PIXMAN_r8g8b8; 631 break; 632 case DP_GRAPHIC_BGR888: 633 s->g_plane.format = PIXMAN_b8g8r8; 634 break; 635 default: 636 error_report("%s: unsupported graphic format %u", __func__, 637 s->avbufm_registers[AV_BUF_FORMAT] & DP_GRAPHIC_MASK); 638 abort(); 639 } 640 641 switch (s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK) { 642 case 0: 643 s->v_plane.format = PIXMAN_x8b8g8r8; 644 break; 645 case DP_NL_VID_Y0_CB_Y1_CR: 646 s->v_plane.format = PIXMAN_yuy2; 647 break; 648 case DP_NL_VID_RGBA8880: 649 s->v_plane.format = PIXMAN_x8b8g8r8; 650 break; 651 default: 652 error_report("%s: unsupported video format %u", __func__, 653 s->avbufm_registers[AV_BUF_FORMAT] & DP_NL_VID_FMT_MASK); 654 abort(); 655 } 656 657 xlnx_dp_recreate_surface(s); 658 } 659 660 static void xlnx_dp_update_irq(XlnxDPState *s) 661 { 662 uint32_t flags; 663 664 flags = s->core_registers[DP_INT_STATUS] & ~s->core_registers[DP_INT_MASK]; 665 DPRINTF("update IRQ value = %" PRIx32 "\n", flags); 666 qemu_set_irq(s->irq, flags != 0); 667 } 668 669 static uint64_t xlnx_dp_read(void *opaque, hwaddr offset, unsigned size) 670 { 671 XlnxDPState *s = XLNX_DP(opaque); 672 uint64_t ret = 0; 673 674 offset = offset >> 2; 675 676 switch (offset) { 677 case DP_TX_USER_FIFO_OVERFLOW: 678 /* This register is cleared after a read */ 679 ret = s->core_registers[DP_TX_USER_FIFO_OVERFLOW]; 680 s->core_registers[DP_TX_USER_FIFO_OVERFLOW] = 0; 681 break; 682 case DP_AUX_REPLY_DATA: 683 ret = xlnx_dp_aux_pop_rx_fifo(s); 684 break; 685 case DP_INTERRUPT_SIGNAL_STATE: 686 /* 687 * XXX: Not sure it is the right thing to do actually. 688 * The register is not written by the device driver so it's stuck 689 * to 0x04. 690 */ 691 ret = s->core_registers[DP_INTERRUPT_SIGNAL_STATE]; 692 s->core_registers[DP_INTERRUPT_SIGNAL_STATE] &= ~0x04; 693 break; 694 case DP_AUX_WRITE_FIFO: 695 case DP_TX_AUDIO_INFO_DATA(0): 696 case DP_TX_AUDIO_INFO_DATA(1): 697 case DP_TX_AUDIO_INFO_DATA(2): 698 case DP_TX_AUDIO_INFO_DATA(3): 699 case DP_TX_AUDIO_INFO_DATA(4): 700 case DP_TX_AUDIO_INFO_DATA(5): 701 case DP_TX_AUDIO_INFO_DATA(6): 702 case DP_TX_AUDIO_INFO_DATA(7): 703 case DP_TX_AUDIO_EXT_DATA(0): 704 case DP_TX_AUDIO_EXT_DATA(1): 705 case DP_TX_AUDIO_EXT_DATA(2): 706 case DP_TX_AUDIO_EXT_DATA(3): 707 case DP_TX_AUDIO_EXT_DATA(4): 708 case DP_TX_AUDIO_EXT_DATA(5): 709 case DP_TX_AUDIO_EXT_DATA(6): 710 case DP_TX_AUDIO_EXT_DATA(7): 711 case DP_TX_AUDIO_EXT_DATA(8): 712 /* write only registers */ 713 ret = 0; 714 break; 715 default: 716 assert(offset <= (0x3AC >> 2)); 717 ret = s->core_registers[offset]; 718 break; 719 } 720 721 DPRINTF("core read @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset << 2, ret); 722 return ret; 723 } 724 725 static void xlnx_dp_write(void *opaque, hwaddr offset, uint64_t value, 726 unsigned size) 727 { 728 XlnxDPState *s = XLNX_DP(opaque); 729 730 DPRINTF("core write @%" PRIx64 " = 0x%8.8" PRIX64 "\n", offset, value); 731 732 offset = offset >> 2; 733 734 switch (offset) { 735 /* 736 * Only special write case are handled. 737 */ 738 case DP_LINK_BW_SET: 739 s->core_registers[offset] = value & 0x000000FF; 740 break; 741 case DP_LANE_COUNT_SET: 742 case DP_MAIN_STREAM_MISC0: 743 s->core_registers[offset] = value & 0x0000000F; 744 break; 745 case DP_TRAINING_PATTERN_SET: 746 case DP_LINK_QUAL_PATTERN_SET: 747 case DP_MAIN_STREAM_POLARITY: 748 case DP_PHY_VOLTAGE_DIFF_LANE_0: 749 case DP_PHY_VOLTAGE_DIFF_LANE_1: 750 s->core_registers[offset] = value & 0x00000003; 751 break; 752 case DP_ENHANCED_FRAME_EN: 753 case DP_SCRAMBLING_DISABLE: 754 case DP_DOWNSPREAD_CTRL: 755 case DP_MAIN_STREAM_ENABLE: 756 case DP_TRANSMIT_PRBS7: 757 s->core_registers[offset] = value & 0x00000001; 758 break; 759 case DP_PHY_CLOCK_SELECT: 760 s->core_registers[offset] = value & 0x00000007; 761 break; 762 case DP_SOFTWARE_RESET: 763 /* 764 * No need to update this bit as it's read '0'. 765 */ 766 /* 767 * TODO: reset IP. 768 */ 769 break; 770 case DP_TRANSMITTER_ENABLE: 771 s->core_registers[offset] = value & 0x01; 772 break; 773 case DP_FORCE_SCRAMBLER_RESET: 774 /* 775 * No need to update this bit as it's read '0'. 776 */ 777 /* 778 * TODO: force a scrambler reset?? 779 */ 780 break; 781 case DP_AUX_COMMAND_REGISTER: 782 s->core_registers[offset] = value & 0x00001F0F; 783 xlnx_dp_aux_set_command(s, s->core_registers[offset]); 784 break; 785 case DP_MAIN_STREAM_HTOTAL: 786 case DP_MAIN_STREAM_VTOTAL: 787 case DP_MAIN_STREAM_HSTART: 788 case DP_MAIN_STREAM_VSTART: 789 s->core_registers[offset] = value & 0x0000FFFF; 790 break; 791 case DP_MAIN_STREAM_HRES: 792 case DP_MAIN_STREAM_VRES: 793 s->core_registers[offset] = value & 0x0000FFFF; 794 xlnx_dp_recreate_surface(s); 795 break; 796 case DP_MAIN_STREAM_HSWIDTH: 797 case DP_MAIN_STREAM_VSWIDTH: 798 s->core_registers[offset] = value & 0x00007FFF; 799 break; 800 case DP_MAIN_STREAM_MISC1: 801 s->core_registers[offset] = value & 0x00000086; 802 break; 803 case DP_MAIN_STREAM_M_VID: 804 case DP_MAIN_STREAM_N_VID: 805 s->core_registers[offset] = value & 0x00FFFFFF; 806 break; 807 case DP_MSA_TRANSFER_UNIT_SIZE: 808 case DP_MIN_BYTES_PER_TU: 809 case DP_INIT_WAIT: 810 s->core_registers[offset] = value & 0x00000007; 811 break; 812 case DP_USER_DATA_COUNT_PER_LANE: 813 s->core_registers[offset] = value & 0x0003FFFF; 814 break; 815 case DP_FRAC_BYTES_PER_TU: 816 s->core_registers[offset] = value & 0x000003FF; 817 break; 818 case DP_PHY_RESET: 819 s->core_registers[offset] = value & 0x00010003; 820 /* 821 * TODO: Reset something? 822 */ 823 break; 824 case DP_TX_PHY_POWER_DOWN: 825 s->core_registers[offset] = value & 0x0000000F; 826 /* 827 * TODO: Power down things? 828 */ 829 break; 830 case DP_AUX_WRITE_FIFO: { 831 uint8_t c = value; 832 xlnx_dp_aux_push_tx_fifo(s, &c, 1); 833 break; 834 } 835 case DP_AUX_CLOCK_DIVIDER: 836 break; 837 case DP_AUX_REPLY_COUNT: 838 /* 839 * Writing to this register clear the counter. 840 */ 841 s->core_registers[offset] = 0x00000000; 842 break; 843 case DP_AUX_ADDRESS: 844 s->core_registers[offset] = value & 0x000FFFFF; 845 break; 846 case DP_VERSION_REGISTER: 847 case DP_CORE_ID: 848 case DP_TX_USER_FIFO_OVERFLOW: 849 case DP_AUX_REPLY_DATA: 850 case DP_AUX_REPLY_CODE: 851 case DP_REPLY_DATA_COUNT: 852 case DP_REPLY_STATUS: 853 case DP_HPD_DURATION: 854 /* 855 * Write to read only location.. 856 */ 857 break; 858 case DP_TX_AUDIO_CONTROL: 859 s->core_registers[offset] = value & 0x00000001; 860 xlnx_dp_audio_activate(s); 861 break; 862 case DP_TX_AUDIO_CHANNELS: 863 s->core_registers[offset] = value & 0x00000007; 864 xlnx_dp_audio_activate(s); 865 break; 866 case DP_INT_STATUS: 867 s->core_registers[DP_INT_STATUS] &= ~value; 868 xlnx_dp_update_irq(s); 869 break; 870 case DP_INT_EN: 871 s->core_registers[DP_INT_MASK] &= ~value; 872 xlnx_dp_update_irq(s); 873 break; 874 case DP_INT_DS: 875 s->core_registers[DP_INT_MASK] |= ~value; 876 xlnx_dp_update_irq(s); 877 break; 878 default: 879 assert(offset <= (0x504C >> 2)); 880 s->core_registers[offset] = value; 881 break; 882 } 883 } 884 885 static const MemoryRegionOps dp_ops = { 886 .read = xlnx_dp_read, 887 .write = xlnx_dp_write, 888 .endianness = DEVICE_NATIVE_ENDIAN, 889 .valid = { 890 .min_access_size = 4, 891 .max_access_size = 4, 892 }, 893 .impl = { 894 .min_access_size = 4, 895 .max_access_size = 4, 896 }, 897 }; 898 899 /* 900 * This is to handle Read/Write to the Video Blender. 901 */ 902 static void xlnx_dp_vblend_write(void *opaque, hwaddr offset, 903 uint64_t value, unsigned size) 904 { 905 XlnxDPState *s = XLNX_DP(opaque); 906 bool alpha_was_enabled; 907 908 DPRINTF("vblend: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset, 909 (uint32_t)value); 910 offset = offset >> 2; 911 912 switch (offset) { 913 case V_BLEND_BG_CLR_0: 914 case V_BLEND_BG_CLR_1: 915 case V_BLEND_BG_CLR_2: 916 s->vblend_registers[offset] = value & 0x00000FFF; 917 break; 918 case V_BLEND_SET_GLOBAL_ALPHA_REG: 919 /* 920 * A write to this register can enable or disable blending. Thus we need 921 * to recreate the surfaces. 922 */ 923 alpha_was_enabled = xlnx_dp_global_alpha_enabled(s); 924 s->vblend_registers[offset] = value & 0x000001FF; 925 if (xlnx_dp_global_alpha_enabled(s) != alpha_was_enabled) { 926 xlnx_dp_recreate_surface(s); 927 } 928 break; 929 case V_BLEND_OUTPUT_VID_FORMAT: 930 s->vblend_registers[offset] = value & 0x00000017; 931 break; 932 case V_BLEND_LAYER0_CONTROL: 933 case V_BLEND_LAYER1_CONTROL: 934 s->vblend_registers[offset] = value & 0x00000103; 935 break; 936 case V_BLEND_RGB2YCBCR_COEFF(0): 937 case V_BLEND_RGB2YCBCR_COEFF(1): 938 case V_BLEND_RGB2YCBCR_COEFF(2): 939 case V_BLEND_RGB2YCBCR_COEFF(3): 940 case V_BLEND_RGB2YCBCR_COEFF(4): 941 case V_BLEND_RGB2YCBCR_COEFF(5): 942 case V_BLEND_RGB2YCBCR_COEFF(6): 943 case V_BLEND_RGB2YCBCR_COEFF(7): 944 case V_BLEND_RGB2YCBCR_COEFF(8): 945 case V_BLEND_IN1CSC_COEFF(0): 946 case V_BLEND_IN1CSC_COEFF(1): 947 case V_BLEND_IN1CSC_COEFF(2): 948 case V_BLEND_IN1CSC_COEFF(3): 949 case V_BLEND_IN1CSC_COEFF(4): 950 case V_BLEND_IN1CSC_COEFF(5): 951 case V_BLEND_IN1CSC_COEFF(6): 952 case V_BLEND_IN1CSC_COEFF(7): 953 case V_BLEND_IN1CSC_COEFF(8): 954 case V_BLEND_IN2CSC_COEFF(0): 955 case V_BLEND_IN2CSC_COEFF(1): 956 case V_BLEND_IN2CSC_COEFF(2): 957 case V_BLEND_IN2CSC_COEFF(3): 958 case V_BLEND_IN2CSC_COEFF(4): 959 case V_BLEND_IN2CSC_COEFF(5): 960 case V_BLEND_IN2CSC_COEFF(6): 961 case V_BLEND_IN2CSC_COEFF(7): 962 case V_BLEND_IN2CSC_COEFF(8): 963 s->vblend_registers[offset] = value & 0x0000FFFF; 964 break; 965 case V_BLEND_LUMA_IN1CSC_OFFSET: 966 case V_BLEND_CR_IN1CSC_OFFSET: 967 case V_BLEND_CB_IN1CSC_OFFSET: 968 case V_BLEND_LUMA_IN2CSC_OFFSET: 969 case V_BLEND_CR_IN2CSC_OFFSET: 970 case V_BLEND_CB_IN2CSC_OFFSET: 971 case V_BLEND_LUMA_OUTCSC_OFFSET: 972 case V_BLEND_CR_OUTCSC_OFFSET: 973 case V_BLEND_CB_OUTCSC_OFFSET: 974 s->vblend_registers[offset] = value & 0x3FFF7FFF; 975 break; 976 case V_BLEND_CHROMA_KEY_ENABLE: 977 s->vblend_registers[offset] = value & 0x00000003; 978 break; 979 case V_BLEND_CHROMA_KEY_COMP1: 980 case V_BLEND_CHROMA_KEY_COMP2: 981 case V_BLEND_CHROMA_KEY_COMP3: 982 s->vblend_registers[offset] = value & 0x0FFF0FFF; 983 break; 984 default: 985 s->vblend_registers[offset] = value; 986 break; 987 } 988 } 989 990 static uint64_t xlnx_dp_vblend_read(void *opaque, hwaddr offset, 991 unsigned size) 992 { 993 XlnxDPState *s = XLNX_DP(opaque); 994 995 DPRINTF("vblend: read @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset, 996 s->vblend_registers[offset >> 2]); 997 return s->vblend_registers[offset >> 2]; 998 } 999 1000 static const MemoryRegionOps vblend_ops = { 1001 .read = xlnx_dp_vblend_read, 1002 .write = xlnx_dp_vblend_write, 1003 .endianness = DEVICE_NATIVE_ENDIAN, 1004 .valid = { 1005 .min_access_size = 4, 1006 .max_access_size = 4, 1007 }, 1008 .impl = { 1009 .min_access_size = 4, 1010 .max_access_size = 4, 1011 }, 1012 }; 1013 1014 /* 1015 * This is to handle Read/Write to the Audio Video buffer manager. 1016 */ 1017 static void xlnx_dp_avbufm_write(void *opaque, hwaddr offset, uint64_t value, 1018 unsigned size) 1019 { 1020 XlnxDPState *s = XLNX_DP(opaque); 1021 1022 DPRINTF("avbufm: write @0x%" HWADDR_PRIX " = 0x%" PRIX32 "\n", offset, 1023 (uint32_t)value); 1024 offset = offset >> 2; 1025 1026 switch (offset) { 1027 case AV_BUF_FORMAT: 1028 s->avbufm_registers[offset] = value & 0x00000FFF; 1029 xlnx_dp_change_graphic_fmt(s); 1030 break; 1031 case AV_CHBUF0: 1032 case AV_CHBUF1: 1033 case AV_CHBUF2: 1034 case AV_CHBUF3: 1035 case AV_CHBUF4: 1036 case AV_CHBUF5: 1037 s->avbufm_registers[offset] = value & 0x0000007F; 1038 break; 1039 case AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT: 1040 s->avbufm_registers[offset] = value & 0x0000007F; 1041 break; 1042 case AV_BUF_DITHER_CONFIG: 1043 s->avbufm_registers[offset] = value & 0x000007FF; 1044 break; 1045 case AV_BUF_DITHER_CONFIG_MAX: 1046 case AV_BUF_DITHER_CONFIG_MIN: 1047 s->avbufm_registers[offset] = value & 0x00000FFF; 1048 break; 1049 case AV_BUF_PATTERN_GEN_SELECT: 1050 s->avbufm_registers[offset] = value & 0xFFFFFF03; 1051 break; 1052 case AV_BUF_AUD_VID_CLK_SOURCE: 1053 s->avbufm_registers[offset] = value & 0x00000007; 1054 break; 1055 case AV_BUF_SRST_REG: 1056 s->avbufm_registers[offset] = value & 0x00000002; 1057 break; 1058 case AV_BUF_AUDIO_CH_CONFIG: 1059 s->avbufm_registers[offset] = value & 0x00000003; 1060 break; 1061 case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0): 1062 case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1): 1063 case AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2): 1064 case AV_BUF_VIDEO_COMP_SCALE_FACTOR(0): 1065 case AV_BUF_VIDEO_COMP_SCALE_FACTOR(1): 1066 case AV_BUF_VIDEO_COMP_SCALE_FACTOR(2): 1067 s->avbufm_registers[offset] = value & 0x0000FFFF; 1068 break; 1069 case AV_BUF_LIVE_VIDEO_COMP_SF(0): 1070 case AV_BUF_LIVE_VIDEO_COMP_SF(1): 1071 case AV_BUF_LIVE_VIDEO_COMP_SF(2): 1072 case AV_BUF_LIVE_VID_CONFIG: 1073 case AV_BUF_LIVE_GFX_COMP_SF(0): 1074 case AV_BUF_LIVE_GFX_COMP_SF(1): 1075 case AV_BUF_LIVE_GFX_COMP_SF(2): 1076 case AV_BUF_LIVE_GFX_CONFIG: 1077 case AV_BUF_NON_LIVE_LATENCY: 1078 case AV_BUF_STC_CONTROL: 1079 case AV_BUF_STC_INIT_VALUE0: 1080 case AV_BUF_STC_INIT_VALUE1: 1081 case AV_BUF_STC_ADJ: 1082 case AV_BUF_STC_VIDEO_VSYNC_TS_REG0: 1083 case AV_BUF_STC_VIDEO_VSYNC_TS_REG1: 1084 case AV_BUF_STC_EXT_VSYNC_TS_REG0: 1085 case AV_BUF_STC_EXT_VSYNC_TS_REG1: 1086 case AV_BUF_STC_CUSTOM_EVENT_TS_REG0: 1087 case AV_BUF_STC_CUSTOM_EVENT_TS_REG1: 1088 case AV_BUF_STC_CUSTOM_EVENT2_TS_REG0: 1089 case AV_BUF_STC_CUSTOM_EVENT2_TS_REG1: 1090 case AV_BUF_STC_SNAPSHOT0: 1091 case AV_BUF_STC_SNAPSHOT1: 1092 case AV_BUF_HCOUNT_VCOUNT_INT0: 1093 case AV_BUF_HCOUNT_VCOUNT_INT1: 1094 qemu_log_mask(LOG_UNIMP, "avbufm: unimplemented register 0x%04" 1095 PRIx64 "\n", 1096 offset << 2); 1097 break; 1098 default: 1099 s->avbufm_registers[offset] = value; 1100 break; 1101 } 1102 } 1103 1104 static uint64_t xlnx_dp_avbufm_read(void *opaque, hwaddr offset, 1105 unsigned size) 1106 { 1107 XlnxDPState *s = XLNX_DP(opaque); 1108 1109 offset = offset >> 2; 1110 return s->avbufm_registers[offset]; 1111 } 1112 1113 static const MemoryRegionOps avbufm_ops = { 1114 .read = xlnx_dp_avbufm_read, 1115 .write = xlnx_dp_avbufm_write, 1116 .endianness = DEVICE_NATIVE_ENDIAN, 1117 .valid = { 1118 .min_access_size = 4, 1119 .max_access_size = 4, 1120 }, 1121 .impl = { 1122 .min_access_size = 4, 1123 .max_access_size = 4, 1124 }, 1125 }; 1126 1127 /* 1128 * This is a global alpha blending using pixman. 1129 * Both graphic and video planes are multiplied with the global alpha 1130 * coefficient and added. 1131 */ 1132 static inline void xlnx_dp_blend_surface(XlnxDPState *s) 1133 { 1134 pixman_fixed_t alpha1[] = { pixman_double_to_fixed(1), 1135 pixman_double_to_fixed(1), 1136 pixman_double_to_fixed(1.0) }; 1137 pixman_fixed_t alpha2[] = { pixman_double_to_fixed(1), 1138 pixman_double_to_fixed(1), 1139 pixman_double_to_fixed(1.0) }; 1140 1141 if ((surface_width(s->g_plane.surface) 1142 != surface_width(s->v_plane.surface)) || 1143 (surface_height(s->g_plane.surface) 1144 != surface_height(s->v_plane.surface))) { 1145 return; 1146 } 1147 1148 alpha1[2] = pixman_double_to_fixed((double)(xlnx_dp_global_alpha_value(s)) 1149 / 256.0); 1150 alpha2[2] = pixman_double_to_fixed((255.0 1151 - (double)xlnx_dp_global_alpha_value(s)) 1152 / 256.0); 1153 1154 pixman_image_set_filter(s->g_plane.surface->image, 1155 PIXMAN_FILTER_CONVOLUTION, alpha1, 3); 1156 pixman_image_composite(PIXMAN_OP_SRC, s->g_plane.surface->image, 0, 1157 s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0, 1158 surface_width(s->g_plane.surface), 1159 surface_height(s->g_plane.surface)); 1160 pixman_image_set_filter(s->v_plane.surface->image, 1161 PIXMAN_FILTER_CONVOLUTION, alpha2, 3); 1162 pixman_image_composite(PIXMAN_OP_ADD, s->v_plane.surface->image, 0, 1163 s->bout_plane.surface->image, 0, 0, 0, 0, 0, 0, 1164 surface_width(s->g_plane.surface), 1165 surface_height(s->g_plane.surface)); 1166 } 1167 1168 static void xlnx_dp_update_display(void *opaque) 1169 { 1170 XlnxDPState *s = XLNX_DP(opaque); 1171 1172 if ((s->core_registers[DP_TRANSMITTER_ENABLE] & 0x01) == 0) { 1173 return; 1174 } 1175 1176 s->core_registers[DP_INT_STATUS] |= (1 << 13); 1177 xlnx_dp_update_irq(s); 1178 1179 xlnx_dpdma_trigger_vsync_irq(s->dpdma); 1180 1181 /* 1182 * Trigger the DMA channel. 1183 */ 1184 if (!xlnx_dpdma_start_operation(s->dpdma, 3, false)) { 1185 /* 1186 * An error occurred don't do anything with the data.. 1187 * Trigger an underflow interrupt. 1188 */ 1189 s->core_registers[DP_INT_STATUS] |= (1 << 21); 1190 xlnx_dp_update_irq(s); 1191 return; 1192 } 1193 1194 if (xlnx_dp_global_alpha_enabled(s)) { 1195 if (!xlnx_dpdma_start_operation(s->dpdma, 0, false)) { 1196 s->core_registers[DP_INT_STATUS] |= (1 << 21); 1197 xlnx_dp_update_irq(s); 1198 return; 1199 } 1200 xlnx_dp_blend_surface(s); 1201 } 1202 1203 /* 1204 * XXX: We might want to update only what changed. 1205 */ 1206 dpy_gfx_update_full(s->console); 1207 } 1208 1209 static const GraphicHwOps xlnx_dp_gfx_ops = { 1210 .gfx_update = xlnx_dp_update_display, 1211 }; 1212 1213 static void xlnx_dp_init(Object *obj) 1214 { 1215 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1216 XlnxDPState *s = XLNX_DP(obj); 1217 1218 memory_region_init(&s->container, obj, TYPE_XLNX_DP, 0xC050); 1219 1220 memory_region_init_io(&s->core_iomem, obj, &dp_ops, s, TYPE_XLNX_DP 1221 ".core", 0x3AF); 1222 memory_region_add_subregion(&s->container, 0x0000, &s->core_iomem); 1223 1224 memory_region_init_io(&s->vblend_iomem, obj, &vblend_ops, s, TYPE_XLNX_DP 1225 ".v_blend", 0x1DF); 1226 memory_region_add_subregion(&s->container, 0xA000, &s->vblend_iomem); 1227 1228 memory_region_init_io(&s->avbufm_iomem, obj, &avbufm_ops, s, TYPE_XLNX_DP 1229 ".av_buffer_manager", 0x238); 1230 memory_region_add_subregion(&s->container, 0xB000, &s->avbufm_iomem); 1231 1232 memory_region_init_io(&s->audio_iomem, obj, &audio_ops, s, TYPE_XLNX_DP 1233 ".audio", sizeof(s->audio_registers)); 1234 memory_region_add_subregion(&s->container, 0xC000, &s->audio_iomem); 1235 1236 sysbus_init_mmio(sbd, &s->container); 1237 sysbus_init_irq(sbd, &s->irq); 1238 1239 object_property_add_link(obj, "dpdma", TYPE_XLNX_DPDMA, 1240 (Object **) &s->dpdma, 1241 xlnx_dp_set_dpdma, 1242 OBJ_PROP_LINK_STRONG); 1243 1244 /* 1245 * Initialize AUX Bus. 1246 */ 1247 s->aux_bus = aux_bus_init(DEVICE(obj), "aux"); 1248 1249 /* 1250 * Initialize DPCD and EDID.. 1251 */ 1252 s->dpcd = DPCD(qdev_new("dpcd")); 1253 object_property_add_child(OBJECT(s), "dpcd", OBJECT(s->dpcd)); 1254 1255 s->edid = I2CDDC(qdev_new("i2c-ddc")); 1256 i2c_slave_set_address(I2C_SLAVE(s->edid), 0x50); 1257 object_property_add_child(OBJECT(s), "edid", OBJECT(s->edid)); 1258 1259 fifo8_create(&s->rx_fifo, 16); 1260 fifo8_create(&s->tx_fifo, 16); 1261 } 1262 1263 static void xlnx_dp_finalize(Object *obj) 1264 { 1265 XlnxDPState *s = XLNX_DP(obj); 1266 1267 fifo8_destroy(&s->tx_fifo); 1268 fifo8_destroy(&s->rx_fifo); 1269 } 1270 1271 static void xlnx_dp_realize(DeviceState *dev, Error **errp) 1272 { 1273 XlnxDPState *s = XLNX_DP(dev); 1274 DisplaySurface *surface; 1275 struct audsettings as; 1276 1277 aux_bus_realize(s->aux_bus); 1278 1279 qdev_realize(DEVICE(s->dpcd), BUS(s->aux_bus), &error_fatal); 1280 aux_map_slave(AUX_SLAVE(s->dpcd), 0x0000); 1281 1282 qdev_realize_and_unref(DEVICE(s->edid), BUS(aux_get_i2c_bus(s->aux_bus)), 1283 &error_fatal); 1284 1285 s->console = graphic_console_init(dev, 0, &xlnx_dp_gfx_ops, s); 1286 surface = qemu_console_surface(s->console); 1287 xlnx_dpdma_set_host_data_location(s->dpdma, DP_GRAPHIC_DMA_CHANNEL, 1288 surface_data(surface)); 1289 1290 as.freq = 44100; 1291 as.nchannels = 2; 1292 as.fmt = AUDIO_FORMAT_S16; 1293 as.endianness = 0; 1294 1295 AUD_register_card("xlnx_dp.audio", &s->aud_card); 1296 1297 s->amixer_output_stream = AUD_open_out(&s->aud_card, 1298 s->amixer_output_stream, 1299 "xlnx_dp.audio.out", 1300 s, 1301 xlnx_dp_audio_callback, 1302 &as); 1303 AUD_set_volume_out(s->amixer_output_stream, 0, 255, 255); 1304 xlnx_dp_audio_activate(s); 1305 } 1306 1307 static void xlnx_dp_reset(DeviceState *dev) 1308 { 1309 XlnxDPState *s = XLNX_DP(dev); 1310 1311 memset(s->core_registers, 0, sizeof(s->core_registers)); 1312 s->core_registers[DP_VERSION_REGISTER] = 0x04010000; 1313 s->core_registers[DP_CORE_ID] = 0x01020000; 1314 s->core_registers[DP_REPLY_STATUS] = 0x00000010; 1315 s->core_registers[DP_MSA_TRANSFER_UNIT_SIZE] = 0x00000040; 1316 s->core_registers[DP_INIT_WAIT] = 0x00000020; 1317 s->core_registers[DP_PHY_RESET] = 0x00010003; 1318 s->core_registers[DP_INT_MASK] = 0xFFFFF03F; 1319 s->core_registers[DP_PHY_STATUS] = 0x00000043; 1320 s->core_registers[DP_INTERRUPT_SIGNAL_STATE] = 0x00000001; 1321 1322 s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(0)] = 0x00001000; 1323 s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(4)] = 0x00001000; 1324 s->vblend_registers[V_BLEND_RGB2YCBCR_COEFF(8)] = 0x00001000; 1325 s->vblend_registers[V_BLEND_IN1CSC_COEFF(0)] = 0x00001000; 1326 s->vblend_registers[V_BLEND_IN1CSC_COEFF(4)] = 0x00001000; 1327 s->vblend_registers[V_BLEND_IN1CSC_COEFF(8)] = 0x00001000; 1328 s->vblend_registers[V_BLEND_IN2CSC_COEFF(0)] = 0x00001000; 1329 s->vblend_registers[V_BLEND_IN2CSC_COEFF(4)] = 0x00001000; 1330 s->vblend_registers[V_BLEND_IN2CSC_COEFF(8)] = 0x00001000; 1331 1332 s->avbufm_registers[AV_BUF_NON_LIVE_LATENCY] = 0x00000180; 1333 s->avbufm_registers[AV_BUF_OUTPUT_AUDIO_VIDEO_SELECT] = 0x00000008; 1334 s->avbufm_registers[AV_BUF_DITHER_CONFIG_MAX] = 0x00000FFF; 1335 s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(0)] = 0x00010101; 1336 s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(1)] = 0x00010101; 1337 s->avbufm_registers[AV_BUF_GRAPHICS_COMP_SCALE_FACTOR(2)] = 0x00010101; 1338 s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(0)] = 0x00010101; 1339 s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(1)] = 0x00010101; 1340 s->avbufm_registers[AV_BUF_VIDEO_COMP_SCALE_FACTOR(2)] = 0x00010101; 1341 s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(0)] = 0x00010101; 1342 s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(1)] = 0x00010101; 1343 s->avbufm_registers[AV_BUF_LIVE_VIDEO_COMP_SF(2)] = 0x00010101; 1344 s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(0)] = 0x00010101; 1345 s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(1)] = 0x00010101; 1346 s->avbufm_registers[AV_BUF_LIVE_GFX_COMP_SF(2)] = 0x00010101; 1347 1348 memset(s->audio_registers, 0, sizeof(s->audio_registers)); 1349 s->byte_left = 0; 1350 1351 xlnx_dp_aux_clear_rx_fifo(s); 1352 xlnx_dp_change_graphic_fmt(s); 1353 xlnx_dp_update_irq(s); 1354 } 1355 1356 static void xlnx_dp_class_init(ObjectClass *oc, void *data) 1357 { 1358 DeviceClass *dc = DEVICE_CLASS(oc); 1359 1360 dc->realize = xlnx_dp_realize; 1361 dc->vmsd = &vmstate_dp; 1362 dc->reset = xlnx_dp_reset; 1363 } 1364 1365 static const TypeInfo xlnx_dp_info = { 1366 .name = TYPE_XLNX_DP, 1367 .parent = TYPE_SYS_BUS_DEVICE, 1368 .instance_size = sizeof(XlnxDPState), 1369 .instance_init = xlnx_dp_init, 1370 .instance_finalize = xlnx_dp_finalize, 1371 .class_init = xlnx_dp_class_init, 1372 }; 1373 1374 static void xlnx_dp_register_types(void) 1375 { 1376 type_register_static(&xlnx_dp_info); 1377 } 1378 1379 type_init(xlnx_dp_register_types) 1380