xref: /openbmc/qemu/hw/display/ssd0323.c (revision dc5bd18f)
1 /*
2  * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* The controller can support a variety of different displays, but we only
11    implement one.  Most of the commends relating to brightness and geometry
12    setup are ignored. */
13 #include "qemu/osdep.h"
14 #include "hw/ssi/ssi.h"
15 #include "ui/console.h"
16 
17 //#define DEBUG_SSD0323 1
18 
19 #ifdef DEBUG_SSD0323
20 #define DPRINTF(fmt, ...) \
21 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
22 #define BADF(fmt, ...) \
23 do { \
24     fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
25 } while (0)
26 #else
27 #define DPRINTF(fmt, ...) do {} while(0)
28 #define BADF(fmt, ...) \
29 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
30 #endif
31 
32 /* Scaling factor for pixels.  */
33 #define MAGNIFY 4
34 
35 #define REMAP_SWAP_COLUMN 0x01
36 #define REMAP_SWAP_NYBBLE 0x02
37 #define REMAP_VERTICAL    0x04
38 #define REMAP_SWAP_COM    0x10
39 #define REMAP_SPLIT_COM   0x40
40 
41 enum ssd0323_mode
42 {
43     SSD0323_CMD,
44     SSD0323_DATA
45 };
46 
47 typedef struct {
48     SSISlave ssidev;
49     QemuConsole *con;
50 
51     uint32_t cmd_len;
52     int32_t cmd;
53     int32_t cmd_data[8];
54     int32_t row;
55     int32_t row_start;
56     int32_t row_end;
57     int32_t col;
58     int32_t col_start;
59     int32_t col_end;
60     int32_t redraw;
61     int32_t remap;
62     uint32_t mode;
63     uint8_t framebuffer[128 * 80 / 2];
64 } ssd0323_state;
65 
66 static uint32_t ssd0323_transfer(SSISlave *dev, uint32_t data)
67 {
68     ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, dev);
69 
70     switch (s->mode) {
71     case SSD0323_DATA:
72         DPRINTF("data 0x%02x\n", data);
73         s->framebuffer[s->col + s->row * 64] = data;
74         if (s->remap & REMAP_VERTICAL) {
75             s->row++;
76             if (s->row > s->row_end) {
77                 s->row = s->row_start;
78                 s->col++;
79             }
80             if (s->col > s->col_end) {
81                 s->col = s->col_start;
82             }
83         } else {
84             s->col++;
85             if (s->col > s->col_end) {
86                 s->row++;
87                 s->col = s->col_start;
88             }
89             if (s->row > s->row_end) {
90                 s->row = s->row_start;
91             }
92         }
93         s->redraw = 1;
94         break;
95     case SSD0323_CMD:
96         DPRINTF("cmd 0x%02x\n", data);
97         if (s->cmd_len == 0) {
98             s->cmd = data;
99         } else {
100             s->cmd_data[s->cmd_len - 1] = data;
101         }
102         s->cmd_len++;
103         switch (s->cmd) {
104 #define DATA(x) if (s->cmd_len <= (x)) return 0
105         case 0x15: /* Set column.  */
106             DATA(2);
107             s->col = s->col_start = s->cmd_data[0] % 64;
108             s->col_end = s->cmd_data[1] % 64;
109             break;
110         case 0x75: /* Set row.  */
111             DATA(2);
112             s->row = s->row_start = s->cmd_data[0] % 80;
113             s->row_end = s->cmd_data[1] % 80;
114             break;
115         case 0x81: /* Set contrast */
116             DATA(1);
117             break;
118         case 0x84: case 0x85: case 0x86: /* Max current.  */
119             DATA(0);
120             break;
121         case 0xa0: /* Set remapping.  */
122             /* FIXME: Implement this.  */
123             DATA(1);
124             s->remap = s->cmd_data[0];
125             break;
126         case 0xa1: /* Set display start line.  */
127         case 0xa2: /* Set display offset.  */
128             /* FIXME: Implement these.  */
129             DATA(1);
130             break;
131         case 0xa4: /* Normal mode.  */
132         case 0xa5: /* All on.  */
133         case 0xa6: /* All off.  */
134         case 0xa7: /* Inverse.  */
135             /* FIXME: Implement these.  */
136             DATA(0);
137             break;
138         case 0xa8: /* Set multiplex ratio.  */
139         case 0xad: /* Set DC-DC converter.  */
140             DATA(1);
141             /* Ignored.  Don't care.  */
142             break;
143         case 0xae: /* Display off.  */
144         case 0xaf: /* Display on.  */
145             DATA(0);
146             /* TODO: Implement power control.  */
147             break;
148         case 0xb1: /* Set phase length.  */
149         case 0xb2: /* Set row period.  */
150         case 0xb3: /* Set clock rate.  */
151         case 0xbc: /* Set precharge.  */
152         case 0xbe: /* Set VCOMH.  */
153         case 0xbf: /* Set segment low.  */
154             DATA(1);
155             /* Ignored.  Don't care.  */
156             break;
157         case 0xb8: /* Set grey scale table.  */
158             /* FIXME: Implement this.  */
159             DATA(8);
160             break;
161         case 0xe3: /* NOP.  */
162             DATA(0);
163             break;
164         case 0xff: /* Nasty hack because we don't handle chip selects
165                       properly.  */
166             break;
167         default:
168             BADF("Unknown command: 0x%x\n", data);
169         }
170         s->cmd_len = 0;
171         return 0;
172     }
173     return 0;
174 }
175 
176 static void ssd0323_update_display(void *opaque)
177 {
178     ssd0323_state *s = (ssd0323_state *)opaque;
179     DisplaySurface *surface = qemu_console_surface(s->con);
180     uint8_t *dest;
181     uint8_t *src;
182     int x;
183     int y;
184     int i;
185     int line;
186     char *colors[16];
187     char colortab[MAGNIFY * 64];
188     char *p;
189     int dest_width;
190 
191     if (!s->redraw)
192         return;
193 
194     switch (surface_bits_per_pixel(surface)) {
195     case 0:
196         return;
197     case 15:
198         dest_width = 2;
199         break;
200     case 16:
201         dest_width = 2;
202         break;
203     case 24:
204         dest_width = 3;
205         break;
206     case 32:
207         dest_width = 4;
208         break;
209     default:
210         BADF("Bad color depth\n");
211         return;
212     }
213     p = colortab;
214     for (i = 0; i < 16; i++) {
215         int n;
216         colors[i] = p;
217         switch (surface_bits_per_pixel(surface)) {
218         case 15:
219             n = i * 2 + (i >> 3);
220             p[0] = n | (n << 5);
221             p[1] = (n << 2) | (n >> 3);
222             break;
223         case 16:
224             n = i * 2 + (i >> 3);
225             p[0] = n | (n << 6) | ((n << 1) & 0x20);
226             p[1] = (n << 3) | (n >> 2);
227             break;
228         case 24:
229         case 32:
230             n = (i << 4) | i;
231             p[0] = p[1] = p[2] = n;
232             break;
233         default:
234             BADF("Bad color depth\n");
235             return;
236         }
237         p += dest_width;
238     }
239     /* TODO: Implement row/column remapping.  */
240     dest = surface_data(surface);
241     for (y = 0; y < 64; y++) {
242         line = y;
243         src = s->framebuffer + 64 * line;
244         for (x = 0; x < 64; x++) {
245             int val;
246             val = *src >> 4;
247             for (i = 0; i < MAGNIFY; i++) {
248                 memcpy(dest, colors[val], dest_width);
249                 dest += dest_width;
250             }
251             val = *src & 0xf;
252             for (i = 0; i < MAGNIFY; i++) {
253                 memcpy(dest, colors[val], dest_width);
254                 dest += dest_width;
255             }
256             src++;
257         }
258         for (i = 1; i < MAGNIFY; i++) {
259             memcpy(dest, dest - dest_width * MAGNIFY * 128,
260                    dest_width * 128 * MAGNIFY);
261             dest += dest_width * 128 * MAGNIFY;
262         }
263     }
264     s->redraw = 0;
265     dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
266 }
267 
268 static void ssd0323_invalidate_display(void * opaque)
269 {
270     ssd0323_state *s = (ssd0323_state *)opaque;
271     s->redraw = 1;
272 }
273 
274 /* Command/data input.  */
275 static void ssd0323_cd(void *opaque, int n, int level)
276 {
277     ssd0323_state *s = (ssd0323_state *)opaque;
278     DPRINTF("%s mode\n", level ? "Data" : "Command");
279     s->mode = level ? SSD0323_DATA : SSD0323_CMD;
280 }
281 
282 static int ssd0323_post_load(void *opaque, int version_id)
283 {
284     ssd0323_state *s = (ssd0323_state *)opaque;
285 
286     if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
287         return -EINVAL;
288     }
289     if (s->row < 0 || s->row >= 80) {
290         return -EINVAL;
291     }
292     if (s->row_start < 0 || s->row_start >= 80) {
293         return -EINVAL;
294     }
295     if (s->row_end < 0 || s->row_end >= 80) {
296         return -EINVAL;
297     }
298     if (s->col < 0 || s->col >= 64) {
299         return -EINVAL;
300     }
301     if (s->col_start < 0 || s->col_start >= 64) {
302         return -EINVAL;
303     }
304     if (s->col_end < 0 || s->col_end >= 64) {
305         return -EINVAL;
306     }
307     if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
308         return -EINVAL;
309     }
310 
311     return 0;
312 }
313 
314 static const VMStateDescription vmstate_ssd0323 = {
315     .name = "ssd0323_oled",
316     .version_id = 2,
317     .minimum_version_id = 2,
318     .post_load = ssd0323_post_load,
319     .fields      = (VMStateField []) {
320         VMSTATE_UINT32(cmd_len, ssd0323_state),
321         VMSTATE_INT32(cmd, ssd0323_state),
322         VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
323         VMSTATE_INT32(row, ssd0323_state),
324         VMSTATE_INT32(row_start, ssd0323_state),
325         VMSTATE_INT32(row_end, ssd0323_state),
326         VMSTATE_INT32(col, ssd0323_state),
327         VMSTATE_INT32(col_start, ssd0323_state),
328         VMSTATE_INT32(col_end, ssd0323_state),
329         VMSTATE_INT32(redraw, ssd0323_state),
330         VMSTATE_INT32(remap, ssd0323_state),
331         VMSTATE_UINT32(mode, ssd0323_state),
332         VMSTATE_BUFFER(framebuffer, ssd0323_state),
333         VMSTATE_SSI_SLAVE(ssidev, ssd0323_state),
334         VMSTATE_END_OF_LIST()
335     }
336 };
337 
338 static const GraphicHwOps ssd0323_ops = {
339     .invalidate  = ssd0323_invalidate_display,
340     .gfx_update  = ssd0323_update_display,
341 };
342 
343 static void ssd0323_realize(SSISlave *d, Error **errp)
344 {
345     DeviceState *dev = DEVICE(d);
346     ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, d);
347 
348     s->col_end = 63;
349     s->row_end = 79;
350     s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
351     qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
352 
353     qdev_init_gpio_in(dev, ssd0323_cd, 1);
354 }
355 
356 static void ssd0323_class_init(ObjectClass *klass, void *data)
357 {
358     DeviceClass *dc = DEVICE_CLASS(klass);
359     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
360 
361     k->realize = ssd0323_realize;
362     k->transfer = ssd0323_transfer;
363     k->cs_polarity = SSI_CS_HIGH;
364     dc->vmsd = &vmstate_ssd0323;
365 }
366 
367 static const TypeInfo ssd0323_info = {
368     .name          = "ssd0323",
369     .parent        = TYPE_SSI_SLAVE,
370     .instance_size = sizeof(ssd0323_state),
371     .class_init    = ssd0323_class_init,
372 };
373 
374 static void ssd03232_register_types(void)
375 {
376     type_register_static(&ssd0323_info);
377 }
378 
379 type_init(ssd03232_register_types)
380