xref: /openbmc/qemu/hw/display/ssd0323.c (revision 7025114b1cd7683cb7fbef0810577c67aa3cbbd8)
1 /*
2  * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* The controller can support a variety of different displays, but we only
11    implement one.  Most of the commends relating to brightness and geometry
12    setup are ignored. */
13 
14 #include "qemu/osdep.h"
15 #include "hw/ssi/ssi.h"
16 #include "migration/vmstate.h"
17 #include "qemu/module.h"
18 #include "ui/console.h"
19 #include "qom/object.h"
20 
21 //#define DEBUG_SSD0323 1
22 
23 #ifdef DEBUG_SSD0323
24 #define DPRINTF(fmt, ...) \
25 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { \
28     fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
29 } while (0)
30 #else
31 #define DPRINTF(fmt, ...) do {} while(0)
32 #define BADF(fmt, ...) \
33 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
34 #endif
35 
36 /* Scaling factor for pixels.  */
37 #define MAGNIFY 4
38 
39 #define REMAP_SWAP_COLUMN 0x01
40 #define REMAP_SWAP_NYBBLE 0x02
41 #define REMAP_VERTICAL    0x04
42 #define REMAP_SWAP_COM    0x10
43 #define REMAP_SPLIT_COM   0x40
44 
45 enum ssd0323_mode
46 {
47     SSD0323_CMD,
48     SSD0323_DATA
49 };
50 
51 struct ssd0323_state {
52     SSIPeripheral ssidev;
53     QemuConsole *con;
54 
55     uint32_t cmd_len;
56     int32_t cmd;
57     int32_t cmd_data[8];
58     int32_t row;
59     int32_t row_start;
60     int32_t row_end;
61     int32_t col;
62     int32_t col_start;
63     int32_t col_end;
64     int32_t redraw;
65     int32_t remap;
66     uint32_t mode;
67     uint8_t framebuffer[128 * 80 / 2];
68 };
69 
70 #define TYPE_SSD0323 "ssd0323"
71 OBJECT_DECLARE_SIMPLE_TYPE(ssd0323_state, SSD0323)
72 
73 
74 static uint32_t ssd0323_transfer(SSIPeripheral *dev, uint32_t data)
75 {
76     ssd0323_state *s = SSD0323(dev);
77 
78     switch (s->mode) {
79     case SSD0323_DATA:
80         DPRINTF("data 0x%02x\n", data);
81         s->framebuffer[s->col + s->row * 64] = data;
82         if (s->remap & REMAP_VERTICAL) {
83             s->row++;
84             if (s->row > s->row_end) {
85                 s->row = s->row_start;
86                 s->col++;
87             }
88             if (s->col > s->col_end) {
89                 s->col = s->col_start;
90             }
91         } else {
92             s->col++;
93             if (s->col > s->col_end) {
94                 s->row++;
95                 s->col = s->col_start;
96             }
97             if (s->row > s->row_end) {
98                 s->row = s->row_start;
99             }
100         }
101         s->redraw = 1;
102         break;
103     case SSD0323_CMD:
104         DPRINTF("cmd 0x%02x\n", data);
105         if (s->cmd_len == 0) {
106             s->cmd = data;
107         } else {
108             s->cmd_data[s->cmd_len - 1] = data;
109         }
110         s->cmd_len++;
111         switch (s->cmd) {
112 #define DATA(x) if (s->cmd_len <= (x)) return 0
113         case 0x15: /* Set column.  */
114             DATA(2);
115             s->col = s->col_start = s->cmd_data[0] % 64;
116             s->col_end = s->cmd_data[1] % 64;
117             break;
118         case 0x75: /* Set row.  */
119             DATA(2);
120             s->row = s->row_start = s->cmd_data[0] % 80;
121             s->row_end = s->cmd_data[1] % 80;
122             break;
123         case 0x81: /* Set contrast */
124             DATA(1);
125             break;
126         case 0x84: case 0x85: case 0x86: /* Max current.  */
127             DATA(0);
128             break;
129         case 0xa0: /* Set remapping.  */
130             /* FIXME: Implement this.  */
131             DATA(1);
132             s->remap = s->cmd_data[0];
133             break;
134         case 0xa1: /* Set display start line.  */
135         case 0xa2: /* Set display offset.  */
136             /* FIXME: Implement these.  */
137             DATA(1);
138             break;
139         case 0xa4: /* Normal mode.  */
140         case 0xa5: /* All on.  */
141         case 0xa6: /* All off.  */
142         case 0xa7: /* Inverse.  */
143             /* FIXME: Implement these.  */
144             DATA(0);
145             break;
146         case 0xa8: /* Set multiplex ratio.  */
147         case 0xad: /* Set DC-DC converter.  */
148             DATA(1);
149             /* Ignored.  Don't care.  */
150             break;
151         case 0xae: /* Display off.  */
152         case 0xaf: /* Display on.  */
153             DATA(0);
154             /* TODO: Implement power control.  */
155             break;
156         case 0xb1: /* Set phase length.  */
157         case 0xb2: /* Set row period.  */
158         case 0xb3: /* Set clock rate.  */
159         case 0xbc: /* Set precharge.  */
160         case 0xbe: /* Set VCOMH.  */
161         case 0xbf: /* Set segment low.  */
162             DATA(1);
163             /* Ignored.  Don't care.  */
164             break;
165         case 0xb8: /* Set grey scale table.  */
166             /* FIXME: Implement this.  */
167             DATA(8);
168             break;
169         case 0xe3: /* NOP.  */
170             DATA(0);
171             break;
172         case 0xff: /* Nasty hack because we don't handle chip selects
173                       properly.  */
174             break;
175         default:
176             BADF("Unknown command: 0x%x\n", data);
177         }
178         s->cmd_len = 0;
179         return 0;
180     }
181     return 0;
182 }
183 
184 static void ssd0323_update_display(void *opaque)
185 {
186     ssd0323_state *s = (ssd0323_state *)opaque;
187     DisplaySurface *surface = qemu_console_surface(s->con);
188     uint8_t *dest;
189     uint8_t *src;
190     int x;
191     int y;
192     int i;
193     int line;
194     char *colors[16];
195     char colortab[MAGNIFY * 64];
196     char *p;
197     int dest_width;
198 
199     if (!s->redraw)
200         return;
201 
202     switch (surface_bits_per_pixel(surface)) {
203     case 0:
204         return;
205     case 15:
206         dest_width = 2;
207         break;
208     case 16:
209         dest_width = 2;
210         break;
211     case 24:
212         dest_width = 3;
213         break;
214     case 32:
215         dest_width = 4;
216         break;
217     default:
218         BADF("Bad color depth\n");
219         return;
220     }
221     p = colortab;
222     for (i = 0; i < 16; i++) {
223         int n;
224         colors[i] = p;
225         switch (surface_bits_per_pixel(surface)) {
226         case 15:
227             n = i * 2 + (i >> 3);
228             p[0] = n | (n << 5);
229             p[1] = (n << 2) | (n >> 3);
230             break;
231         case 16:
232             n = i * 2 + (i >> 3);
233             p[0] = n | (n << 6) | ((n << 1) & 0x20);
234             p[1] = (n << 3) | (n >> 2);
235             break;
236         case 24:
237         case 32:
238             n = (i << 4) | i;
239             p[0] = p[1] = p[2] = n;
240             break;
241         default:
242             BADF("Bad color depth\n");
243             return;
244         }
245         p += dest_width;
246     }
247     /* TODO: Implement row/column remapping.  */
248     dest = surface_data(surface);
249     for (y = 0; y < 64; y++) {
250         line = y;
251         src = s->framebuffer + 64 * line;
252         for (x = 0; x < 64; x++) {
253             int val;
254             val = *src >> 4;
255             for (i = 0; i < MAGNIFY; i++) {
256                 memcpy(dest, colors[val], dest_width);
257                 dest += dest_width;
258             }
259             val = *src & 0xf;
260             for (i = 0; i < MAGNIFY; i++) {
261                 memcpy(dest, colors[val], dest_width);
262                 dest += dest_width;
263             }
264             src++;
265         }
266         for (i = 1; i < MAGNIFY; i++) {
267             memcpy(dest, dest - dest_width * MAGNIFY * 128,
268                    dest_width * 128 * MAGNIFY);
269             dest += dest_width * 128 * MAGNIFY;
270         }
271     }
272     s->redraw = 0;
273     dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
274 }
275 
276 static void ssd0323_invalidate_display(void * opaque)
277 {
278     ssd0323_state *s = (ssd0323_state *)opaque;
279     s->redraw = 1;
280 }
281 
282 /* Command/data input.  */
283 static void ssd0323_cd(void *opaque, int n, int level)
284 {
285     ssd0323_state *s = (ssd0323_state *)opaque;
286     DPRINTF("%s mode\n", level ? "Data" : "Command");
287     s->mode = level ? SSD0323_DATA : SSD0323_CMD;
288 }
289 
290 static int ssd0323_post_load(void *opaque, int version_id)
291 {
292     ssd0323_state *s = (ssd0323_state *)opaque;
293 
294     if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
295         return -EINVAL;
296     }
297     if (s->row < 0 || s->row >= 80) {
298         return -EINVAL;
299     }
300     if (s->row_start < 0 || s->row_start >= 80) {
301         return -EINVAL;
302     }
303     if (s->row_end < 0 || s->row_end >= 80) {
304         return -EINVAL;
305     }
306     if (s->col < 0 || s->col >= 64) {
307         return -EINVAL;
308     }
309     if (s->col_start < 0 || s->col_start >= 64) {
310         return -EINVAL;
311     }
312     if (s->col_end < 0 || s->col_end >= 64) {
313         return -EINVAL;
314     }
315     if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
316         return -EINVAL;
317     }
318 
319     return 0;
320 }
321 
322 static const VMStateDescription vmstate_ssd0323 = {
323     .name = "ssd0323_oled",
324     .version_id = 2,
325     .minimum_version_id = 2,
326     .post_load = ssd0323_post_load,
327     .fields      = (VMStateField []) {
328         VMSTATE_UINT32(cmd_len, ssd0323_state),
329         VMSTATE_INT32(cmd, ssd0323_state),
330         VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
331         VMSTATE_INT32(row, ssd0323_state),
332         VMSTATE_INT32(row_start, ssd0323_state),
333         VMSTATE_INT32(row_end, ssd0323_state),
334         VMSTATE_INT32(col, ssd0323_state),
335         VMSTATE_INT32(col_start, ssd0323_state),
336         VMSTATE_INT32(col_end, ssd0323_state),
337         VMSTATE_INT32(redraw, ssd0323_state),
338         VMSTATE_INT32(remap, ssd0323_state),
339         VMSTATE_UINT32(mode, ssd0323_state),
340         VMSTATE_BUFFER(framebuffer, ssd0323_state),
341         VMSTATE_SSI_PERIPHERAL(ssidev, ssd0323_state),
342         VMSTATE_END_OF_LIST()
343     }
344 };
345 
346 static const GraphicHwOps ssd0323_ops = {
347     .invalidate  = ssd0323_invalidate_display,
348     .gfx_update  = ssd0323_update_display,
349 };
350 
351 static void ssd0323_realize(SSIPeripheral *d, Error **errp)
352 {
353     DeviceState *dev = DEVICE(d);
354     ssd0323_state *s = SSD0323(d);
355 
356     s->col_end = 63;
357     s->row_end = 79;
358     s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
359     qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
360 
361     qdev_init_gpio_in(dev, ssd0323_cd, 1);
362 }
363 
364 static void ssd0323_class_init(ObjectClass *klass, void *data)
365 {
366     DeviceClass *dc = DEVICE_CLASS(klass);
367     SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass);
368 
369     k->realize = ssd0323_realize;
370     k->transfer = ssd0323_transfer;
371     k->cs_polarity = SSI_CS_HIGH;
372     dc->vmsd = &vmstate_ssd0323;
373     set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories);
374 }
375 
376 static const TypeInfo ssd0323_info = {
377     .name          = TYPE_SSD0323,
378     .parent        = TYPE_SSI_PERIPHERAL,
379     .instance_size = sizeof(ssd0323_state),
380     .class_init    = ssd0323_class_init,
381 };
382 
383 static void ssd03232_register_types(void)
384 {
385     type_register_static(&ssd0323_info);
386 }
387 
388 type_init(ssd03232_register_types)
389