xref: /openbmc/qemu/hw/display/ssd0323.c (revision 500eb6db)
1 /*
2  * SSD0323 OLED controller with OSRAM Pictiva 128x64 display.
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 /* The controller can support a variety of different displays, but we only
11    implement one.  Most of the commends relating to brightness and geometry
12    setup are ignored. */
13 
14 #include "qemu/osdep.h"
15 #include "hw/ssi/ssi.h"
16 #include "qemu/module.h"
17 #include "ui/console.h"
18 
19 //#define DEBUG_SSD0323 1
20 
21 #ifdef DEBUG_SSD0323
22 #define DPRINTF(fmt, ...) \
23 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0)
24 #define BADF(fmt, ...) \
25 do { \
26     fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \
27 } while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
33 
34 /* Scaling factor for pixels.  */
35 #define MAGNIFY 4
36 
37 #define REMAP_SWAP_COLUMN 0x01
38 #define REMAP_SWAP_NYBBLE 0x02
39 #define REMAP_VERTICAL    0x04
40 #define REMAP_SWAP_COM    0x10
41 #define REMAP_SPLIT_COM   0x40
42 
43 enum ssd0323_mode
44 {
45     SSD0323_CMD,
46     SSD0323_DATA
47 };
48 
49 typedef struct {
50     SSISlave ssidev;
51     QemuConsole *con;
52 
53     uint32_t cmd_len;
54     int32_t cmd;
55     int32_t cmd_data[8];
56     int32_t row;
57     int32_t row_start;
58     int32_t row_end;
59     int32_t col;
60     int32_t col_start;
61     int32_t col_end;
62     int32_t redraw;
63     int32_t remap;
64     uint32_t mode;
65     uint8_t framebuffer[128 * 80 / 2];
66 } ssd0323_state;
67 
68 static uint32_t ssd0323_transfer(SSISlave *dev, uint32_t data)
69 {
70     ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, dev);
71 
72     switch (s->mode) {
73     case SSD0323_DATA:
74         DPRINTF("data 0x%02x\n", data);
75         s->framebuffer[s->col + s->row * 64] = data;
76         if (s->remap & REMAP_VERTICAL) {
77             s->row++;
78             if (s->row > s->row_end) {
79                 s->row = s->row_start;
80                 s->col++;
81             }
82             if (s->col > s->col_end) {
83                 s->col = s->col_start;
84             }
85         } else {
86             s->col++;
87             if (s->col > s->col_end) {
88                 s->row++;
89                 s->col = s->col_start;
90             }
91             if (s->row > s->row_end) {
92                 s->row = s->row_start;
93             }
94         }
95         s->redraw = 1;
96         break;
97     case SSD0323_CMD:
98         DPRINTF("cmd 0x%02x\n", data);
99         if (s->cmd_len == 0) {
100             s->cmd = data;
101         } else {
102             s->cmd_data[s->cmd_len - 1] = data;
103         }
104         s->cmd_len++;
105         switch (s->cmd) {
106 #define DATA(x) if (s->cmd_len <= (x)) return 0
107         case 0x15: /* Set column.  */
108             DATA(2);
109             s->col = s->col_start = s->cmd_data[0] % 64;
110             s->col_end = s->cmd_data[1] % 64;
111             break;
112         case 0x75: /* Set row.  */
113             DATA(2);
114             s->row = s->row_start = s->cmd_data[0] % 80;
115             s->row_end = s->cmd_data[1] % 80;
116             break;
117         case 0x81: /* Set contrast */
118             DATA(1);
119             break;
120         case 0x84: case 0x85: case 0x86: /* Max current.  */
121             DATA(0);
122             break;
123         case 0xa0: /* Set remapping.  */
124             /* FIXME: Implement this.  */
125             DATA(1);
126             s->remap = s->cmd_data[0];
127             break;
128         case 0xa1: /* Set display start line.  */
129         case 0xa2: /* Set display offset.  */
130             /* FIXME: Implement these.  */
131             DATA(1);
132             break;
133         case 0xa4: /* Normal mode.  */
134         case 0xa5: /* All on.  */
135         case 0xa6: /* All off.  */
136         case 0xa7: /* Inverse.  */
137             /* FIXME: Implement these.  */
138             DATA(0);
139             break;
140         case 0xa8: /* Set multiplex ratio.  */
141         case 0xad: /* Set DC-DC converter.  */
142             DATA(1);
143             /* Ignored.  Don't care.  */
144             break;
145         case 0xae: /* Display off.  */
146         case 0xaf: /* Display on.  */
147             DATA(0);
148             /* TODO: Implement power control.  */
149             break;
150         case 0xb1: /* Set phase length.  */
151         case 0xb2: /* Set row period.  */
152         case 0xb3: /* Set clock rate.  */
153         case 0xbc: /* Set precharge.  */
154         case 0xbe: /* Set VCOMH.  */
155         case 0xbf: /* Set segment low.  */
156             DATA(1);
157             /* Ignored.  Don't care.  */
158             break;
159         case 0xb8: /* Set grey scale table.  */
160             /* FIXME: Implement this.  */
161             DATA(8);
162             break;
163         case 0xe3: /* NOP.  */
164             DATA(0);
165             break;
166         case 0xff: /* Nasty hack because we don't handle chip selects
167                       properly.  */
168             break;
169         default:
170             BADF("Unknown command: 0x%x\n", data);
171         }
172         s->cmd_len = 0;
173         return 0;
174     }
175     return 0;
176 }
177 
178 static void ssd0323_update_display(void *opaque)
179 {
180     ssd0323_state *s = (ssd0323_state *)opaque;
181     DisplaySurface *surface = qemu_console_surface(s->con);
182     uint8_t *dest;
183     uint8_t *src;
184     int x;
185     int y;
186     int i;
187     int line;
188     char *colors[16];
189     char colortab[MAGNIFY * 64];
190     char *p;
191     int dest_width;
192 
193     if (!s->redraw)
194         return;
195 
196     switch (surface_bits_per_pixel(surface)) {
197     case 0:
198         return;
199     case 15:
200         dest_width = 2;
201         break;
202     case 16:
203         dest_width = 2;
204         break;
205     case 24:
206         dest_width = 3;
207         break;
208     case 32:
209         dest_width = 4;
210         break;
211     default:
212         BADF("Bad color depth\n");
213         return;
214     }
215     p = colortab;
216     for (i = 0; i < 16; i++) {
217         int n;
218         colors[i] = p;
219         switch (surface_bits_per_pixel(surface)) {
220         case 15:
221             n = i * 2 + (i >> 3);
222             p[0] = n | (n << 5);
223             p[1] = (n << 2) | (n >> 3);
224             break;
225         case 16:
226             n = i * 2 + (i >> 3);
227             p[0] = n | (n << 6) | ((n << 1) & 0x20);
228             p[1] = (n << 3) | (n >> 2);
229             break;
230         case 24:
231         case 32:
232             n = (i << 4) | i;
233             p[0] = p[1] = p[2] = n;
234             break;
235         default:
236             BADF("Bad color depth\n");
237             return;
238         }
239         p += dest_width;
240     }
241     /* TODO: Implement row/column remapping.  */
242     dest = surface_data(surface);
243     for (y = 0; y < 64; y++) {
244         line = y;
245         src = s->framebuffer + 64 * line;
246         for (x = 0; x < 64; x++) {
247             int val;
248             val = *src >> 4;
249             for (i = 0; i < MAGNIFY; i++) {
250                 memcpy(dest, colors[val], dest_width);
251                 dest += dest_width;
252             }
253             val = *src & 0xf;
254             for (i = 0; i < MAGNIFY; i++) {
255                 memcpy(dest, colors[val], dest_width);
256                 dest += dest_width;
257             }
258             src++;
259         }
260         for (i = 1; i < MAGNIFY; i++) {
261             memcpy(dest, dest - dest_width * MAGNIFY * 128,
262                    dest_width * 128 * MAGNIFY);
263             dest += dest_width * 128 * MAGNIFY;
264         }
265     }
266     s->redraw = 0;
267     dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY);
268 }
269 
270 static void ssd0323_invalidate_display(void * opaque)
271 {
272     ssd0323_state *s = (ssd0323_state *)opaque;
273     s->redraw = 1;
274 }
275 
276 /* Command/data input.  */
277 static void ssd0323_cd(void *opaque, int n, int level)
278 {
279     ssd0323_state *s = (ssd0323_state *)opaque;
280     DPRINTF("%s mode\n", level ? "Data" : "Command");
281     s->mode = level ? SSD0323_DATA : SSD0323_CMD;
282 }
283 
284 static int ssd0323_post_load(void *opaque, int version_id)
285 {
286     ssd0323_state *s = (ssd0323_state *)opaque;
287 
288     if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) {
289         return -EINVAL;
290     }
291     if (s->row < 0 || s->row >= 80) {
292         return -EINVAL;
293     }
294     if (s->row_start < 0 || s->row_start >= 80) {
295         return -EINVAL;
296     }
297     if (s->row_end < 0 || s->row_end >= 80) {
298         return -EINVAL;
299     }
300     if (s->col < 0 || s->col >= 64) {
301         return -EINVAL;
302     }
303     if (s->col_start < 0 || s->col_start >= 64) {
304         return -EINVAL;
305     }
306     if (s->col_end < 0 || s->col_end >= 64) {
307         return -EINVAL;
308     }
309     if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) {
310         return -EINVAL;
311     }
312 
313     return 0;
314 }
315 
316 static const VMStateDescription vmstate_ssd0323 = {
317     .name = "ssd0323_oled",
318     .version_id = 2,
319     .minimum_version_id = 2,
320     .post_load = ssd0323_post_load,
321     .fields      = (VMStateField []) {
322         VMSTATE_UINT32(cmd_len, ssd0323_state),
323         VMSTATE_INT32(cmd, ssd0323_state),
324         VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8),
325         VMSTATE_INT32(row, ssd0323_state),
326         VMSTATE_INT32(row_start, ssd0323_state),
327         VMSTATE_INT32(row_end, ssd0323_state),
328         VMSTATE_INT32(col, ssd0323_state),
329         VMSTATE_INT32(col_start, ssd0323_state),
330         VMSTATE_INT32(col_end, ssd0323_state),
331         VMSTATE_INT32(redraw, ssd0323_state),
332         VMSTATE_INT32(remap, ssd0323_state),
333         VMSTATE_UINT32(mode, ssd0323_state),
334         VMSTATE_BUFFER(framebuffer, ssd0323_state),
335         VMSTATE_SSI_SLAVE(ssidev, ssd0323_state),
336         VMSTATE_END_OF_LIST()
337     }
338 };
339 
340 static const GraphicHwOps ssd0323_ops = {
341     .invalidate  = ssd0323_invalidate_display,
342     .gfx_update  = ssd0323_update_display,
343 };
344 
345 static void ssd0323_realize(SSISlave *d, Error **errp)
346 {
347     DeviceState *dev = DEVICE(d);
348     ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, d);
349 
350     s->col_end = 63;
351     s->row_end = 79;
352     s->con = graphic_console_init(dev, 0, &ssd0323_ops, s);
353     qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY);
354 
355     qdev_init_gpio_in(dev, ssd0323_cd, 1);
356 }
357 
358 static void ssd0323_class_init(ObjectClass *klass, void *data)
359 {
360     DeviceClass *dc = DEVICE_CLASS(klass);
361     SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
362 
363     k->realize = ssd0323_realize;
364     k->transfer = ssd0323_transfer;
365     k->cs_polarity = SSI_CS_HIGH;
366     dc->vmsd = &vmstate_ssd0323;
367 }
368 
369 static const TypeInfo ssd0323_info = {
370     .name          = "ssd0323",
371     .parent        = TYPE_SSI_SLAVE,
372     .instance_size = sizeof(ssd0323_state),
373     .class_init    = ssd0323_class_init,
374 };
375 
376 static void ssd03232_register_types(void)
377 {
378     type_register_static(&ssd0323_info);
379 }
380 
381 type_init(ssd03232_register_types)
382