1 /* 2 * SSD0323 OLED controller with OSRAM Pictiva 128x64 display. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 /* The controller can support a variety of different displays, but we only 11 implement one. Most of the commends relating to brightness and geometry 12 setup are ignored. */ 13 #include "hw/ssi.h" 14 #include "ui/console.h" 15 16 //#define DEBUG_SSD0323 1 17 18 #ifdef DEBUG_SSD0323 19 #define DPRINTF(fmt, ...) \ 20 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0) 21 #define BADF(fmt, ...) \ 22 do { \ 23 fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \ 24 } while (0) 25 #else 26 #define DPRINTF(fmt, ...) do {} while(0) 27 #define BADF(fmt, ...) \ 28 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0) 29 #endif 30 31 /* Scaling factor for pixels. */ 32 #define MAGNIFY 4 33 34 #define REMAP_SWAP_COLUMN 0x01 35 #define REMAP_SWAP_NYBBLE 0x02 36 #define REMAP_VERTICAL 0x04 37 #define REMAP_SWAP_COM 0x10 38 #define REMAP_SPLIT_COM 0x40 39 40 enum ssd0323_mode 41 { 42 SSD0323_CMD, 43 SSD0323_DATA 44 }; 45 46 typedef struct { 47 SSISlave ssidev; 48 QemuConsole *con; 49 50 int cmd_len; 51 int cmd; 52 int cmd_data[8]; 53 int row; 54 int row_start; 55 int row_end; 56 int col; 57 int col_start; 58 int col_end; 59 int redraw; 60 int remap; 61 enum ssd0323_mode mode; 62 uint8_t framebuffer[128 * 80 / 2]; 63 } ssd0323_state; 64 65 static uint32_t ssd0323_transfer(SSISlave *dev, uint32_t data) 66 { 67 ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, dev); 68 69 switch (s->mode) { 70 case SSD0323_DATA: 71 DPRINTF("data 0x%02x\n", data); 72 s->framebuffer[s->col + s->row * 64] = data; 73 if (s->remap & REMAP_VERTICAL) { 74 s->row++; 75 if (s->row > s->row_end) { 76 s->row = s->row_start; 77 s->col++; 78 } 79 if (s->col > s->col_end) { 80 s->col = s->col_start; 81 } 82 } else { 83 s->col++; 84 if (s->col > s->col_end) { 85 s->row++; 86 s->col = s->col_start; 87 } 88 if (s->row > s->row_end) { 89 s->row = s->row_start; 90 } 91 } 92 s->redraw = 1; 93 break; 94 case SSD0323_CMD: 95 DPRINTF("cmd 0x%02x\n", data); 96 if (s->cmd_len == 0) { 97 s->cmd = data; 98 } else { 99 s->cmd_data[s->cmd_len - 1] = data; 100 } 101 s->cmd_len++; 102 switch (s->cmd) { 103 #define DATA(x) if (s->cmd_len <= (x)) return 0 104 case 0x15: /* Set column. */ 105 DATA(2); 106 s->col = s->col_start = s->cmd_data[0] % 64; 107 s->col_end = s->cmd_data[1] % 64; 108 break; 109 case 0x75: /* Set row. */ 110 DATA(2); 111 s->row = s->row_start = s->cmd_data[0] % 80; 112 s->row_end = s->cmd_data[1] % 80; 113 break; 114 case 0x81: /* Set contrast */ 115 DATA(1); 116 break; 117 case 0x84: case 0x85: case 0x86: /* Max current. */ 118 DATA(0); 119 break; 120 case 0xa0: /* Set remapping. */ 121 /* FIXME: Implement this. */ 122 DATA(1); 123 s->remap = s->cmd_data[0]; 124 break; 125 case 0xa1: /* Set display start line. */ 126 case 0xa2: /* Set display offset. */ 127 /* FIXME: Implement these. */ 128 DATA(1); 129 break; 130 case 0xa4: /* Normal mode. */ 131 case 0xa5: /* All on. */ 132 case 0xa6: /* All off. */ 133 case 0xa7: /* Inverse. */ 134 /* FIXME: Implement these. */ 135 DATA(0); 136 break; 137 case 0xa8: /* Set multiplex ratio. */ 138 case 0xad: /* Set DC-DC converter. */ 139 DATA(1); 140 /* Ignored. Don't care. */ 141 break; 142 case 0xae: /* Display off. */ 143 case 0xaf: /* Display on. */ 144 DATA(0); 145 /* TODO: Implement power control. */ 146 break; 147 case 0xb1: /* Set phase length. */ 148 case 0xb2: /* Set row period. */ 149 case 0xb3: /* Set clock rate. */ 150 case 0xbc: /* Set precharge. */ 151 case 0xbe: /* Set VCOMH. */ 152 case 0xbf: /* Set segment low. */ 153 DATA(1); 154 /* Ignored. Don't care. */ 155 break; 156 case 0xb8: /* Set grey scale table. */ 157 /* FIXME: Implement this. */ 158 DATA(8); 159 break; 160 case 0xe3: /* NOP. */ 161 DATA(0); 162 break; 163 case 0xff: /* Nasty hack because we don't handle chip selects 164 properly. */ 165 break; 166 default: 167 BADF("Unknown command: 0x%x\n", data); 168 } 169 s->cmd_len = 0; 170 return 0; 171 } 172 return 0; 173 } 174 175 static void ssd0323_update_display(void *opaque) 176 { 177 ssd0323_state *s = (ssd0323_state *)opaque; 178 DisplaySurface *surface = qemu_console_surface(s->con); 179 uint8_t *dest; 180 uint8_t *src; 181 int x; 182 int y; 183 int i; 184 int line; 185 char *colors[16]; 186 char colortab[MAGNIFY * 64]; 187 char *p; 188 int dest_width; 189 190 if (!s->redraw) 191 return; 192 193 switch (surface_bits_per_pixel(surface)) { 194 case 0: 195 return; 196 case 15: 197 dest_width = 2; 198 break; 199 case 16: 200 dest_width = 2; 201 break; 202 case 24: 203 dest_width = 3; 204 break; 205 case 32: 206 dest_width = 4; 207 break; 208 default: 209 BADF("Bad color depth\n"); 210 return; 211 } 212 p = colortab; 213 for (i = 0; i < 16; i++) { 214 int n; 215 colors[i] = p; 216 switch (surface_bits_per_pixel(surface)) { 217 case 15: 218 n = i * 2 + (i >> 3); 219 p[0] = n | (n << 5); 220 p[1] = (n << 2) | (n >> 3); 221 break; 222 case 16: 223 n = i * 2 + (i >> 3); 224 p[0] = n | (n << 6) | ((n << 1) & 0x20); 225 p[1] = (n << 3) | (n >> 2); 226 break; 227 case 24: 228 case 32: 229 n = (i << 4) | i; 230 p[0] = p[1] = p[2] = n; 231 break; 232 default: 233 BADF("Bad color depth\n"); 234 return; 235 } 236 p += dest_width; 237 } 238 /* TODO: Implement row/column remapping. */ 239 dest = surface_data(surface); 240 for (y = 0; y < 64; y++) { 241 line = y; 242 src = s->framebuffer + 64 * line; 243 for (x = 0; x < 64; x++) { 244 int val; 245 val = *src >> 4; 246 for (i = 0; i < MAGNIFY; i++) { 247 memcpy(dest, colors[val], dest_width); 248 dest += dest_width; 249 } 250 val = *src & 0xf; 251 for (i = 0; i < MAGNIFY; i++) { 252 memcpy(dest, colors[val], dest_width); 253 dest += dest_width; 254 } 255 src++; 256 } 257 for (i = 1; i < MAGNIFY; i++) { 258 memcpy(dest, dest - dest_width * MAGNIFY * 128, 259 dest_width * 128 * MAGNIFY); 260 dest += dest_width * 128 * MAGNIFY; 261 } 262 } 263 s->redraw = 0; 264 dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY); 265 } 266 267 static void ssd0323_invalidate_display(void * opaque) 268 { 269 ssd0323_state *s = (ssd0323_state *)opaque; 270 s->redraw = 1; 271 } 272 273 /* Command/data input. */ 274 static void ssd0323_cd(void *opaque, int n, int level) 275 { 276 ssd0323_state *s = (ssd0323_state *)opaque; 277 DPRINTF("%s mode\n", level ? "Data" : "Command"); 278 s->mode = level ? SSD0323_DATA : SSD0323_CMD; 279 } 280 281 static void ssd0323_save(QEMUFile *f, void *opaque) 282 { 283 SSISlave *ss = SSI_SLAVE(opaque); 284 ssd0323_state *s = (ssd0323_state *)opaque; 285 int i; 286 287 qemu_put_be32(f, s->cmd_len); 288 qemu_put_be32(f, s->cmd); 289 for (i = 0; i < 8; i++) 290 qemu_put_be32(f, s->cmd_data[i]); 291 qemu_put_be32(f, s->row); 292 qemu_put_be32(f, s->row_start); 293 qemu_put_be32(f, s->row_end); 294 qemu_put_be32(f, s->col); 295 qemu_put_be32(f, s->col_start); 296 qemu_put_be32(f, s->col_end); 297 qemu_put_be32(f, s->redraw); 298 qemu_put_be32(f, s->remap); 299 qemu_put_be32(f, s->mode); 300 qemu_put_buffer(f, s->framebuffer, sizeof(s->framebuffer)); 301 302 qemu_put_be32(f, ss->cs); 303 } 304 305 static int ssd0323_load(QEMUFile *f, void *opaque, int version_id) 306 { 307 SSISlave *ss = SSI_SLAVE(opaque); 308 ssd0323_state *s = (ssd0323_state *)opaque; 309 int i; 310 311 if (version_id != 1) 312 return -EINVAL; 313 314 s->cmd_len = qemu_get_be32(f); 315 if (s->cmd_len < 0 || s->cmd_len > ARRAY_SIZE(s->cmd_data)) { 316 return -EINVAL; 317 } 318 s->cmd = qemu_get_be32(f); 319 for (i = 0; i < 8; i++) 320 s->cmd_data[i] = qemu_get_be32(f); 321 s->row = qemu_get_be32(f); 322 if (s->row < 0 || s->row >= 80) { 323 return -EINVAL; 324 } 325 s->row_start = qemu_get_be32(f); 326 if (s->row_start < 0 || s->row_start >= 80) { 327 return -EINVAL; 328 } 329 s->row_end = qemu_get_be32(f); 330 if (s->row_end < 0 || s->row_end >= 80) { 331 return -EINVAL; 332 } 333 s->col = qemu_get_be32(f); 334 if (s->col < 0 || s->col >= 64) { 335 return -EINVAL; 336 } 337 s->col_start = qemu_get_be32(f); 338 if (s->col_start < 0 || s->col_start >= 64) { 339 return -EINVAL; 340 } 341 s->col_end = qemu_get_be32(f); 342 if (s->col_end < 0 || s->col_end >= 64) { 343 return -EINVAL; 344 } 345 s->redraw = qemu_get_be32(f); 346 s->remap = qemu_get_be32(f); 347 s->mode = qemu_get_be32(f); 348 if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) { 349 return -EINVAL; 350 } 351 qemu_get_buffer(f, s->framebuffer, sizeof(s->framebuffer)); 352 353 ss->cs = qemu_get_be32(f); 354 355 return 0; 356 } 357 358 static const GraphicHwOps ssd0323_ops = { 359 .invalidate = ssd0323_invalidate_display, 360 .gfx_update = ssd0323_update_display, 361 }; 362 363 static int ssd0323_init(SSISlave *d) 364 { 365 DeviceState *dev = DEVICE(d); 366 ssd0323_state *s = FROM_SSI_SLAVE(ssd0323_state, d); 367 368 s->col_end = 63; 369 s->row_end = 79; 370 s->con = graphic_console_init(dev, 0, &ssd0323_ops, s); 371 qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY); 372 373 qdev_init_gpio_in(dev, ssd0323_cd, 1); 374 375 register_savevm(dev, "ssd0323_oled", -1, 1, 376 ssd0323_save, ssd0323_load, s); 377 return 0; 378 } 379 380 static void ssd0323_class_init(ObjectClass *klass, void *data) 381 { 382 SSISlaveClass *k = SSI_SLAVE_CLASS(klass); 383 384 k->init = ssd0323_init; 385 k->transfer = ssd0323_transfer; 386 k->cs_polarity = SSI_CS_HIGH; 387 } 388 389 static const TypeInfo ssd0323_info = { 390 .name = "ssd0323", 391 .parent = TYPE_SSI_SLAVE, 392 .instance_size = sizeof(ssd0323_state), 393 .class_init = ssd0323_class_init, 394 }; 395 396 static void ssd03232_register_types(void) 397 { 398 type_register_static(&ssd0323_info); 399 } 400 401 type_init(ssd03232_register_types) 402