1 /* 2 * SSD0323 OLED controller with OSRAM Pictiva 128x64 display. 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 */ 9 10 /* The controller can support a variety of different displays, but we only 11 implement one. Most of the commands relating to brightness and geometry 12 setup are ignored. */ 13 14 #include "qemu/osdep.h" 15 #include "hw/ssi/ssi.h" 16 #include "migration/vmstate.h" 17 #include "qemu/module.h" 18 #include "ui/console.h" 19 #include "qom/object.h" 20 21 //#define DEBUG_SSD0323 1 22 23 #ifdef DEBUG_SSD0323 24 #define DPRINTF(fmt, ...) \ 25 do { printf("ssd0323: " fmt , ## __VA_ARGS__); } while (0) 26 #define BADF(fmt, ...) \ 27 do { \ 28 fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__); abort(); \ 29 } while (0) 30 #else 31 #define DPRINTF(fmt, ...) do {} while(0) 32 #define BADF(fmt, ...) \ 33 do { fprintf(stderr, "ssd0323: error: " fmt , ## __VA_ARGS__);} while (0) 34 #endif 35 36 /* Scaling factor for pixels. */ 37 #define MAGNIFY 4 38 39 #define REMAP_SWAP_COLUMN 0x01 40 #define REMAP_SWAP_NYBBLE 0x02 41 #define REMAP_VERTICAL 0x04 42 #define REMAP_SWAP_COM 0x10 43 #define REMAP_SPLIT_COM 0x40 44 45 enum ssd0323_mode 46 { 47 SSD0323_CMD, 48 SSD0323_DATA 49 }; 50 51 struct ssd0323_state { 52 SSIPeripheral ssidev; 53 QemuConsole *con; 54 55 uint32_t cmd_len; 56 int32_t cmd; 57 int32_t cmd_data[8]; 58 int32_t row; 59 int32_t row_start; 60 int32_t row_end; 61 int32_t col; 62 int32_t col_start; 63 int32_t col_end; 64 int32_t redraw; 65 int32_t remap; 66 uint32_t mode; 67 uint8_t framebuffer[128 * 80 / 2]; 68 }; 69 70 #define TYPE_SSD0323 "ssd0323" 71 OBJECT_DECLARE_SIMPLE_TYPE(ssd0323_state, SSD0323) 72 73 74 static uint32_t ssd0323_transfer(SSIPeripheral *dev, uint32_t data) 75 { 76 ssd0323_state *s = SSD0323(dev); 77 78 switch (s->mode) { 79 case SSD0323_DATA: 80 DPRINTF("data 0x%02x\n", data); 81 s->framebuffer[s->col + s->row * 64] = data; 82 if (s->remap & REMAP_VERTICAL) { 83 s->row++; 84 if (s->row > s->row_end) { 85 s->row = s->row_start; 86 s->col++; 87 } 88 if (s->col > s->col_end) { 89 s->col = s->col_start; 90 } 91 } else { 92 s->col++; 93 if (s->col > s->col_end) { 94 s->row++; 95 s->col = s->col_start; 96 } 97 if (s->row > s->row_end) { 98 s->row = s->row_start; 99 } 100 } 101 s->redraw = 1; 102 break; 103 case SSD0323_CMD: 104 DPRINTF("cmd 0x%02x\n", data); 105 if (s->cmd_len == 0) { 106 s->cmd = data; 107 } else { 108 s->cmd_data[s->cmd_len - 1] = data; 109 } 110 s->cmd_len++; 111 switch (s->cmd) { 112 #define DATA(x) if (s->cmd_len <= (x)) return 0 113 case 0x15: /* Set column. */ 114 DATA(2); 115 s->col = s->col_start = s->cmd_data[0] % 64; 116 s->col_end = s->cmd_data[1] % 64; 117 break; 118 case 0x75: /* Set row. */ 119 DATA(2); 120 s->row = s->row_start = s->cmd_data[0] % 80; 121 s->row_end = s->cmd_data[1] % 80; 122 break; 123 case 0x81: /* Set contrast */ 124 DATA(1); 125 break; 126 case 0x84: case 0x85: case 0x86: /* Max current. */ 127 DATA(0); 128 break; 129 case 0xa0: /* Set remapping. */ 130 /* FIXME: Implement this. */ 131 DATA(1); 132 s->remap = s->cmd_data[0]; 133 break; 134 case 0xa1: /* Set display start line. */ 135 case 0xa2: /* Set display offset. */ 136 /* FIXME: Implement these. */ 137 DATA(1); 138 break; 139 case 0xa4: /* Normal mode. */ 140 case 0xa5: /* All on. */ 141 case 0xa6: /* All off. */ 142 case 0xa7: /* Inverse. */ 143 /* FIXME: Implement these. */ 144 DATA(0); 145 break; 146 case 0xa8: /* Set multiplex ratio. */ 147 case 0xad: /* Set DC-DC converter. */ 148 DATA(1); 149 /* Ignored. Don't care. */ 150 break; 151 case 0xae: /* Display off. */ 152 case 0xaf: /* Display on. */ 153 DATA(0); 154 /* TODO: Implement power control. */ 155 break; 156 case 0xb1: /* Set phase length. */ 157 case 0xb2: /* Set row period. */ 158 case 0xb3: /* Set clock rate. */ 159 case 0xbc: /* Set precharge. */ 160 case 0xbe: /* Set VCOMH. */ 161 case 0xbf: /* Set segment low. */ 162 DATA(1); 163 /* Ignored. Don't care. */ 164 break; 165 case 0xb8: /* Set grey scale table. */ 166 /* FIXME: Implement this. */ 167 DATA(8); 168 break; 169 case 0xe3: /* NOP. */ 170 DATA(0); 171 break; 172 case 0xff: /* Nasty hack because we don't handle chip selects 173 properly. */ 174 break; 175 default: 176 BADF("Unknown command: 0x%x\n", data); 177 } 178 s->cmd_len = 0; 179 return 0; 180 } 181 return 0; 182 } 183 184 static void ssd0323_update_display(void *opaque) 185 { 186 ssd0323_state *s = (ssd0323_state *)opaque; 187 DisplaySurface *surface = qemu_console_surface(s->con); 188 uint8_t *dest; 189 uint8_t *src; 190 int x; 191 int y; 192 int i; 193 int line; 194 char *colors[16]; 195 char colortab[MAGNIFY * 64]; 196 char *p; 197 int dest_width; 198 199 if (!s->redraw) 200 return; 201 202 switch (surface_bits_per_pixel(surface)) { 203 case 0: 204 return; 205 case 15: 206 dest_width = 2; 207 break; 208 case 16: 209 dest_width = 2; 210 break; 211 case 24: 212 dest_width = 3; 213 break; 214 case 32: 215 dest_width = 4; 216 break; 217 default: 218 BADF("Bad color depth\n"); 219 return; 220 } 221 p = colortab; 222 for (i = 0; i < 16; i++) { 223 int n; 224 colors[i] = p; 225 switch (surface_bits_per_pixel(surface)) { 226 case 15: 227 n = i * 2 + (i >> 3); 228 p[0] = n | (n << 5); 229 p[1] = (n << 2) | (n >> 3); 230 break; 231 case 16: 232 n = i * 2 + (i >> 3); 233 p[0] = n | (n << 6) | ((n << 1) & 0x20); 234 p[1] = (n << 3) | (n >> 2); 235 break; 236 case 24: 237 case 32: 238 n = (i << 4) | i; 239 p[0] = p[1] = p[2] = n; 240 break; 241 default: 242 BADF("Bad color depth\n"); 243 return; 244 } 245 p += dest_width; 246 } 247 /* TODO: Implement row/column remapping. */ 248 dest = surface_data(surface); 249 for (y = 0; y < 64; y++) { 250 line = y; 251 src = s->framebuffer + 64 * line; 252 for (x = 0; x < 64; x++) { 253 int val; 254 val = *src >> 4; 255 for (i = 0; i < MAGNIFY; i++) { 256 memcpy(dest, colors[val], dest_width); 257 dest += dest_width; 258 } 259 val = *src & 0xf; 260 for (i = 0; i < MAGNIFY; i++) { 261 memcpy(dest, colors[val], dest_width); 262 dest += dest_width; 263 } 264 src++; 265 } 266 for (i = 1; i < MAGNIFY; i++) { 267 memcpy(dest, dest - dest_width * MAGNIFY * 128, 268 dest_width * 128 * MAGNIFY); 269 dest += dest_width * 128 * MAGNIFY; 270 } 271 } 272 s->redraw = 0; 273 dpy_gfx_update(s->con, 0, 0, 128 * MAGNIFY, 64 * MAGNIFY); 274 } 275 276 static void ssd0323_invalidate_display(void * opaque) 277 { 278 ssd0323_state *s = (ssd0323_state *)opaque; 279 s->redraw = 1; 280 } 281 282 /* Command/data input. */ 283 static void ssd0323_cd(void *opaque, int n, int level) 284 { 285 ssd0323_state *s = (ssd0323_state *)opaque; 286 DPRINTF("%s mode\n", level ? "Data" : "Command"); 287 s->mode = level ? SSD0323_DATA : SSD0323_CMD; 288 } 289 290 static int ssd0323_post_load(void *opaque, int version_id) 291 { 292 ssd0323_state *s = (ssd0323_state *)opaque; 293 294 if (s->cmd_len > ARRAY_SIZE(s->cmd_data)) { 295 return -EINVAL; 296 } 297 if (s->row < 0 || s->row >= 80) { 298 return -EINVAL; 299 } 300 if (s->row_start < 0 || s->row_start >= 80) { 301 return -EINVAL; 302 } 303 if (s->row_end < 0 || s->row_end >= 80) { 304 return -EINVAL; 305 } 306 if (s->col < 0 || s->col >= 64) { 307 return -EINVAL; 308 } 309 if (s->col_start < 0 || s->col_start >= 64) { 310 return -EINVAL; 311 } 312 if (s->col_end < 0 || s->col_end >= 64) { 313 return -EINVAL; 314 } 315 if (s->mode != SSD0323_CMD && s->mode != SSD0323_DATA) { 316 return -EINVAL; 317 } 318 319 return 0; 320 } 321 322 static const VMStateDescription vmstate_ssd0323 = { 323 .name = "ssd0323_oled", 324 .version_id = 2, 325 .minimum_version_id = 2, 326 .post_load = ssd0323_post_load, 327 .fields = (const VMStateField []) { 328 VMSTATE_UINT32(cmd_len, ssd0323_state), 329 VMSTATE_INT32(cmd, ssd0323_state), 330 VMSTATE_INT32_ARRAY(cmd_data, ssd0323_state, 8), 331 VMSTATE_INT32(row, ssd0323_state), 332 VMSTATE_INT32(row_start, ssd0323_state), 333 VMSTATE_INT32(row_end, ssd0323_state), 334 VMSTATE_INT32(col, ssd0323_state), 335 VMSTATE_INT32(col_start, ssd0323_state), 336 VMSTATE_INT32(col_end, ssd0323_state), 337 VMSTATE_INT32(redraw, ssd0323_state), 338 VMSTATE_INT32(remap, ssd0323_state), 339 VMSTATE_UINT32(mode, ssd0323_state), 340 VMSTATE_BUFFER(framebuffer, ssd0323_state), 341 VMSTATE_SSI_PERIPHERAL(ssidev, ssd0323_state), 342 VMSTATE_END_OF_LIST() 343 } 344 }; 345 346 static const GraphicHwOps ssd0323_ops = { 347 .invalidate = ssd0323_invalidate_display, 348 .gfx_update = ssd0323_update_display, 349 }; 350 351 static void ssd0323_realize(SSIPeripheral *d, Error **errp) 352 { 353 DeviceState *dev = DEVICE(d); 354 ssd0323_state *s = SSD0323(d); 355 356 s->col_end = 63; 357 s->row_end = 79; 358 s->con = graphic_console_init(dev, 0, &ssd0323_ops, s); 359 qemu_console_resize(s->con, 128 * MAGNIFY, 64 * MAGNIFY); 360 361 qdev_init_gpio_in(dev, ssd0323_cd, 1); 362 } 363 364 static void ssd0323_class_init(ObjectClass *klass, void *data) 365 { 366 DeviceClass *dc = DEVICE_CLASS(klass); 367 SSIPeripheralClass *k = SSI_PERIPHERAL_CLASS(klass); 368 369 k->realize = ssd0323_realize; 370 k->transfer = ssd0323_transfer; 371 k->cs_polarity = SSI_CS_HIGH; 372 dc->vmsd = &vmstate_ssd0323; 373 set_bit(DEVICE_CATEGORY_DISPLAY, dc->categories); 374 } 375 376 static const TypeInfo ssd0323_info = { 377 .name = TYPE_SSD0323, 378 .parent = TYPE_SSI_PERIPHERAL, 379 .instance_size = sizeof(ssd0323_state), 380 .class_init = ssd0323_class_init, 381 }; 382 383 static void ssd03232_register_types(void) 384 { 385 type_register_static(&ssd0323_info); 386 } 387 388 type_init(ssd03232_register_types) 389