1 /* 2 * QEMU model for the AXIS devboard 88. 3 * 4 * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/sysbus.h" 30 #include "net/net.h" 31 #include "hw/block/flash.h" 32 #include "hw/boards.h" 33 #include "hw/cris/etraxfs.h" 34 #include "hw/loader.h" 35 #include "elf.h" 36 #include "boot.h" 37 #include "sysemu/block-backend.h" 38 #include "exec/address-spaces.h" 39 #include "sysemu/qtest.h" 40 #include "sysemu/sysemu.h" 41 42 #define D(x) 43 #define DNAND(x) 44 45 struct nand_state_t 46 { 47 DeviceState *nand; 48 MemoryRegion iomem; 49 unsigned int rdy:1; 50 unsigned int ale:1; 51 unsigned int cle:1; 52 unsigned int ce:1; 53 }; 54 55 static struct nand_state_t nand_state; 56 static uint64_t nand_read(void *opaque, hwaddr addr, unsigned size) 57 { 58 struct nand_state_t *s = opaque; 59 uint32_t r; 60 int rdy; 61 62 r = nand_getio(s->nand); 63 nand_getpins(s->nand, &rdy); 64 s->rdy = rdy; 65 66 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r)); 67 return r; 68 } 69 70 static void 71 nand_write(void *opaque, hwaddr addr, uint64_t value, 72 unsigned size) 73 { 74 struct nand_state_t *s = opaque; 75 int rdy; 76 77 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, (unsigned)value)); 78 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0); 79 nand_setio(s->nand, value); 80 nand_getpins(s->nand, &rdy); 81 s->rdy = rdy; 82 } 83 84 static const MemoryRegionOps nand_ops = { 85 .read = nand_read, 86 .write = nand_write, 87 .endianness = DEVICE_NATIVE_ENDIAN, 88 }; 89 90 struct tempsensor_t 91 { 92 unsigned int shiftreg; 93 unsigned int count; 94 enum { 95 ST_OUT, ST_IN, ST_Z 96 } state; 97 98 uint16_t regs[3]; 99 }; 100 101 static void tempsensor_clkedge(struct tempsensor_t *s, 102 unsigned int clk, unsigned int data_in) 103 { 104 D(printf("%s clk=%d state=%d sr=%x\n", __func__, 105 clk, s->state, s->shiftreg)); 106 if (s->count == 0) { 107 s->count = 16; 108 s->state = ST_OUT; 109 } 110 switch (s->state) { 111 case ST_OUT: 112 /* Output reg is clocked at negedge. */ 113 if (!clk) { 114 s->count--; 115 s->shiftreg <<= 1; 116 if (s->count == 0) { 117 s->shiftreg = 0; 118 s->state = ST_IN; 119 s->count = 16; 120 } 121 } 122 break; 123 case ST_Z: 124 if (clk) { 125 s->count--; 126 if (s->count == 0) { 127 s->shiftreg = 0; 128 s->state = ST_OUT; 129 s->count = 16; 130 } 131 } 132 break; 133 case ST_IN: 134 /* Indata is sampled at posedge. */ 135 if (clk) { 136 s->count--; 137 s->shiftreg <<= 1; 138 s->shiftreg |= data_in & 1; 139 if (s->count == 0) { 140 D(printf("%s cfgreg=%x\n", __func__, s->shiftreg)); 141 s->regs[0] = s->shiftreg; 142 s->state = ST_OUT; 143 s->count = 16; 144 145 if ((s->regs[0] & 0xff) == 0) { 146 /* 25 degrees celsius. */ 147 s->shiftreg = 0x0b9f; 148 } else if ((s->regs[0] & 0xff) == 0xff) { 149 /* Sensor ID, 0x8100 LM70. */ 150 s->shiftreg = 0x8100; 151 } else 152 printf("Invalid tempsens state %x\n", s->regs[0]); 153 } 154 } 155 break; 156 } 157 } 158 159 160 #define RW_PA_DOUT 0x00 161 #define R_PA_DIN 0x01 162 #define RW_PA_OE 0x02 163 #define RW_PD_DOUT 0x10 164 #define R_PD_DIN 0x11 165 #define RW_PD_OE 0x12 166 167 static struct gpio_state_t 168 { 169 MemoryRegion iomem; 170 struct nand_state_t *nand; 171 struct tempsensor_t tempsensor; 172 uint32_t regs[0x5c / 4]; 173 } gpio_state; 174 175 static uint64_t gpio_read(void *opaque, hwaddr addr, unsigned size) 176 { 177 struct gpio_state_t *s = opaque; 178 uint32_t r = 0; 179 180 addr >>= 2; 181 switch (addr) 182 { 183 case R_PA_DIN: 184 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE]; 185 186 /* Encode pins from the nand. */ 187 r |= s->nand->rdy << 7; 188 break; 189 case R_PD_DIN: 190 r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE]; 191 192 /* Encode temp sensor pins. */ 193 r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4; 194 break; 195 196 default: 197 r = s->regs[addr]; 198 break; 199 } 200 return r; 201 D(printf("%s %x=%x\n", __func__, addr, r)); 202 } 203 204 static void gpio_write(void *opaque, hwaddr addr, uint64_t value, 205 unsigned size) 206 { 207 struct gpio_state_t *s = opaque; 208 D(printf("%s %x=%x\n", __func__, addr, (unsigned)value)); 209 210 addr >>= 2; 211 switch (addr) 212 { 213 case RW_PA_DOUT: 214 /* Decode nand pins. */ 215 s->nand->ale = !!(value & (1 << 6)); 216 s->nand->cle = !!(value & (1 << 5)); 217 s->nand->ce = !!(value & (1 << 4)); 218 219 s->regs[addr] = value; 220 break; 221 222 case RW_PD_DOUT: 223 /* Temp sensor clk. */ 224 if ((s->regs[addr] ^ value) & 2) 225 tempsensor_clkedge(&s->tempsensor, !!(value & 2), 226 !!(value & 16)); 227 s->regs[addr] = value; 228 break; 229 230 default: 231 s->regs[addr] = value; 232 break; 233 } 234 } 235 236 static const MemoryRegionOps gpio_ops = { 237 .read = gpio_read, 238 .write = gpio_write, 239 .endianness = DEVICE_NATIVE_ENDIAN, 240 .valid = { 241 .min_access_size = 4, 242 .max_access_size = 4, 243 }, 244 }; 245 246 #define INTMEM_SIZE (128 * 1024) 247 248 static struct cris_load_info li; 249 250 static 251 void axisdev88_init(MachineState *machine) 252 { 253 ram_addr_t ram_size = machine->ram_size; 254 const char *kernel_filename = machine->kernel_filename; 255 const char *kernel_cmdline = machine->kernel_cmdline; 256 CRISCPU *cpu; 257 CPUCRISState *env; 258 DeviceState *dev; 259 SysBusDevice *s; 260 DriveInfo *nand; 261 qemu_irq irq[30], nmi[2]; 262 void *etraxfs_dmac; 263 struct etraxfs_dma_client *dma_eth; 264 int i; 265 MemoryRegion *address_space_mem = get_system_memory(); 266 MemoryRegion *phys_ram = g_new(MemoryRegion, 1); 267 MemoryRegion *phys_intmem = g_new(MemoryRegion, 1); 268 269 /* init CPUs */ 270 cpu = CRIS_CPU(cpu_create(machine->cpu_type)); 271 env = &cpu->env; 272 273 /* allocate RAM */ 274 memory_region_allocate_system_memory(phys_ram, NULL, "axisdev88.ram", 275 ram_size); 276 memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram); 277 278 /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the 279 internal memory. */ 280 memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", 281 INTMEM_SIZE, &error_fatal); 282 memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem); 283 284 /* Attach a NAND flash to CS1. */ 285 nand = drive_get(IF_MTD, 0, 0); 286 nand_state.nand = nand_init(nand ? blk_by_legacy_dinfo(nand) : NULL, 287 NAND_MFR_STMICRO, 0x39); 288 memory_region_init_io(&nand_state.iomem, NULL, &nand_ops, &nand_state, 289 "nand", 0x05000000); 290 memory_region_add_subregion(address_space_mem, 0x10000000, 291 &nand_state.iomem); 292 293 gpio_state.nand = &nand_state; 294 memory_region_init_io(&gpio_state.iomem, NULL, &gpio_ops, &gpio_state, 295 "gpio", 0x5c); 296 memory_region_add_subregion(address_space_mem, 0x3001a000, 297 &gpio_state.iomem); 298 299 300 dev = qdev_create(NULL, "etraxfs,pic"); 301 /* FIXME: Is there a proper way to signal vectors to the CPU core? */ 302 qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector); 303 qdev_init_nofail(dev); 304 s = SYS_BUS_DEVICE(dev); 305 sysbus_mmio_map(s, 0, 0x3001c000); 306 sysbus_connect_irq(s, 0, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_IRQ)); 307 sysbus_connect_irq(s, 1, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_NMI)); 308 for (i = 0; i < 30; i++) { 309 irq[i] = qdev_get_gpio_in(dev, i); 310 } 311 nmi[0] = qdev_get_gpio_in(dev, 30); 312 nmi[1] = qdev_get_gpio_in(dev, 31); 313 314 etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10); 315 for (i = 0; i < 10; i++) { 316 /* On ETRAX, odd numbered channels are inputs. */ 317 etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1); 318 } 319 320 /* Add the two ethernet blocks. */ 321 dma_eth = g_malloc0(sizeof dma_eth[0] * 4); /* Allocate 4 channels. */ 322 etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]); 323 if (nb_nics > 1) { 324 etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]); 325 } 326 327 /* The DMA Connector block is missing, hardwire things for now. */ 328 etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]); 329 etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]); 330 if (nb_nics > 1) { 331 etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]); 332 etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]); 333 } 334 335 /* 2 timers. */ 336 sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL); 337 sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL); 338 339 for (i = 0; i < 4; i++) { 340 etraxfs_ser_create(0x30026000 + i * 0x2000, irq[0x14 + i], serial_hds[i]); 341 } 342 343 if (kernel_filename) { 344 li.image_filename = kernel_filename; 345 li.cmdline = kernel_cmdline; 346 cris_load_image(cpu, &li); 347 } else if (!qtest_enabled()) { 348 fprintf(stderr, "Kernel image must be specified\n"); 349 exit(1); 350 } 351 } 352 353 static void axisdev88_machine_init(MachineClass *mc) 354 { 355 mc->desc = "AXIS devboard 88"; 356 mc->init = axisdev88_init; 357 mc->is_default = 1; 358 mc->default_cpu_type = CRIS_CPU_TYPE_NAME("crisv32"); 359 } 360 361 DEFINE_MACHINE("axis-dev88", axisdev88_machine_init) 362