1 /* 2 * QEMU model for the AXIS devboard 88. 3 * 4 * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "hw/sysbus.h" 26 #include "net/net.h" 27 #include "hw/block/flash.h" 28 #include "hw/boards.h" 29 #include "hw/cris/etraxfs.h" 30 #include "hw/loader.h" 31 #include "elf.h" 32 #include "boot.h" 33 #include "sysemu/block-backend.h" 34 #include "exec/address-spaces.h" 35 #include "sysemu/qtest.h" 36 37 #define D(x) 38 #define DNAND(x) 39 40 struct nand_state_t 41 { 42 DeviceState *nand; 43 MemoryRegion iomem; 44 unsigned int rdy:1; 45 unsigned int ale:1; 46 unsigned int cle:1; 47 unsigned int ce:1; 48 }; 49 50 static struct nand_state_t nand_state; 51 static uint64_t nand_read(void *opaque, hwaddr addr, unsigned size) 52 { 53 struct nand_state_t *s = opaque; 54 uint32_t r; 55 int rdy; 56 57 r = nand_getio(s->nand); 58 nand_getpins(s->nand, &rdy); 59 s->rdy = rdy; 60 61 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r)); 62 return r; 63 } 64 65 static void 66 nand_write(void *opaque, hwaddr addr, uint64_t value, 67 unsigned size) 68 { 69 struct nand_state_t *s = opaque; 70 int rdy; 71 72 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, (unsigned)value)); 73 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0); 74 nand_setio(s->nand, value); 75 nand_getpins(s->nand, &rdy); 76 s->rdy = rdy; 77 } 78 79 static const MemoryRegionOps nand_ops = { 80 .read = nand_read, 81 .write = nand_write, 82 .endianness = DEVICE_NATIVE_ENDIAN, 83 }; 84 85 struct tempsensor_t 86 { 87 unsigned int shiftreg; 88 unsigned int count; 89 enum { 90 ST_OUT, ST_IN, ST_Z 91 } state; 92 93 uint16_t regs[3]; 94 }; 95 96 static void tempsensor_clkedge(struct tempsensor_t *s, 97 unsigned int clk, unsigned int data_in) 98 { 99 D(printf("%s clk=%d state=%d sr=%x\n", __func__, 100 clk, s->state, s->shiftreg)); 101 if (s->count == 0) { 102 s->count = 16; 103 s->state = ST_OUT; 104 } 105 switch (s->state) { 106 case ST_OUT: 107 /* Output reg is clocked at negedge. */ 108 if (!clk) { 109 s->count--; 110 s->shiftreg <<= 1; 111 if (s->count == 0) { 112 s->shiftreg = 0; 113 s->state = ST_IN; 114 s->count = 16; 115 } 116 } 117 break; 118 case ST_Z: 119 if (clk) { 120 s->count--; 121 if (s->count == 0) { 122 s->shiftreg = 0; 123 s->state = ST_OUT; 124 s->count = 16; 125 } 126 } 127 break; 128 case ST_IN: 129 /* Indata is sampled at posedge. */ 130 if (clk) { 131 s->count--; 132 s->shiftreg <<= 1; 133 s->shiftreg |= data_in & 1; 134 if (s->count == 0) { 135 D(printf("%s cfgreg=%x\n", __func__, s->shiftreg)); 136 s->regs[0] = s->shiftreg; 137 s->state = ST_OUT; 138 s->count = 16; 139 140 if ((s->regs[0] & 0xff) == 0) { 141 /* 25 degrees celsius. */ 142 s->shiftreg = 0x0b9f; 143 } else if ((s->regs[0] & 0xff) == 0xff) { 144 /* Sensor ID, 0x8100 LM70. */ 145 s->shiftreg = 0x8100; 146 } else 147 printf("Invalid tempsens state %x\n", s->regs[0]); 148 } 149 } 150 break; 151 } 152 } 153 154 155 #define RW_PA_DOUT 0x00 156 #define R_PA_DIN 0x01 157 #define RW_PA_OE 0x02 158 #define RW_PD_DOUT 0x10 159 #define R_PD_DIN 0x11 160 #define RW_PD_OE 0x12 161 162 static struct gpio_state_t 163 { 164 MemoryRegion iomem; 165 struct nand_state_t *nand; 166 struct tempsensor_t tempsensor; 167 uint32_t regs[0x5c / 4]; 168 } gpio_state; 169 170 static uint64_t gpio_read(void *opaque, hwaddr addr, unsigned size) 171 { 172 struct gpio_state_t *s = opaque; 173 uint32_t r = 0; 174 175 addr >>= 2; 176 switch (addr) 177 { 178 case R_PA_DIN: 179 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE]; 180 181 /* Encode pins from the nand. */ 182 r |= s->nand->rdy << 7; 183 break; 184 case R_PD_DIN: 185 r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE]; 186 187 /* Encode temp sensor pins. */ 188 r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4; 189 break; 190 191 default: 192 r = s->regs[addr]; 193 break; 194 } 195 return r; 196 D(printf("%s %x=%x\n", __func__, addr, r)); 197 } 198 199 static void gpio_write(void *opaque, hwaddr addr, uint64_t value, 200 unsigned size) 201 { 202 struct gpio_state_t *s = opaque; 203 D(printf("%s %x=%x\n", __func__, addr, (unsigned)value)); 204 205 addr >>= 2; 206 switch (addr) 207 { 208 case RW_PA_DOUT: 209 /* Decode nand pins. */ 210 s->nand->ale = !!(value & (1 << 6)); 211 s->nand->cle = !!(value & (1 << 5)); 212 s->nand->ce = !!(value & (1 << 4)); 213 214 s->regs[addr] = value; 215 break; 216 217 case RW_PD_DOUT: 218 /* Temp sensor clk. */ 219 if ((s->regs[addr] ^ value) & 2) 220 tempsensor_clkedge(&s->tempsensor, !!(value & 2), 221 !!(value & 16)); 222 s->regs[addr] = value; 223 break; 224 225 default: 226 s->regs[addr] = value; 227 break; 228 } 229 } 230 231 static const MemoryRegionOps gpio_ops = { 232 .read = gpio_read, 233 .write = gpio_write, 234 .endianness = DEVICE_NATIVE_ENDIAN, 235 .valid = { 236 .min_access_size = 4, 237 .max_access_size = 4, 238 }, 239 }; 240 241 #define INTMEM_SIZE (128 * 1024) 242 243 static struct cris_load_info li; 244 245 static 246 void axisdev88_init(MachineState *machine) 247 { 248 ram_addr_t ram_size = machine->ram_size; 249 const char *cpu_model = machine->cpu_model; 250 const char *kernel_filename = machine->kernel_filename; 251 const char *kernel_cmdline = machine->kernel_cmdline; 252 CRISCPU *cpu; 253 CPUCRISState *env; 254 DeviceState *dev; 255 SysBusDevice *s; 256 DriveInfo *nand; 257 qemu_irq irq[30], nmi[2]; 258 void *etraxfs_dmac; 259 struct etraxfs_dma_client *dma_eth; 260 int i; 261 MemoryRegion *address_space_mem = get_system_memory(); 262 MemoryRegion *phys_ram = g_new(MemoryRegion, 1); 263 MemoryRegion *phys_intmem = g_new(MemoryRegion, 1); 264 265 /* init CPUs */ 266 if (cpu_model == NULL) { 267 cpu_model = "crisv32"; 268 } 269 cpu = cpu_cris_init(cpu_model); 270 env = &cpu->env; 271 272 /* allocate RAM */ 273 memory_region_allocate_system_memory(phys_ram, NULL, "axisdev88.ram", 274 ram_size); 275 memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram); 276 277 /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the 278 internal memory. */ 279 memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", INTMEM_SIZE, 280 &error_fatal); 281 vmstate_register_ram_global(phys_intmem); 282 memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem); 283 284 /* Attach a NAND flash to CS1. */ 285 nand = drive_get(IF_MTD, 0, 0); 286 nand_state.nand = nand_init(nand ? blk_by_legacy_dinfo(nand) : NULL, 287 NAND_MFR_STMICRO, 0x39); 288 memory_region_init_io(&nand_state.iomem, NULL, &nand_ops, &nand_state, 289 "nand", 0x05000000); 290 memory_region_add_subregion(address_space_mem, 0x10000000, 291 &nand_state.iomem); 292 293 gpio_state.nand = &nand_state; 294 memory_region_init_io(&gpio_state.iomem, NULL, &gpio_ops, &gpio_state, 295 "gpio", 0x5c); 296 memory_region_add_subregion(address_space_mem, 0x3001a000, 297 &gpio_state.iomem); 298 299 300 dev = qdev_create(NULL, "etraxfs,pic"); 301 /* FIXME: Is there a proper way to signal vectors to the CPU core? */ 302 qdev_prop_set_ptr(dev, "interrupt_vector", &env->interrupt_vector); 303 qdev_init_nofail(dev); 304 s = SYS_BUS_DEVICE(dev); 305 sysbus_mmio_map(s, 0, 0x3001c000); 306 sysbus_connect_irq(s, 0, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_IRQ)); 307 sysbus_connect_irq(s, 1, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_NMI)); 308 for (i = 0; i < 30; i++) { 309 irq[i] = qdev_get_gpio_in(dev, i); 310 } 311 nmi[0] = qdev_get_gpio_in(dev, 30); 312 nmi[1] = qdev_get_gpio_in(dev, 31); 313 314 etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10); 315 for (i = 0; i < 10; i++) { 316 /* On ETRAX, odd numbered channels are inputs. */ 317 etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1); 318 } 319 320 /* Add the two ethernet blocks. */ 321 dma_eth = g_malloc0(sizeof dma_eth[0] * 4); /* Allocate 4 channels. */ 322 etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]); 323 if (nb_nics > 1) { 324 etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]); 325 } 326 327 /* The DMA Connector block is missing, hardwire things for now. */ 328 etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]); 329 etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]); 330 if (nb_nics > 1) { 331 etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]); 332 etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]); 333 } 334 335 /* 2 timers. */ 336 sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL); 337 sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL); 338 339 for (i = 0; i < 4; i++) { 340 sysbus_create_simple("etraxfs,serial", 0x30026000 + i * 0x2000, 341 irq[0x14 + i]); 342 } 343 344 if (kernel_filename) { 345 li.image_filename = kernel_filename; 346 li.cmdline = kernel_cmdline; 347 cris_load_image(cpu, &li); 348 } else if (!qtest_enabled()) { 349 fprintf(stderr, "Kernel image must be specified\n"); 350 exit(1); 351 } 352 } 353 354 static void axisdev88_machine_init(MachineClass *mc) 355 { 356 mc->desc = "AXIS devboard 88"; 357 mc->init = axisdev88_init; 358 mc->is_default = 1; 359 } 360 361 DEFINE_MACHINE("axis-dev88", axisdev88_machine_init) 362