1 /* 2 * QEMU model for the AXIS devboard 88. 3 * 4 * Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qapi/error.h" 28 #include "cpu.h" 29 #include "hw/sysbus.h" 30 #include "net/net.h" 31 #include "hw/block/flash.h" 32 #include "hw/boards.h" 33 #include "hw/cris/etraxfs.h" 34 #include "hw/loader.h" 35 #include "elf.h" 36 #include "boot.h" 37 #include "exec/address-spaces.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/sysemu.h" 40 41 #define D(x) 42 #define DNAND(x) 43 44 struct nand_state_t 45 { 46 DeviceState *nand; 47 MemoryRegion iomem; 48 unsigned int rdy:1; 49 unsigned int ale:1; 50 unsigned int cle:1; 51 unsigned int ce:1; 52 }; 53 54 static struct nand_state_t nand_state; 55 static uint64_t nand_read(void *opaque, hwaddr addr, unsigned size) 56 { 57 struct nand_state_t *s = opaque; 58 uint32_t r; 59 int rdy; 60 61 r = nand_getio(s->nand); 62 nand_getpins(s->nand, &rdy); 63 s->rdy = rdy; 64 65 DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r)); 66 return r; 67 } 68 69 static void 70 nand_write(void *opaque, hwaddr addr, uint64_t value, 71 unsigned size) 72 { 73 struct nand_state_t *s = opaque; 74 int rdy; 75 76 DNAND(printf("%s addr=%x v=%x\n", __func__, addr, (unsigned)value)); 77 nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0); 78 nand_setio(s->nand, value); 79 nand_getpins(s->nand, &rdy); 80 s->rdy = rdy; 81 } 82 83 static const MemoryRegionOps nand_ops = { 84 .read = nand_read, 85 .write = nand_write, 86 .endianness = DEVICE_NATIVE_ENDIAN, 87 }; 88 89 struct tempsensor_t 90 { 91 unsigned int shiftreg; 92 unsigned int count; 93 enum { 94 ST_OUT, ST_IN, ST_Z 95 } state; 96 97 uint16_t regs[3]; 98 }; 99 100 static void tempsensor_clkedge(struct tempsensor_t *s, 101 unsigned int clk, unsigned int data_in) 102 { 103 D(printf("%s clk=%d state=%d sr=%x\n", __func__, 104 clk, s->state, s->shiftreg)); 105 if (s->count == 0) { 106 s->count = 16; 107 s->state = ST_OUT; 108 } 109 switch (s->state) { 110 case ST_OUT: 111 /* Output reg is clocked at negedge. */ 112 if (!clk) { 113 s->count--; 114 s->shiftreg <<= 1; 115 if (s->count == 0) { 116 s->shiftreg = 0; 117 s->state = ST_IN; 118 s->count = 16; 119 } 120 } 121 break; 122 case ST_Z: 123 if (clk) { 124 s->count--; 125 if (s->count == 0) { 126 s->shiftreg = 0; 127 s->state = ST_OUT; 128 s->count = 16; 129 } 130 } 131 break; 132 case ST_IN: 133 /* Indata is sampled at posedge. */ 134 if (clk) { 135 s->count--; 136 s->shiftreg <<= 1; 137 s->shiftreg |= data_in & 1; 138 if (s->count == 0) { 139 D(printf("%s cfgreg=%x\n", __func__, s->shiftreg)); 140 s->regs[0] = s->shiftreg; 141 s->state = ST_OUT; 142 s->count = 16; 143 144 if ((s->regs[0] & 0xff) == 0) { 145 /* 25 degrees celsius. */ 146 s->shiftreg = 0x0b9f; 147 } else if ((s->regs[0] & 0xff) == 0xff) { 148 /* Sensor ID, 0x8100 LM70. */ 149 s->shiftreg = 0x8100; 150 } else 151 printf("Invalid tempsens state %x\n", s->regs[0]); 152 } 153 } 154 break; 155 } 156 } 157 158 159 #define RW_PA_DOUT 0x00 160 #define R_PA_DIN 0x01 161 #define RW_PA_OE 0x02 162 #define RW_PD_DOUT 0x10 163 #define R_PD_DIN 0x11 164 #define RW_PD_OE 0x12 165 166 static struct gpio_state_t 167 { 168 MemoryRegion iomem; 169 struct nand_state_t *nand; 170 struct tempsensor_t tempsensor; 171 uint32_t regs[0x5c / 4]; 172 } gpio_state; 173 174 static uint64_t gpio_read(void *opaque, hwaddr addr, unsigned size) 175 { 176 struct gpio_state_t *s = opaque; 177 uint32_t r = 0; 178 179 addr >>= 2; 180 switch (addr) 181 { 182 case R_PA_DIN: 183 r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE]; 184 185 /* Encode pins from the nand. */ 186 r |= s->nand->rdy << 7; 187 break; 188 case R_PD_DIN: 189 r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE]; 190 191 /* Encode temp sensor pins. */ 192 r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4; 193 break; 194 195 default: 196 r = s->regs[addr]; 197 break; 198 } 199 return r; 200 D(printf("%s %x=%x\n", __func__, addr, r)); 201 } 202 203 static void gpio_write(void *opaque, hwaddr addr, uint64_t value, 204 unsigned size) 205 { 206 struct gpio_state_t *s = opaque; 207 D(printf("%s %x=%x\n", __func__, addr, (unsigned)value)); 208 209 addr >>= 2; 210 switch (addr) 211 { 212 case RW_PA_DOUT: 213 /* Decode nand pins. */ 214 s->nand->ale = !!(value & (1 << 6)); 215 s->nand->cle = !!(value & (1 << 5)); 216 s->nand->ce = !!(value & (1 << 4)); 217 218 s->regs[addr] = value; 219 break; 220 221 case RW_PD_DOUT: 222 /* Temp sensor clk. */ 223 if ((s->regs[addr] ^ value) & 2) 224 tempsensor_clkedge(&s->tempsensor, !!(value & 2), 225 !!(value & 16)); 226 s->regs[addr] = value; 227 break; 228 229 default: 230 s->regs[addr] = value; 231 break; 232 } 233 } 234 235 static const MemoryRegionOps gpio_ops = { 236 .read = gpio_read, 237 .write = gpio_write, 238 .endianness = DEVICE_NATIVE_ENDIAN, 239 .valid = { 240 .min_access_size = 4, 241 .max_access_size = 4, 242 }, 243 }; 244 245 #define INTMEM_SIZE (128 * KiB) 246 247 static struct cris_load_info li; 248 249 static 250 void axisdev88_init(MachineState *machine) 251 { 252 ram_addr_t ram_size = machine->ram_size; 253 const char *kernel_filename = machine->kernel_filename; 254 const char *kernel_cmdline = machine->kernel_cmdline; 255 CRISCPU *cpu; 256 DeviceState *dev; 257 SysBusDevice *s; 258 DriveInfo *nand; 259 qemu_irq irq[30], nmi[2]; 260 void *etraxfs_dmac; 261 struct etraxfs_dma_client *dma_eth; 262 int i; 263 MemoryRegion *address_space_mem = get_system_memory(); 264 MemoryRegion *phys_ram = g_new(MemoryRegion, 1); 265 MemoryRegion *phys_intmem = g_new(MemoryRegion, 1); 266 267 /* init CPUs */ 268 cpu = CRIS_CPU(cpu_create(machine->cpu_type)); 269 270 /* allocate RAM */ 271 memory_region_allocate_system_memory(phys_ram, NULL, "axisdev88.ram", 272 ram_size); 273 memory_region_add_subregion(address_space_mem, 0x40000000, phys_ram); 274 275 /* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the 276 internal memory. */ 277 memory_region_init_ram(phys_intmem, NULL, "axisdev88.chipram", 278 INTMEM_SIZE, &error_fatal); 279 memory_region_add_subregion(address_space_mem, 0x38000000, phys_intmem); 280 281 /* Attach a NAND flash to CS1. */ 282 nand = drive_get(IF_MTD, 0, 0); 283 nand_state.nand = nand_init(nand ? blk_by_legacy_dinfo(nand) : NULL, 284 NAND_MFR_STMICRO, 0x39); 285 memory_region_init_io(&nand_state.iomem, NULL, &nand_ops, &nand_state, 286 "nand", 0x05000000); 287 memory_region_add_subregion(address_space_mem, 0x10000000, 288 &nand_state.iomem); 289 290 gpio_state.nand = &nand_state; 291 memory_region_init_io(&gpio_state.iomem, NULL, &gpio_ops, &gpio_state, 292 "gpio", 0x5c); 293 memory_region_add_subregion(address_space_mem, 0x3001a000, 294 &gpio_state.iomem); 295 296 297 dev = qdev_create(NULL, "etraxfs,pic"); 298 qdev_init_nofail(dev); 299 s = SYS_BUS_DEVICE(dev); 300 sysbus_mmio_map(s, 0, 0x3001c000); 301 sysbus_connect_irq(s, 0, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_IRQ)); 302 sysbus_connect_irq(s, 1, qdev_get_gpio_in(DEVICE(cpu), CRIS_CPU_NMI)); 303 for (i = 0; i < 30; i++) { 304 irq[i] = qdev_get_gpio_in(dev, i); 305 } 306 nmi[0] = qdev_get_gpio_in(dev, 30); 307 nmi[1] = qdev_get_gpio_in(dev, 31); 308 309 etraxfs_dmac = etraxfs_dmac_init(0x30000000, 10); 310 for (i = 0; i < 10; i++) { 311 /* On ETRAX, odd numbered channels are inputs. */ 312 etraxfs_dmac_connect(etraxfs_dmac, i, irq + 7 + i, i & 1); 313 } 314 315 /* Add the two ethernet blocks. */ 316 dma_eth = g_malloc0(sizeof dma_eth[0] * 4); /* Allocate 4 channels. */ 317 etraxfs_eth_init(&nd_table[0], 0x30034000, 1, &dma_eth[0], &dma_eth[1]); 318 if (nb_nics > 1) { 319 etraxfs_eth_init(&nd_table[1], 0x30036000, 2, &dma_eth[2], &dma_eth[3]); 320 } 321 322 /* The DMA Connector block is missing, hardwire things for now. */ 323 etraxfs_dmac_connect_client(etraxfs_dmac, 0, &dma_eth[0]); 324 etraxfs_dmac_connect_client(etraxfs_dmac, 1, &dma_eth[1]); 325 if (nb_nics > 1) { 326 etraxfs_dmac_connect_client(etraxfs_dmac, 6, &dma_eth[2]); 327 etraxfs_dmac_connect_client(etraxfs_dmac, 7, &dma_eth[3]); 328 } 329 330 /* 2 timers. */ 331 sysbus_create_varargs("etraxfs,timer", 0x3001e000, irq[0x1b], nmi[1], NULL); 332 sysbus_create_varargs("etraxfs,timer", 0x3005e000, irq[0x1b], nmi[1], NULL); 333 334 for (i = 0; i < 4; i++) { 335 etraxfs_ser_create(0x30026000 + i * 0x2000, irq[0x14 + i], serial_hd(i)); 336 } 337 338 if (kernel_filename) { 339 li.image_filename = kernel_filename; 340 li.cmdline = kernel_cmdline; 341 cris_load_image(cpu, &li); 342 } else if (!qtest_enabled()) { 343 fprintf(stderr, "Kernel image must be specified\n"); 344 exit(1); 345 } 346 } 347 348 static void axisdev88_machine_init(MachineClass *mc) 349 { 350 mc->desc = "AXIS devboard 88"; 351 mc->init = axisdev88_init; 352 mc->is_default = 1; 353 mc->default_cpu_type = CRIS_CPU_TYPE_NAME("crisv32"); 354 } 355 356 DEFINE_MACHINE("axis-dev88", axisdev88_machine_init) 357