xref: /openbmc/qemu/hw/core/ptimer.c (revision fca9d723)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 
9 #include "qemu/osdep.h"
10 #include "hw/ptimer.h"
11 #include "migration/vmstate.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 #include "sysemu/cpu-timers.h"
15 #include "sysemu/qtest.h"
16 #include "block/aio.h"
17 #include "sysemu/cpus.h"
18 
19 #define DELTA_ADJUST     1
20 #define DELTA_NO_ADJUST -1
21 
22 struct ptimer_state
23 {
24     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
25     uint64_t limit;
26     uint64_t delta;
27     uint32_t period_frac;
28     int64_t period;
29     int64_t last_event;
30     int64_t next_event;
31     uint8_t policy_mask;
32     QEMUTimer *timer;
33     ptimer_cb callback;
34     void *callback_opaque;
35     /*
36      * These track whether we're in a transaction block, and if we
37      * need to do a timer reload when the block finishes. They don't
38      * need to be migrated because migration can never happen in the
39      * middle of a transaction block.
40      */
41     bool in_transaction;
42     bool need_reload;
43 };
44 
45 /* Use a bottom-half routine to avoid reentrancy issues.  */
46 static void ptimer_trigger(ptimer_state *s)
47 {
48     s->callback(s->callback_opaque);
49 }
50 
51 static void ptimer_reload(ptimer_state *s, int delta_adjust)
52 {
53     uint32_t period_frac;
54     uint64_t period;
55     uint64_t delta;
56     bool suppress_trigger = false;
57 
58     /*
59      * Note that if delta_adjust is 0 then we must be here because of
60      * a count register write or timer start, not because of timer expiry.
61      * In that case the policy might require us to suppress the timer trigger
62      * that we would otherwise generate for a zero delta.
63      */
64     if (delta_adjust == 0 &&
65         (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
66         suppress_trigger = true;
67     }
68     if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
69         && !suppress_trigger) {
70         ptimer_trigger(s);
71     }
72 
73     /*
74      * Note that ptimer_trigger() might call the device callback function,
75      * which can then modify timer state, so we must not cache any fields
76      * from ptimer_state until after we have called it.
77      */
78     delta = s->delta;
79     period = s->period;
80     period_frac = s->period_frac;
81 
82     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
83         delta = s->delta = s->limit;
84     }
85 
86     if (s->period == 0) {
87         if (!qtest_enabled()) {
88             fprintf(stderr, "Timer with period zero, disabling\n");
89         }
90         timer_del(s->timer);
91         s->enabled = 0;
92         return;
93     }
94 
95     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
96         if (delta_adjust != DELTA_NO_ADJUST) {
97             delta += delta_adjust;
98         }
99     }
100 
101     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
102         if (s->enabled == 1 && s->limit == 0) {
103             delta = 1;
104         }
105     }
106 
107     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
108         if (delta_adjust != DELTA_NO_ADJUST) {
109             delta = 1;
110         }
111     }
112 
113     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
114         if (s->enabled == 1 && s->limit != 0) {
115             delta = 1;
116         }
117     }
118 
119     if (delta == 0) {
120         if (!qtest_enabled()) {
121             fprintf(stderr, "Timer with delta zero, disabling\n");
122         }
123         timer_del(s->timer);
124         s->enabled = 0;
125         return;
126     }
127 
128     /*
129      * Artificially limit timeout rate to something
130      * achievable under QEMU.  Otherwise, QEMU spends all
131      * its time generating timer interrupts, and there
132      * is no forward progress.
133      * About ten microseconds is the fastest that really works
134      * on the current generation of host machines.
135      */
136 
137     if (s->enabled == 1 && (delta * period < 10000) &&
138         !icount_enabled() && !qtest_enabled()) {
139         period = 10000 / delta;
140         period_frac = 0;
141     }
142 
143     s->last_event = s->next_event;
144     s->next_event = s->last_event + delta * period;
145     if (period_frac) {
146         s->next_event += ((int64_t)period_frac * delta) >> 32;
147     }
148     timer_mod(s->timer, s->next_event);
149 }
150 
151 static void ptimer_tick(void *opaque)
152 {
153     ptimer_state *s = (ptimer_state *)opaque;
154     bool trigger = true;
155 
156     /*
157      * We perform all the tick actions within a begin/commit block
158      * because the callback function that ptimer_trigger() calls
159      * might make calls into the ptimer APIs that provoke another
160      * trigger, and we want that to cause the callback function
161      * to be called iteratively, not recursively.
162      */
163     ptimer_transaction_begin(s);
164 
165     if (s->enabled == 2) {
166         s->delta = 0;
167         s->enabled = 0;
168     } else {
169         int delta_adjust = DELTA_ADJUST;
170 
171         if (s->delta == 0 || s->limit == 0) {
172             /* If a "continuous trigger" policy is not used and limit == 0,
173                we should error out. delta == 0 means that this tick is
174                caused by a "no immediate reload" policy, so it shouldn't
175                be adjusted.  */
176             delta_adjust = DELTA_NO_ADJUST;
177         }
178 
179         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
180             /* Avoid re-trigger on deferred reload if "no immediate trigger"
181                policy isn't used.  */
182             trigger = (delta_adjust == DELTA_ADJUST);
183         }
184 
185         s->delta = s->limit;
186 
187         ptimer_reload(s, delta_adjust);
188     }
189 
190     if (trigger) {
191         ptimer_trigger(s);
192     }
193 
194     ptimer_transaction_commit(s);
195 }
196 
197 uint64_t ptimer_get_count(ptimer_state *s)
198 {
199     uint64_t counter;
200 
201     if (s->enabled && s->delta != 0) {
202         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
203         int64_t next = s->next_event;
204         int64_t last = s->last_event;
205         bool expired = (now - next >= 0);
206         bool oneshot = (s->enabled == 2);
207 
208         /* Figure out the current counter value.  */
209         if (expired) {
210             /* Prevent timer underflowing if it should already have
211                triggered.  */
212             counter = 0;
213         } else {
214             uint64_t rem;
215             uint64_t div;
216             int clz1, clz2;
217             int shift;
218             uint32_t period_frac = s->period_frac;
219             uint64_t period = s->period;
220 
221             if (!oneshot && (s->delta * period < 10000) &&
222                 !icount_enabled() && !qtest_enabled()) {
223                 period = 10000 / s->delta;
224                 period_frac = 0;
225             }
226 
227             /* We need to divide time by period, where time is stored in
228                rem (64-bit integer) and period is stored in period/period_frac
229                (64.32 fixed point).
230 
231                Doing full precision division is hard, so scale values and
232                do a 64-bit division.  The result should be rounded down,
233                so that the rounding error never causes the timer to go
234                backwards.
235             */
236 
237             rem = next - now;
238             div = period;
239 
240             clz1 = clz64(rem);
241             clz2 = clz64(div);
242             shift = clz1 < clz2 ? clz1 : clz2;
243 
244             rem <<= shift;
245             div <<= shift;
246             if (shift >= 32) {
247                 div |= ((uint64_t)period_frac << (shift - 32));
248             } else {
249                 if (shift != 0)
250                     div |= (period_frac >> (32 - shift));
251                 /* Look at remaining bits of period_frac and round div up if
252                    necessary.  */
253                 if ((uint32_t)(period_frac << shift))
254                     div += 1;
255             }
256             counter = rem / div;
257 
258             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
259                 /* Before wrapping around, timer should stay with counter = 0
260                    for a one period.  */
261                 if (!oneshot && s->delta == s->limit) {
262                     if (now == last) {
263                         /* Counter == delta here, check whether it was
264                            adjusted and if it was, then right now it is
265                            that "one period".  */
266                         if (counter == s->limit + DELTA_ADJUST) {
267                             return 0;
268                         }
269                     } else if (counter == s->limit) {
270                         /* Since the counter is rounded down and now != last,
271                            the counter == limit means that delta was adjusted
272                            by +1 and right now it is that adjusted period.  */
273                         return 0;
274                     }
275                 }
276             }
277         }
278 
279         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
280             /* If now == last then delta == limit, i.e. the counter already
281                represents the correct value. It would be rounded down a 1ns
282                later.  */
283             if (now != last) {
284                 counter += 1;
285             }
286         }
287     } else {
288         counter = s->delta;
289     }
290     return counter;
291 }
292 
293 void ptimer_set_count(ptimer_state *s, uint64_t count)
294 {
295     assert(s->in_transaction);
296     s->delta = count;
297     if (s->enabled) {
298         s->need_reload = true;
299     }
300 }
301 
302 void ptimer_run(ptimer_state *s, int oneshot)
303 {
304     bool was_disabled = !s->enabled;
305 
306     assert(s->in_transaction);
307 
308     if (was_disabled && s->period == 0) {
309         if (!qtest_enabled()) {
310             fprintf(stderr, "Timer with period zero, disabling\n");
311         }
312         return;
313     }
314     s->enabled = oneshot ? 2 : 1;
315     if (was_disabled) {
316         s->need_reload = true;
317     }
318 }
319 
320 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
321    is immediately restarted.  */
322 void ptimer_stop(ptimer_state *s)
323 {
324     assert(s->in_transaction);
325 
326     if (!s->enabled)
327         return;
328 
329     s->delta = ptimer_get_count(s);
330     timer_del(s->timer);
331     s->enabled = 0;
332     s->need_reload = false;
333 }
334 
335 /* Set counter increment interval in nanoseconds.  */
336 void ptimer_set_period(ptimer_state *s, int64_t period)
337 {
338     assert(s->in_transaction);
339     s->delta = ptimer_get_count(s);
340     s->period = period;
341     s->period_frac = 0;
342     if (s->enabled) {
343         s->need_reload = true;
344     }
345 }
346 
347 /* Set counter frequency in Hz.  */
348 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
349 {
350     assert(s->in_transaction);
351     s->delta = ptimer_get_count(s);
352     s->period = 1000000000ll / freq;
353     s->period_frac = (1000000000ll << 32) / freq;
354     if (s->enabled) {
355         s->need_reload = true;
356     }
357 }
358 
359 /* Set the initial countdown value.  If reload is nonzero then also set
360    count = limit.  */
361 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
362 {
363     assert(s->in_transaction);
364     s->limit = limit;
365     if (reload)
366         s->delta = limit;
367     if (s->enabled && reload) {
368         s->need_reload = true;
369     }
370 }
371 
372 uint64_t ptimer_get_limit(ptimer_state *s)
373 {
374     return s->limit;
375 }
376 
377 void ptimer_transaction_begin(ptimer_state *s)
378 {
379     assert(!s->in_transaction);
380     s->in_transaction = true;
381     s->need_reload = false;
382 }
383 
384 void ptimer_transaction_commit(ptimer_state *s)
385 {
386     assert(s->in_transaction);
387     /*
388      * We must loop here because ptimer_reload() can call the callback
389      * function, which might then update ptimer state in a way that
390      * means we need to do another reload and possibly another callback.
391      * A disabled timer never needs reloading (and if we don't check
392      * this then we loop forever if ptimer_reload() disables the timer).
393      */
394     while (s->need_reload && s->enabled) {
395         s->need_reload = false;
396         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
397         ptimer_reload(s, 0);
398     }
399     /* Now we've finished reload we can leave the transaction block. */
400     s->in_transaction = false;
401 }
402 
403 const VMStateDescription vmstate_ptimer = {
404     .name = "ptimer",
405     .version_id = 1,
406     .minimum_version_id = 1,
407     .fields = (VMStateField[]) {
408         VMSTATE_UINT8(enabled, ptimer_state),
409         VMSTATE_UINT64(limit, ptimer_state),
410         VMSTATE_UINT64(delta, ptimer_state),
411         VMSTATE_UINT32(period_frac, ptimer_state),
412         VMSTATE_INT64(period, ptimer_state),
413         VMSTATE_INT64(last_event, ptimer_state),
414         VMSTATE_INT64(next_event, ptimer_state),
415         VMSTATE_TIMER_PTR(timer, ptimer_state),
416         VMSTATE_END_OF_LIST()
417     }
418 };
419 
420 ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
421                           uint8_t policy_mask)
422 {
423     ptimer_state *s;
424 
425     /* The callback function is mandatory. */
426     assert(callback);
427 
428     s = g_new0(ptimer_state, 1);
429     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
430     s->policy_mask = policy_mask;
431     s->callback = callback;
432     s->callback_opaque = callback_opaque;
433 
434     /*
435      * These two policies are incompatible -- trigger-on-decrement implies
436      * a timer trigger when the count becomes 0, but no-immediate-trigger
437      * implies a trigger when the count stops being 0.
438      */
439     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
440              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
441     return s;
442 }
443 
444 void ptimer_free(ptimer_state *s)
445 {
446     timer_free(s->timer);
447     g_free(s);
448 }
449