xref: /openbmc/qemu/hw/core/ptimer.c (revision ef0a9984aa0c3c8f440bbf488f2c14ccddd241ea)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 #include "sysemu/qtest.h"
15 
16 #define DELTA_ADJUST    1
17 
18 struct ptimer_state
19 {
20     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
21     uint64_t limit;
22     uint64_t delta;
23     uint32_t period_frac;
24     int64_t period;
25     int64_t last_event;
26     int64_t next_event;
27     uint8_t policy_mask;
28     QEMUBH *bh;
29     QEMUTimer *timer;
30 };
31 
32 /* Use a bottom-half routine to avoid reentrancy issues.  */
33 static void ptimer_trigger(ptimer_state *s)
34 {
35     if (s->bh) {
36         replay_bh_schedule_event(s->bh);
37     }
38 }
39 
40 static void ptimer_reload(ptimer_state *s, int delta_adjust)
41 {
42     uint32_t period_frac = s->period_frac;
43     uint64_t period = s->period;
44     uint64_t delta = s->delta;
45 
46     if (delta == 0) {
47         ptimer_trigger(s);
48         delta = s->delta = s->limit;
49     }
50 
51     if (s->period == 0) {
52         if (!qtest_enabled()) {
53             fprintf(stderr, "Timer with period zero, disabling\n");
54         }
55         timer_del(s->timer);
56         s->enabled = 0;
57         return;
58     }
59 
60     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
61         delta += delta_adjust;
62     }
63 
64     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
65         if (s->enabled == 1 && s->limit == 0) {
66             delta = 1;
67         }
68     }
69 
70     if (delta == 0) {
71         if (!qtest_enabled()) {
72             fprintf(stderr, "Timer with delta zero, disabling\n");
73         }
74         timer_del(s->timer);
75         s->enabled = 0;
76         return;
77     }
78 
79     /*
80      * Artificially limit timeout rate to something
81      * achievable under QEMU.  Otherwise, QEMU spends all
82      * its time generating timer interrupts, and there
83      * is no forward progress.
84      * About ten microseconds is the fastest that really works
85      * on the current generation of host machines.
86      */
87 
88     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
89         period = 10000 / delta;
90         period_frac = 0;
91     }
92 
93     s->last_event = s->next_event;
94     s->next_event = s->last_event + delta * period;
95     if (period_frac) {
96         s->next_event += ((int64_t)period_frac * delta) >> 32;
97     }
98     timer_mod(s->timer, s->next_event);
99 }
100 
101 static void ptimer_tick(void *opaque)
102 {
103     ptimer_state *s = (ptimer_state *)opaque;
104     ptimer_trigger(s);
105     s->delta = 0;
106     if (s->enabled == 2) {
107         s->enabled = 0;
108     } else {
109         int delta_adjust = DELTA_ADJUST;
110 
111         if (s->limit == 0) {
112             /* If a "continuous trigger" policy is not used and limit == 0,
113                we should error out.  */
114             delta_adjust = 0;
115         }
116 
117         ptimer_reload(s, delta_adjust);
118     }
119 }
120 
121 uint64_t ptimer_get_count(ptimer_state *s)
122 {
123     uint64_t counter;
124 
125     if (s->enabled && s->delta != 0) {
126         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
127         int64_t next = s->next_event;
128         int64_t last = s->last_event;
129         bool expired = (now - next >= 0);
130         bool oneshot = (s->enabled == 2);
131 
132         /* Figure out the current counter value.  */
133         if (expired) {
134             /* Prevent timer underflowing if it should already have
135                triggered.  */
136             counter = 0;
137         } else {
138             uint64_t rem;
139             uint64_t div;
140             int clz1, clz2;
141             int shift;
142             uint32_t period_frac = s->period_frac;
143             uint64_t period = s->period;
144 
145             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
146                 period = 10000 / s->delta;
147                 period_frac = 0;
148             }
149 
150             /* We need to divide time by period, where time is stored in
151                rem (64-bit integer) and period is stored in period/period_frac
152                (64.32 fixed point).
153 
154                Doing full precision division is hard, so scale values and
155                do a 64-bit division.  The result should be rounded down,
156                so that the rounding error never causes the timer to go
157                backwards.
158             */
159 
160             rem = next - now;
161             div = period;
162 
163             clz1 = clz64(rem);
164             clz2 = clz64(div);
165             shift = clz1 < clz2 ? clz1 : clz2;
166 
167             rem <<= shift;
168             div <<= shift;
169             if (shift >= 32) {
170                 div |= ((uint64_t)period_frac << (shift - 32));
171             } else {
172                 if (shift != 0)
173                     div |= (period_frac >> (32 - shift));
174                 /* Look at remaining bits of period_frac and round div up if
175                    necessary.  */
176                 if ((uint32_t)(period_frac << shift))
177                     div += 1;
178             }
179             counter = rem / div;
180 
181             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
182                 /* Before wrapping around, timer should stay with counter = 0
183                    for a one period.  */
184                 if (!oneshot && s->delta == s->limit) {
185                     if (now == last) {
186                         /* Counter == delta here, check whether it was
187                            adjusted and if it was, then right now it is
188                            that "one period".  */
189                         if (counter == s->limit + DELTA_ADJUST) {
190                             return 0;
191                         }
192                     } else if (counter == s->limit) {
193                         /* Since the counter is rounded down and now != last,
194                            the counter == limit means that delta was adjusted
195                            by +1 and right now it is that adjusted period.  */
196                         return 0;
197                     }
198                 }
199             }
200         }
201     } else {
202         counter = s->delta;
203     }
204     return counter;
205 }
206 
207 void ptimer_set_count(ptimer_state *s, uint64_t count)
208 {
209     s->delta = count;
210     if (s->enabled) {
211         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
212         ptimer_reload(s, 0);
213     }
214 }
215 
216 void ptimer_run(ptimer_state *s, int oneshot)
217 {
218     bool was_disabled = !s->enabled;
219 
220     if (was_disabled && s->period == 0) {
221         if (!qtest_enabled()) {
222             fprintf(stderr, "Timer with period zero, disabling\n");
223         }
224         return;
225     }
226     s->enabled = oneshot ? 2 : 1;
227     if (was_disabled) {
228         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
229         ptimer_reload(s, 0);
230     }
231 }
232 
233 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
234    is immediately restarted.  */
235 void ptimer_stop(ptimer_state *s)
236 {
237     if (!s->enabled)
238         return;
239 
240     s->delta = ptimer_get_count(s);
241     timer_del(s->timer);
242     s->enabled = 0;
243 }
244 
245 /* Set counter increment interval in nanoseconds.  */
246 void ptimer_set_period(ptimer_state *s, int64_t period)
247 {
248     s->delta = ptimer_get_count(s);
249     s->period = period;
250     s->period_frac = 0;
251     if (s->enabled) {
252         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
253         ptimer_reload(s, 0);
254     }
255 }
256 
257 /* Set counter frequency in Hz.  */
258 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
259 {
260     s->delta = ptimer_get_count(s);
261     s->period = 1000000000ll / freq;
262     s->period_frac = (1000000000ll << 32) / freq;
263     if (s->enabled) {
264         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
265         ptimer_reload(s, 0);
266     }
267 }
268 
269 /* Set the initial countdown value.  If reload is nonzero then also set
270    count = limit.  */
271 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
272 {
273     s->limit = limit;
274     if (reload)
275         s->delta = limit;
276     if (s->enabled && reload) {
277         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
278         ptimer_reload(s, 0);
279     }
280 }
281 
282 uint64_t ptimer_get_limit(ptimer_state *s)
283 {
284     return s->limit;
285 }
286 
287 const VMStateDescription vmstate_ptimer = {
288     .name = "ptimer",
289     .version_id = 1,
290     .minimum_version_id = 1,
291     .fields = (VMStateField[]) {
292         VMSTATE_UINT8(enabled, ptimer_state),
293         VMSTATE_UINT64(limit, ptimer_state),
294         VMSTATE_UINT64(delta, ptimer_state),
295         VMSTATE_UINT32(period_frac, ptimer_state),
296         VMSTATE_INT64(period, ptimer_state),
297         VMSTATE_INT64(last_event, ptimer_state),
298         VMSTATE_INT64(next_event, ptimer_state),
299         VMSTATE_TIMER_PTR(timer, ptimer_state),
300         VMSTATE_END_OF_LIST()
301     }
302 };
303 
304 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
305 {
306     ptimer_state *s;
307 
308     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
309     s->bh = bh;
310     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
311     s->policy_mask = policy_mask;
312     return s;
313 }
314