xref: /openbmc/qemu/hw/core/ptimer.c (revision ebe15582)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "migration/vmstate.h"
13 #include "qemu/host-utils.h"
14 #include "sysemu/replay.h"
15 #include "sysemu/qtest.h"
16 #include "block/aio.h"
17 #include "sysemu/cpus.h"
18 
19 #define DELTA_ADJUST     1
20 #define DELTA_NO_ADJUST -1
21 
22 struct ptimer_state
23 {
24     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
25     uint64_t limit;
26     uint64_t delta;
27     uint32_t period_frac;
28     int64_t period;
29     int64_t last_event;
30     int64_t next_event;
31     uint8_t policy_mask;
32     QEMUBH *bh;
33     QEMUTimer *timer;
34 };
35 
36 /* Use a bottom-half routine to avoid reentrancy issues.  */
37 static void ptimer_trigger(ptimer_state *s)
38 {
39     if (s->bh) {
40         replay_bh_schedule_event(s->bh);
41     }
42 }
43 
44 static void ptimer_reload(ptimer_state *s, int delta_adjust)
45 {
46     uint32_t period_frac = s->period_frac;
47     uint64_t period = s->period;
48     uint64_t delta = s->delta;
49     bool suppress_trigger = false;
50 
51     /*
52      * Note that if delta_adjust is 0 then we must be here because of
53      * a count register write or timer start, not because of timer expiry.
54      * In that case the policy might require us to suppress the timer trigger
55      * that we would otherwise generate for a zero delta.
56      */
57     if (delta_adjust == 0 &&
58         (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
59         suppress_trigger = true;
60     }
61     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
62         && !suppress_trigger) {
63         ptimer_trigger(s);
64     }
65 
66     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
67         delta = s->delta = s->limit;
68     }
69 
70     if (s->period == 0) {
71         if (!qtest_enabled()) {
72             fprintf(stderr, "Timer with period zero, disabling\n");
73         }
74         timer_del(s->timer);
75         s->enabled = 0;
76         return;
77     }
78 
79     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
80         if (delta_adjust != DELTA_NO_ADJUST) {
81             delta += delta_adjust;
82         }
83     }
84 
85     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
86         if (s->enabled == 1 && s->limit == 0) {
87             delta = 1;
88         }
89     }
90 
91     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
92         if (delta_adjust != DELTA_NO_ADJUST) {
93             delta = 1;
94         }
95     }
96 
97     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
98         if (s->enabled == 1 && s->limit != 0) {
99             delta = 1;
100         }
101     }
102 
103     if (delta == 0) {
104         if (!qtest_enabled()) {
105             fprintf(stderr, "Timer with delta zero, disabling\n");
106         }
107         timer_del(s->timer);
108         s->enabled = 0;
109         return;
110     }
111 
112     /*
113      * Artificially limit timeout rate to something
114      * achievable under QEMU.  Otherwise, QEMU spends all
115      * its time generating timer interrupts, and there
116      * is no forward progress.
117      * About ten microseconds is the fastest that really works
118      * on the current generation of host machines.
119      */
120 
121     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
122         period = 10000 / delta;
123         period_frac = 0;
124     }
125 
126     s->last_event = s->next_event;
127     s->next_event = s->last_event + delta * period;
128     if (period_frac) {
129         s->next_event += ((int64_t)period_frac * delta) >> 32;
130     }
131     timer_mod(s->timer, s->next_event);
132 }
133 
134 static void ptimer_tick(void *opaque)
135 {
136     ptimer_state *s = (ptimer_state *)opaque;
137     bool trigger = true;
138 
139     if (s->enabled == 2) {
140         s->delta = 0;
141         s->enabled = 0;
142     } else {
143         int delta_adjust = DELTA_ADJUST;
144 
145         if (s->delta == 0 || s->limit == 0) {
146             /* If a "continuous trigger" policy is not used and limit == 0,
147                we should error out. delta == 0 means that this tick is
148                caused by a "no immediate reload" policy, so it shouldn't
149                be adjusted.  */
150             delta_adjust = DELTA_NO_ADJUST;
151         }
152 
153         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
154             /* Avoid re-trigger on deferred reload if "no immediate trigger"
155                policy isn't used.  */
156             trigger = (delta_adjust == DELTA_ADJUST);
157         }
158 
159         s->delta = s->limit;
160 
161         ptimer_reload(s, delta_adjust);
162     }
163 
164     if (trigger) {
165         ptimer_trigger(s);
166     }
167 }
168 
169 uint64_t ptimer_get_count(ptimer_state *s)
170 {
171     uint64_t counter;
172 
173     if (s->enabled && s->delta != 0) {
174         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
175         int64_t next = s->next_event;
176         int64_t last = s->last_event;
177         bool expired = (now - next >= 0);
178         bool oneshot = (s->enabled == 2);
179 
180         /* Figure out the current counter value.  */
181         if (expired) {
182             /* Prevent timer underflowing if it should already have
183                triggered.  */
184             counter = 0;
185         } else {
186             uint64_t rem;
187             uint64_t div;
188             int clz1, clz2;
189             int shift;
190             uint32_t period_frac = s->period_frac;
191             uint64_t period = s->period;
192 
193             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
194                 period = 10000 / s->delta;
195                 period_frac = 0;
196             }
197 
198             /* We need to divide time by period, where time is stored in
199                rem (64-bit integer) and period is stored in period/period_frac
200                (64.32 fixed point).
201 
202                Doing full precision division is hard, so scale values and
203                do a 64-bit division.  The result should be rounded down,
204                so that the rounding error never causes the timer to go
205                backwards.
206             */
207 
208             rem = next - now;
209             div = period;
210 
211             clz1 = clz64(rem);
212             clz2 = clz64(div);
213             shift = clz1 < clz2 ? clz1 : clz2;
214 
215             rem <<= shift;
216             div <<= shift;
217             if (shift >= 32) {
218                 div |= ((uint64_t)period_frac << (shift - 32));
219             } else {
220                 if (shift != 0)
221                     div |= (period_frac >> (32 - shift));
222                 /* Look at remaining bits of period_frac and round div up if
223                    necessary.  */
224                 if ((uint32_t)(period_frac << shift))
225                     div += 1;
226             }
227             counter = rem / div;
228 
229             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
230                 /* Before wrapping around, timer should stay with counter = 0
231                    for a one period.  */
232                 if (!oneshot && s->delta == s->limit) {
233                     if (now == last) {
234                         /* Counter == delta here, check whether it was
235                            adjusted and if it was, then right now it is
236                            that "one period".  */
237                         if (counter == s->limit + DELTA_ADJUST) {
238                             return 0;
239                         }
240                     } else if (counter == s->limit) {
241                         /* Since the counter is rounded down and now != last,
242                            the counter == limit means that delta was adjusted
243                            by +1 and right now it is that adjusted period.  */
244                         return 0;
245                     }
246                 }
247             }
248         }
249 
250         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
251             /* If now == last then delta == limit, i.e. the counter already
252                represents the correct value. It would be rounded down a 1ns
253                later.  */
254             if (now != last) {
255                 counter += 1;
256             }
257         }
258     } else {
259         counter = s->delta;
260     }
261     return counter;
262 }
263 
264 void ptimer_set_count(ptimer_state *s, uint64_t count)
265 {
266     s->delta = count;
267     if (s->enabled) {
268         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
269         ptimer_reload(s, 0);
270     }
271 }
272 
273 void ptimer_run(ptimer_state *s, int oneshot)
274 {
275     bool was_disabled = !s->enabled;
276 
277     if (was_disabled && s->period == 0) {
278         if (!qtest_enabled()) {
279             fprintf(stderr, "Timer with period zero, disabling\n");
280         }
281         return;
282     }
283     s->enabled = oneshot ? 2 : 1;
284     if (was_disabled) {
285         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
286         ptimer_reload(s, 0);
287     }
288 }
289 
290 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
291    is immediately restarted.  */
292 void ptimer_stop(ptimer_state *s)
293 {
294     if (!s->enabled)
295         return;
296 
297     s->delta = ptimer_get_count(s);
298     timer_del(s->timer);
299     s->enabled = 0;
300 }
301 
302 /* Set counter increment interval in nanoseconds.  */
303 void ptimer_set_period(ptimer_state *s, int64_t period)
304 {
305     s->delta = ptimer_get_count(s);
306     s->period = period;
307     s->period_frac = 0;
308     if (s->enabled) {
309         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
310         ptimer_reload(s, 0);
311     }
312 }
313 
314 /* Set counter frequency in Hz.  */
315 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
316 {
317     s->delta = ptimer_get_count(s);
318     s->period = 1000000000ll / freq;
319     s->period_frac = (1000000000ll << 32) / freq;
320     if (s->enabled) {
321         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
322         ptimer_reload(s, 0);
323     }
324 }
325 
326 /* Set the initial countdown value.  If reload is nonzero then also set
327    count = limit.  */
328 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
329 {
330     s->limit = limit;
331     if (reload)
332         s->delta = limit;
333     if (s->enabled && reload) {
334         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
335         ptimer_reload(s, 0);
336     }
337 }
338 
339 uint64_t ptimer_get_limit(ptimer_state *s)
340 {
341     return s->limit;
342 }
343 
344 const VMStateDescription vmstate_ptimer = {
345     .name = "ptimer",
346     .version_id = 1,
347     .minimum_version_id = 1,
348     .fields = (VMStateField[]) {
349         VMSTATE_UINT8(enabled, ptimer_state),
350         VMSTATE_UINT64(limit, ptimer_state),
351         VMSTATE_UINT64(delta, ptimer_state),
352         VMSTATE_UINT32(period_frac, ptimer_state),
353         VMSTATE_INT64(period, ptimer_state),
354         VMSTATE_INT64(last_event, ptimer_state),
355         VMSTATE_INT64(next_event, ptimer_state),
356         VMSTATE_TIMER_PTR(timer, ptimer_state),
357         VMSTATE_END_OF_LIST()
358     }
359 };
360 
361 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
362 {
363     ptimer_state *s;
364 
365     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
366     s->bh = bh;
367     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
368     s->policy_mask = policy_mask;
369 
370     /*
371      * These two policies are incompatible -- trigger-on-decrement implies
372      * a timer trigger when the count becomes 0, but no-immediate-trigger
373      * implies a trigger when the count stops being 0.
374      */
375     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
376              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
377     return s;
378 }
379 
380 void ptimer_free(ptimer_state *s)
381 {
382     qemu_bh_delete(s->bh);
383     timer_free(s->timer);
384     g_free(s);
385 }
386