xref: /openbmc/qemu/hw/core/ptimer.c (revision e91171e30235ae99ab8060988aa3c9536692bba8)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 
15 struct ptimer_state
16 {
17     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
18     uint64_t limit;
19     uint64_t delta;
20     uint32_t period_frac;
21     int64_t period;
22     int64_t last_event;
23     int64_t next_event;
24     QEMUBH *bh;
25     QEMUTimer *timer;
26 };
27 
28 /* Use a bottom-half routine to avoid reentrancy issues.  */
29 static void ptimer_trigger(ptimer_state *s)
30 {
31     if (s->bh) {
32         replay_bh_schedule_event(s->bh);
33     }
34 }
35 
36 static void ptimer_reload(ptimer_state *s)
37 {
38     uint32_t period_frac = s->period_frac;
39     uint64_t period = s->period;
40 
41     if (s->delta == 0) {
42         ptimer_trigger(s);
43         s->delta = s->limit;
44     }
45     if (s->delta == 0 || s->period == 0) {
46         fprintf(stderr, "Timer with period zero, disabling\n");
47         s->enabled = 0;
48         return;
49     }
50 
51     /*
52      * Artificially limit timeout rate to something
53      * achievable under QEMU.  Otherwise, QEMU spends all
54      * its time generating timer interrupts, and there
55      * is no forward progress.
56      * About ten microseconds is the fastest that really works
57      * on the current generation of host machines.
58      */
59 
60     if (s->enabled == 1 && (s->delta * period < 10000) && !use_icount) {
61         period = 10000 / s->delta;
62         period_frac = 0;
63     }
64 
65     s->last_event = s->next_event;
66     s->next_event = s->last_event + s->delta * period;
67     if (period_frac) {
68         s->next_event += ((int64_t)period_frac * s->delta) >> 32;
69     }
70     timer_mod(s->timer, s->next_event);
71 }
72 
73 static void ptimer_tick(void *opaque)
74 {
75     ptimer_state *s = (ptimer_state *)opaque;
76     ptimer_trigger(s);
77     s->delta = 0;
78     if (s->enabled == 2) {
79         s->enabled = 0;
80     } else {
81         ptimer_reload(s);
82     }
83 }
84 
85 uint64_t ptimer_get_count(ptimer_state *s)
86 {
87     int64_t now;
88     uint64_t counter;
89 
90     if (s->enabled) {
91         now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
92         /* Figure out the current counter value.  */
93         if (now - s->next_event > 0
94             || s->period == 0) {
95             /* Prevent timer underflowing if it should already have
96                triggered.  */
97             counter = 0;
98         } else {
99             uint64_t rem;
100             uint64_t div;
101             int clz1, clz2;
102             int shift;
103             uint32_t period_frac = s->period_frac;
104             uint64_t period = s->period;
105 
106             if ((s->enabled == 1) && !use_icount && (s->delta * period < 10000)) {
107                 period = 10000 / s->delta;
108                 period_frac = 0;
109             }
110 
111             /* We need to divide time by period, where time is stored in
112                rem (64-bit integer) and period is stored in period/period_frac
113                (64.32 fixed point).
114 
115                Doing full precision division is hard, so scale values and
116                do a 64-bit division.  The result should be rounded down,
117                so that the rounding error never causes the timer to go
118                backwards.
119             */
120 
121             rem = s->next_event - now;
122             div = period;
123 
124             clz1 = clz64(rem);
125             clz2 = clz64(div);
126             shift = clz1 < clz2 ? clz1 : clz2;
127 
128             rem <<= shift;
129             div <<= shift;
130             if (shift >= 32) {
131                 div |= ((uint64_t)period_frac << (shift - 32));
132             } else {
133                 if (shift != 0)
134                     div |= (period_frac >> (32 - shift));
135                 /* Look at remaining bits of period_frac and round div up if
136                    necessary.  */
137                 if ((uint32_t)(period_frac << shift))
138                     div += 1;
139             }
140             counter = rem / div;
141         }
142     } else {
143         counter = s->delta;
144     }
145     return counter;
146 }
147 
148 void ptimer_set_count(ptimer_state *s, uint64_t count)
149 {
150     s->delta = count;
151     if (s->enabled) {
152         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
153         ptimer_reload(s);
154     }
155 }
156 
157 void ptimer_run(ptimer_state *s, int oneshot)
158 {
159     if (s->enabled) {
160         return;
161     }
162     if (s->period == 0) {
163         fprintf(stderr, "Timer with period zero, disabling\n");
164         return;
165     }
166     s->enabled = oneshot ? 2 : 1;
167     s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
168     ptimer_reload(s);
169 }
170 
171 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
172    is immediately restarted.  */
173 void ptimer_stop(ptimer_state *s)
174 {
175     if (!s->enabled)
176         return;
177 
178     s->delta = ptimer_get_count(s);
179     timer_del(s->timer);
180     s->enabled = 0;
181 }
182 
183 /* Set counter increment interval in nanoseconds.  */
184 void ptimer_set_period(ptimer_state *s, int64_t period)
185 {
186     s->period = period;
187     s->period_frac = 0;
188     if (s->enabled) {
189         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
190         ptimer_reload(s);
191     }
192 }
193 
194 /* Set counter frequency in Hz.  */
195 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
196 {
197     s->period = 1000000000ll / freq;
198     s->period_frac = (1000000000ll << 32) / freq;
199     if (s->enabled) {
200         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
201         ptimer_reload(s);
202     }
203 }
204 
205 /* Set the initial countdown value.  If reload is nonzero then also set
206    count = limit.  */
207 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
208 {
209     s->limit = limit;
210     if (reload)
211         s->delta = limit;
212     if (s->enabled && reload) {
213         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
214         ptimer_reload(s);
215     }
216 }
217 
218 const VMStateDescription vmstate_ptimer = {
219     .name = "ptimer",
220     .version_id = 1,
221     .minimum_version_id = 1,
222     .fields = (VMStateField[]) {
223         VMSTATE_UINT8(enabled, ptimer_state),
224         VMSTATE_UINT64(limit, ptimer_state),
225         VMSTATE_UINT64(delta, ptimer_state),
226         VMSTATE_UINT32(period_frac, ptimer_state),
227         VMSTATE_INT64(period, ptimer_state),
228         VMSTATE_INT64(last_event, ptimer_state),
229         VMSTATE_INT64(next_event, ptimer_state),
230         VMSTATE_TIMER_PTR(timer, ptimer_state),
231         VMSTATE_END_OF_LIST()
232     }
233 };
234 
235 ptimer_state *ptimer_init(QEMUBH *bh)
236 {
237     ptimer_state *s;
238 
239     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
240     s->bh = bh;
241     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
242     return s;
243 }
244