xref: /openbmc/qemu/hw/core/ptimer.c (revision e1ecf8c8)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "migration/vmstate.h"
13 #include "qemu/host-utils.h"
14 #include "sysemu/replay.h"
15 #include "sysemu/qtest.h"
16 #include "block/aio.h"
17 #include "sysemu/cpus.h"
18 
19 #define DELTA_ADJUST     1
20 #define DELTA_NO_ADJUST -1
21 
22 struct ptimer_state
23 {
24     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
25     uint64_t limit;
26     uint64_t delta;
27     uint32_t period_frac;
28     int64_t period;
29     int64_t last_event;
30     int64_t next_event;
31     uint8_t policy_mask;
32     QEMUBH *bh;
33     QEMUTimer *timer;
34     ptimer_cb callback;
35     void *callback_opaque;
36     /*
37      * These track whether we're in a transaction block, and if we
38      * need to do a timer reload when the block finishes. They don't
39      * need to be migrated because migration can never happen in the
40      * middle of a transaction block.
41      */
42     bool in_transaction;
43     bool need_reload;
44 };
45 
46 /* Use a bottom-half routine to avoid reentrancy issues.  */
47 static void ptimer_trigger(ptimer_state *s)
48 {
49     if (s->bh) {
50         replay_bh_schedule_event(s->bh);
51     }
52     if (s->callback) {
53         s->callback(s->callback_opaque);
54     }
55 }
56 
57 static void ptimer_reload(ptimer_state *s, int delta_adjust)
58 {
59     uint32_t period_frac;
60     uint64_t period;
61     uint64_t delta;
62     bool suppress_trigger = false;
63 
64     /*
65      * Note that if delta_adjust is 0 then we must be here because of
66      * a count register write or timer start, not because of timer expiry.
67      * In that case the policy might require us to suppress the timer trigger
68      * that we would otherwise generate for a zero delta.
69      */
70     if (delta_adjust == 0 &&
71         (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
72         suppress_trigger = true;
73     }
74     if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
75         && !suppress_trigger) {
76         ptimer_trigger(s);
77     }
78 
79     /*
80      * Note that ptimer_trigger() might call the device callback function,
81      * which can then modify timer state, so we must not cache any fields
82      * from ptimer_state until after we have called it.
83      */
84     delta = s->delta;
85     period = s->period;
86     period_frac = s->period_frac;
87 
88     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
89         delta = s->delta = s->limit;
90     }
91 
92     if (s->period == 0) {
93         if (!qtest_enabled()) {
94             fprintf(stderr, "Timer with period zero, disabling\n");
95         }
96         timer_del(s->timer);
97         s->enabled = 0;
98         return;
99     }
100 
101     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
102         if (delta_adjust != DELTA_NO_ADJUST) {
103             delta += delta_adjust;
104         }
105     }
106 
107     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
108         if (s->enabled == 1 && s->limit == 0) {
109             delta = 1;
110         }
111     }
112 
113     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
114         if (delta_adjust != DELTA_NO_ADJUST) {
115             delta = 1;
116         }
117     }
118 
119     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
120         if (s->enabled == 1 && s->limit != 0) {
121             delta = 1;
122         }
123     }
124 
125     if (delta == 0) {
126         if (!qtest_enabled()) {
127             fprintf(stderr, "Timer with delta zero, disabling\n");
128         }
129         timer_del(s->timer);
130         s->enabled = 0;
131         return;
132     }
133 
134     /*
135      * Artificially limit timeout rate to something
136      * achievable under QEMU.  Otherwise, QEMU spends all
137      * its time generating timer interrupts, and there
138      * is no forward progress.
139      * About ten microseconds is the fastest that really works
140      * on the current generation of host machines.
141      */
142 
143     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
144         period = 10000 / delta;
145         period_frac = 0;
146     }
147 
148     s->last_event = s->next_event;
149     s->next_event = s->last_event + delta * period;
150     if (period_frac) {
151         s->next_event += ((int64_t)period_frac * delta) >> 32;
152     }
153     timer_mod(s->timer, s->next_event);
154 }
155 
156 static void ptimer_tick(void *opaque)
157 {
158     ptimer_state *s = (ptimer_state *)opaque;
159     bool trigger = true;
160 
161     /*
162      * We perform all the tick actions within a begin/commit block
163      * because the callback function that ptimer_trigger() calls
164      * might make calls into the ptimer APIs that provoke another
165      * trigger, and we want that to cause the callback function
166      * to be called iteratively, not recursively.
167      */
168     ptimer_transaction_begin(s);
169 
170     if (s->enabled == 2) {
171         s->delta = 0;
172         s->enabled = 0;
173     } else {
174         int delta_adjust = DELTA_ADJUST;
175 
176         if (s->delta == 0 || s->limit == 0) {
177             /* If a "continuous trigger" policy is not used and limit == 0,
178                we should error out. delta == 0 means that this tick is
179                caused by a "no immediate reload" policy, so it shouldn't
180                be adjusted.  */
181             delta_adjust = DELTA_NO_ADJUST;
182         }
183 
184         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
185             /* Avoid re-trigger on deferred reload if "no immediate trigger"
186                policy isn't used.  */
187             trigger = (delta_adjust == DELTA_ADJUST);
188         }
189 
190         s->delta = s->limit;
191 
192         ptimer_reload(s, delta_adjust);
193     }
194 
195     if (trigger) {
196         ptimer_trigger(s);
197     }
198 
199     ptimer_transaction_commit(s);
200 }
201 
202 uint64_t ptimer_get_count(ptimer_state *s)
203 {
204     uint64_t counter;
205 
206     if (s->enabled && s->delta != 0) {
207         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
208         int64_t next = s->next_event;
209         int64_t last = s->last_event;
210         bool expired = (now - next >= 0);
211         bool oneshot = (s->enabled == 2);
212 
213         /* Figure out the current counter value.  */
214         if (expired) {
215             /* Prevent timer underflowing if it should already have
216                triggered.  */
217             counter = 0;
218         } else {
219             uint64_t rem;
220             uint64_t div;
221             int clz1, clz2;
222             int shift;
223             uint32_t period_frac = s->period_frac;
224             uint64_t period = s->period;
225 
226             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
227                 period = 10000 / s->delta;
228                 period_frac = 0;
229             }
230 
231             /* We need to divide time by period, where time is stored in
232                rem (64-bit integer) and period is stored in period/period_frac
233                (64.32 fixed point).
234 
235                Doing full precision division is hard, so scale values and
236                do a 64-bit division.  The result should be rounded down,
237                so that the rounding error never causes the timer to go
238                backwards.
239             */
240 
241             rem = next - now;
242             div = period;
243 
244             clz1 = clz64(rem);
245             clz2 = clz64(div);
246             shift = clz1 < clz2 ? clz1 : clz2;
247 
248             rem <<= shift;
249             div <<= shift;
250             if (shift >= 32) {
251                 div |= ((uint64_t)period_frac << (shift - 32));
252             } else {
253                 if (shift != 0)
254                     div |= (period_frac >> (32 - shift));
255                 /* Look at remaining bits of period_frac and round div up if
256                    necessary.  */
257                 if ((uint32_t)(period_frac << shift))
258                     div += 1;
259             }
260             counter = rem / div;
261 
262             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
263                 /* Before wrapping around, timer should stay with counter = 0
264                    for a one period.  */
265                 if (!oneshot && s->delta == s->limit) {
266                     if (now == last) {
267                         /* Counter == delta here, check whether it was
268                            adjusted and if it was, then right now it is
269                            that "one period".  */
270                         if (counter == s->limit + DELTA_ADJUST) {
271                             return 0;
272                         }
273                     } else if (counter == s->limit) {
274                         /* Since the counter is rounded down and now != last,
275                            the counter == limit means that delta was adjusted
276                            by +1 and right now it is that adjusted period.  */
277                         return 0;
278                     }
279                 }
280             }
281         }
282 
283         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
284             /* If now == last then delta == limit, i.e. the counter already
285                represents the correct value. It would be rounded down a 1ns
286                later.  */
287             if (now != last) {
288                 counter += 1;
289             }
290         }
291     } else {
292         counter = s->delta;
293     }
294     return counter;
295 }
296 
297 void ptimer_set_count(ptimer_state *s, uint64_t count)
298 {
299     assert(s->in_transaction || !s->callback);
300     s->delta = count;
301     if (s->enabled) {
302         if (!s->callback) {
303             s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
304             ptimer_reload(s, 0);
305         } else {
306             s->need_reload = true;
307         }
308     }
309 }
310 
311 void ptimer_run(ptimer_state *s, int oneshot)
312 {
313     bool was_disabled = !s->enabled;
314 
315     assert(s->in_transaction || !s->callback);
316 
317     if (was_disabled && s->period == 0) {
318         if (!qtest_enabled()) {
319             fprintf(stderr, "Timer with period zero, disabling\n");
320         }
321         return;
322     }
323     s->enabled = oneshot ? 2 : 1;
324     if (was_disabled) {
325         if (!s->callback) {
326             s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
327             ptimer_reload(s, 0);
328         } else {
329             s->need_reload = true;
330         }
331     }
332 }
333 
334 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
335    is immediately restarted.  */
336 void ptimer_stop(ptimer_state *s)
337 {
338     assert(s->in_transaction || !s->callback);
339 
340     if (!s->enabled)
341         return;
342 
343     s->delta = ptimer_get_count(s);
344     timer_del(s->timer);
345     s->enabled = 0;
346     if (s->callback) {
347         s->need_reload = false;
348     }
349 }
350 
351 /* Set counter increment interval in nanoseconds.  */
352 void ptimer_set_period(ptimer_state *s, int64_t period)
353 {
354     assert(s->in_transaction || !s->callback);
355     s->delta = ptimer_get_count(s);
356     s->period = period;
357     s->period_frac = 0;
358     if (s->enabled) {
359         if (!s->callback) {
360             s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
361             ptimer_reload(s, 0);
362         } else {
363             s->need_reload = true;
364         }
365     }
366 }
367 
368 /* Set counter frequency in Hz.  */
369 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
370 {
371     assert(s->in_transaction || !s->callback);
372     s->delta = ptimer_get_count(s);
373     s->period = 1000000000ll / freq;
374     s->period_frac = (1000000000ll << 32) / freq;
375     if (s->enabled) {
376         if (!s->callback) {
377             s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
378             ptimer_reload(s, 0);
379         } else {
380             s->need_reload = true;
381         }
382     }
383 }
384 
385 /* Set the initial countdown value.  If reload is nonzero then also set
386    count = limit.  */
387 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
388 {
389     assert(s->in_transaction || !s->callback);
390     s->limit = limit;
391     if (reload)
392         s->delta = limit;
393     if (s->enabled && reload) {
394         if (!s->callback) {
395             s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
396             ptimer_reload(s, 0);
397         } else {
398             s->need_reload = true;
399         }
400     }
401 }
402 
403 uint64_t ptimer_get_limit(ptimer_state *s)
404 {
405     return s->limit;
406 }
407 
408 void ptimer_transaction_begin(ptimer_state *s)
409 {
410     assert(!s->in_transaction || !s->callback);
411     s->in_transaction = true;
412     s->need_reload = false;
413 }
414 
415 void ptimer_transaction_commit(ptimer_state *s)
416 {
417     assert(s->in_transaction);
418     /*
419      * We must loop here because ptimer_reload() can call the callback
420      * function, which might then update ptimer state in a way that
421      * means we need to do another reload and possibly another callback.
422      * A disabled timer never needs reloading (and if we don't check
423      * this then we loop forever if ptimer_reload() disables the timer).
424      */
425     while (s->need_reload && s->enabled) {
426         s->need_reload = false;
427         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
428         ptimer_reload(s, 0);
429     }
430     /* Now we've finished reload we can leave the transaction block. */
431     s->in_transaction = false;
432 }
433 
434 const VMStateDescription vmstate_ptimer = {
435     .name = "ptimer",
436     .version_id = 1,
437     .minimum_version_id = 1,
438     .fields = (VMStateField[]) {
439         VMSTATE_UINT8(enabled, ptimer_state),
440         VMSTATE_UINT64(limit, ptimer_state),
441         VMSTATE_UINT64(delta, ptimer_state),
442         VMSTATE_UINT32(period_frac, ptimer_state),
443         VMSTATE_INT64(period, ptimer_state),
444         VMSTATE_INT64(last_event, ptimer_state),
445         VMSTATE_INT64(next_event, ptimer_state),
446         VMSTATE_TIMER_PTR(timer, ptimer_state),
447         VMSTATE_END_OF_LIST()
448     }
449 };
450 
451 ptimer_state *ptimer_init_with_bh(QEMUBH *bh, uint8_t policy_mask)
452 {
453     ptimer_state *s;
454 
455     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
456     s->bh = bh;
457     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
458     s->policy_mask = policy_mask;
459 
460     /*
461      * These two policies are incompatible -- trigger-on-decrement implies
462      * a timer trigger when the count becomes 0, but no-immediate-trigger
463      * implies a trigger when the count stops being 0.
464      */
465     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
466              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
467     return s;
468 }
469 
470 ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
471                           uint8_t policy_mask)
472 {
473     ptimer_state *s;
474 
475     /*
476      * The callback function is mandatory; so we use it to distinguish
477      * old-style QEMUBH ptimers from new transaction API ptimers.
478      * (ptimer_init_with_bh() allows a NULL bh pointer and at least
479      * one device (digic-timer) passes NULL, so it's not the case
480      * that either s->bh != NULL or s->callback != NULL.)
481      */
482     assert(callback);
483 
484     s = g_new0(ptimer_state, 1);
485     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
486     s->policy_mask = policy_mask;
487     s->callback = callback;
488     s->callback_opaque = callback_opaque;
489 
490     /*
491      * These two policies are incompatible -- trigger-on-decrement implies
492      * a timer trigger when the count becomes 0, but no-immediate-trigger
493      * implies a trigger when the count stops being 0.
494      */
495     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
496              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
497     return s;
498 }
499 
500 void ptimer_free(ptimer_state *s)
501 {
502     if (s->bh) {
503         qemu_bh_delete(s->bh);
504     }
505     timer_free(s->timer);
506     g_free(s);
507 }
508