xref: /openbmc/qemu/hw/core/ptimer.c (revision 7f6c3d1a)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "migration/vmstate.h"
13 #include "qemu/host-utils.h"
14 #include "sysemu/replay.h"
15 #include "sysemu/qtest.h"
16 #include "block/aio.h"
17 #include "sysemu/cpus.h"
18 
19 #define DELTA_ADJUST     1
20 #define DELTA_NO_ADJUST -1
21 
22 struct ptimer_state
23 {
24     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
25     uint64_t limit;
26     uint64_t delta;
27     uint32_t period_frac;
28     int64_t period;
29     int64_t last_event;
30     int64_t next_event;
31     uint8_t policy_mask;
32     QEMUTimer *timer;
33     ptimer_cb callback;
34     void *callback_opaque;
35     /*
36      * These track whether we're in a transaction block, and if we
37      * need to do a timer reload when the block finishes. They don't
38      * need to be migrated because migration can never happen in the
39      * middle of a transaction block.
40      */
41     bool in_transaction;
42     bool need_reload;
43 };
44 
45 /* Use a bottom-half routine to avoid reentrancy issues.  */
46 static void ptimer_trigger(ptimer_state *s)
47 {
48     s->callback(s->callback_opaque);
49 }
50 
51 static void ptimer_reload(ptimer_state *s, int delta_adjust)
52 {
53     uint32_t period_frac;
54     uint64_t period;
55     uint64_t delta;
56     bool suppress_trigger = false;
57 
58     /*
59      * Note that if delta_adjust is 0 then we must be here because of
60      * a count register write or timer start, not because of timer expiry.
61      * In that case the policy might require us to suppress the timer trigger
62      * that we would otherwise generate for a zero delta.
63      */
64     if (delta_adjust == 0 &&
65         (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
66         suppress_trigger = true;
67     }
68     if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
69         && !suppress_trigger) {
70         ptimer_trigger(s);
71     }
72 
73     /*
74      * Note that ptimer_trigger() might call the device callback function,
75      * which can then modify timer state, so we must not cache any fields
76      * from ptimer_state until after we have called it.
77      */
78     delta = s->delta;
79     period = s->period;
80     period_frac = s->period_frac;
81 
82     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
83         delta = s->delta = s->limit;
84     }
85 
86     if (s->period == 0) {
87         if (!qtest_enabled()) {
88             fprintf(stderr, "Timer with period zero, disabling\n");
89         }
90         timer_del(s->timer);
91         s->enabled = 0;
92         return;
93     }
94 
95     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
96         if (delta_adjust != DELTA_NO_ADJUST) {
97             delta += delta_adjust;
98         }
99     }
100 
101     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
102         if (s->enabled == 1 && s->limit == 0) {
103             delta = 1;
104         }
105     }
106 
107     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
108         if (delta_adjust != DELTA_NO_ADJUST) {
109             delta = 1;
110         }
111     }
112 
113     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
114         if (s->enabled == 1 && s->limit != 0) {
115             delta = 1;
116         }
117     }
118 
119     if (delta == 0) {
120         if (!qtest_enabled()) {
121             fprintf(stderr, "Timer with delta zero, disabling\n");
122         }
123         timer_del(s->timer);
124         s->enabled = 0;
125         return;
126     }
127 
128     /*
129      * Artificially limit timeout rate to something
130      * achievable under QEMU.  Otherwise, QEMU spends all
131      * its time generating timer interrupts, and there
132      * is no forward progress.
133      * About ten microseconds is the fastest that really works
134      * on the current generation of host machines.
135      */
136 
137     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
138         period = 10000 / delta;
139         period_frac = 0;
140     }
141 
142     s->last_event = s->next_event;
143     s->next_event = s->last_event + delta * period;
144     if (period_frac) {
145         s->next_event += ((int64_t)period_frac * delta) >> 32;
146     }
147     timer_mod(s->timer, s->next_event);
148 }
149 
150 static void ptimer_tick(void *opaque)
151 {
152     ptimer_state *s = (ptimer_state *)opaque;
153     bool trigger = true;
154 
155     /*
156      * We perform all the tick actions within a begin/commit block
157      * because the callback function that ptimer_trigger() calls
158      * might make calls into the ptimer APIs that provoke another
159      * trigger, and we want that to cause the callback function
160      * to be called iteratively, not recursively.
161      */
162     ptimer_transaction_begin(s);
163 
164     if (s->enabled == 2) {
165         s->delta = 0;
166         s->enabled = 0;
167     } else {
168         int delta_adjust = DELTA_ADJUST;
169 
170         if (s->delta == 0 || s->limit == 0) {
171             /* If a "continuous trigger" policy is not used and limit == 0,
172                we should error out. delta == 0 means that this tick is
173                caused by a "no immediate reload" policy, so it shouldn't
174                be adjusted.  */
175             delta_adjust = DELTA_NO_ADJUST;
176         }
177 
178         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
179             /* Avoid re-trigger on deferred reload if "no immediate trigger"
180                policy isn't used.  */
181             trigger = (delta_adjust == DELTA_ADJUST);
182         }
183 
184         s->delta = s->limit;
185 
186         ptimer_reload(s, delta_adjust);
187     }
188 
189     if (trigger) {
190         ptimer_trigger(s);
191     }
192 
193     ptimer_transaction_commit(s);
194 }
195 
196 uint64_t ptimer_get_count(ptimer_state *s)
197 {
198     uint64_t counter;
199 
200     if (s->enabled && s->delta != 0) {
201         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
202         int64_t next = s->next_event;
203         int64_t last = s->last_event;
204         bool expired = (now - next >= 0);
205         bool oneshot = (s->enabled == 2);
206 
207         /* Figure out the current counter value.  */
208         if (expired) {
209             /* Prevent timer underflowing if it should already have
210                triggered.  */
211             counter = 0;
212         } else {
213             uint64_t rem;
214             uint64_t div;
215             int clz1, clz2;
216             int shift;
217             uint32_t period_frac = s->period_frac;
218             uint64_t period = s->period;
219 
220             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
221                 period = 10000 / s->delta;
222                 period_frac = 0;
223             }
224 
225             /* We need to divide time by period, where time is stored in
226                rem (64-bit integer) and period is stored in period/period_frac
227                (64.32 fixed point).
228 
229                Doing full precision division is hard, so scale values and
230                do a 64-bit division.  The result should be rounded down,
231                so that the rounding error never causes the timer to go
232                backwards.
233             */
234 
235             rem = next - now;
236             div = period;
237 
238             clz1 = clz64(rem);
239             clz2 = clz64(div);
240             shift = clz1 < clz2 ? clz1 : clz2;
241 
242             rem <<= shift;
243             div <<= shift;
244             if (shift >= 32) {
245                 div |= ((uint64_t)period_frac << (shift - 32));
246             } else {
247                 if (shift != 0)
248                     div |= (period_frac >> (32 - shift));
249                 /* Look at remaining bits of period_frac and round div up if
250                    necessary.  */
251                 if ((uint32_t)(period_frac << shift))
252                     div += 1;
253             }
254             counter = rem / div;
255 
256             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
257                 /* Before wrapping around, timer should stay with counter = 0
258                    for a one period.  */
259                 if (!oneshot && s->delta == s->limit) {
260                     if (now == last) {
261                         /* Counter == delta here, check whether it was
262                            adjusted and if it was, then right now it is
263                            that "one period".  */
264                         if (counter == s->limit + DELTA_ADJUST) {
265                             return 0;
266                         }
267                     } else if (counter == s->limit) {
268                         /* Since the counter is rounded down and now != last,
269                            the counter == limit means that delta was adjusted
270                            by +1 and right now it is that adjusted period.  */
271                         return 0;
272                     }
273                 }
274             }
275         }
276 
277         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
278             /* If now == last then delta == limit, i.e. the counter already
279                represents the correct value. It would be rounded down a 1ns
280                later.  */
281             if (now != last) {
282                 counter += 1;
283             }
284         }
285     } else {
286         counter = s->delta;
287     }
288     return counter;
289 }
290 
291 void ptimer_set_count(ptimer_state *s, uint64_t count)
292 {
293     assert(s->in_transaction);
294     s->delta = count;
295     if (s->enabled) {
296         s->need_reload = true;
297     }
298 }
299 
300 void ptimer_run(ptimer_state *s, int oneshot)
301 {
302     bool was_disabled = !s->enabled;
303 
304     assert(s->in_transaction);
305 
306     if (was_disabled && s->period == 0) {
307         if (!qtest_enabled()) {
308             fprintf(stderr, "Timer with period zero, disabling\n");
309         }
310         return;
311     }
312     s->enabled = oneshot ? 2 : 1;
313     if (was_disabled) {
314         s->need_reload = true;
315     }
316 }
317 
318 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
319    is immediately restarted.  */
320 void ptimer_stop(ptimer_state *s)
321 {
322     assert(s->in_transaction);
323 
324     if (!s->enabled)
325         return;
326 
327     s->delta = ptimer_get_count(s);
328     timer_del(s->timer);
329     s->enabled = 0;
330     s->need_reload = false;
331 }
332 
333 /* Set counter increment interval in nanoseconds.  */
334 void ptimer_set_period(ptimer_state *s, int64_t period)
335 {
336     assert(s->in_transaction);
337     s->delta = ptimer_get_count(s);
338     s->period = period;
339     s->period_frac = 0;
340     if (s->enabled) {
341         s->need_reload = true;
342     }
343 }
344 
345 /* Set counter frequency in Hz.  */
346 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
347 {
348     assert(s->in_transaction);
349     s->delta = ptimer_get_count(s);
350     s->period = 1000000000ll / freq;
351     s->period_frac = (1000000000ll << 32) / freq;
352     if (s->enabled) {
353         s->need_reload = true;
354     }
355 }
356 
357 /* Set the initial countdown value.  If reload is nonzero then also set
358    count = limit.  */
359 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
360 {
361     assert(s->in_transaction);
362     s->limit = limit;
363     if (reload)
364         s->delta = limit;
365     if (s->enabled && reload) {
366         s->need_reload = true;
367     }
368 }
369 
370 uint64_t ptimer_get_limit(ptimer_state *s)
371 {
372     return s->limit;
373 }
374 
375 void ptimer_transaction_begin(ptimer_state *s)
376 {
377     assert(!s->in_transaction);
378     s->in_transaction = true;
379     s->need_reload = false;
380 }
381 
382 void ptimer_transaction_commit(ptimer_state *s)
383 {
384     assert(s->in_transaction);
385     /*
386      * We must loop here because ptimer_reload() can call the callback
387      * function, which might then update ptimer state in a way that
388      * means we need to do another reload and possibly another callback.
389      * A disabled timer never needs reloading (and if we don't check
390      * this then we loop forever if ptimer_reload() disables the timer).
391      */
392     while (s->need_reload && s->enabled) {
393         s->need_reload = false;
394         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
395         ptimer_reload(s, 0);
396     }
397     /* Now we've finished reload we can leave the transaction block. */
398     s->in_transaction = false;
399 }
400 
401 const VMStateDescription vmstate_ptimer = {
402     .name = "ptimer",
403     .version_id = 1,
404     .minimum_version_id = 1,
405     .fields = (VMStateField[]) {
406         VMSTATE_UINT8(enabled, ptimer_state),
407         VMSTATE_UINT64(limit, ptimer_state),
408         VMSTATE_UINT64(delta, ptimer_state),
409         VMSTATE_UINT32(period_frac, ptimer_state),
410         VMSTATE_INT64(period, ptimer_state),
411         VMSTATE_INT64(last_event, ptimer_state),
412         VMSTATE_INT64(next_event, ptimer_state),
413         VMSTATE_TIMER_PTR(timer, ptimer_state),
414         VMSTATE_END_OF_LIST()
415     }
416 };
417 
418 ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
419                           uint8_t policy_mask)
420 {
421     ptimer_state *s;
422 
423     /* The callback function is mandatory. */
424     assert(callback);
425 
426     s = g_new0(ptimer_state, 1);
427     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
428     s->policy_mask = policy_mask;
429     s->callback = callback;
430     s->callback_opaque = callback_opaque;
431 
432     /*
433      * These two policies are incompatible -- trigger-on-decrement implies
434      * a timer trigger when the count becomes 0, but no-immediate-trigger
435      * implies a trigger when the count stops being 0.
436      */
437     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
438              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
439     return s;
440 }
441 
442 void ptimer_free(ptimer_state *s)
443 {
444     timer_free(s->timer);
445     g_free(s);
446 }
447