1 /* 2 * General purpose implementation of a simple periodic countdown timer. 3 * 4 * Copyright (c) 2007 CodeSourcery. 5 * 6 * This code is licensed under the GNU LGPL. 7 */ 8 9 #include "qemu/osdep.h" 10 #include "hw/ptimer.h" 11 #include "migration/vmstate.h" 12 #include "qemu/host-utils.h" 13 #include "sysemu/replay.h" 14 #include "sysemu/cpu-timers.h" 15 #include "sysemu/qtest.h" 16 #include "block/aio.h" 17 #include "sysemu/cpus.h" 18 19 #define DELTA_ADJUST 1 20 #define DELTA_NO_ADJUST -1 21 22 struct ptimer_state 23 { 24 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ 25 uint64_t limit; 26 uint64_t delta; 27 uint32_t period_frac; 28 int64_t period; 29 int64_t last_event; 30 int64_t next_event; 31 uint8_t policy_mask; 32 QEMUTimer *timer; 33 ptimer_cb callback; 34 void *callback_opaque; 35 /* 36 * These track whether we're in a transaction block, and if we 37 * need to do a timer reload when the block finishes. They don't 38 * need to be migrated because migration can never happen in the 39 * middle of a transaction block. 40 */ 41 bool in_transaction; 42 bool need_reload; 43 }; 44 45 /* Use a bottom-half routine to avoid reentrancy issues. */ 46 static void ptimer_trigger(ptimer_state *s) 47 { 48 s->callback(s->callback_opaque); 49 } 50 51 static void ptimer_reload(ptimer_state *s, int delta_adjust) 52 { 53 uint32_t period_frac; 54 uint64_t period; 55 uint64_t delta; 56 bool suppress_trigger = false; 57 58 /* 59 * Note that if delta_adjust is 0 then we must be here because of 60 * a count register write or timer start, not because of timer expiry. 61 * In that case the policy might require us to suppress the timer trigger 62 * that we would otherwise generate for a zero delta. 63 */ 64 if (delta_adjust == 0 && 65 (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) { 66 suppress_trigger = true; 67 } 68 if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) 69 && !suppress_trigger) { 70 ptimer_trigger(s); 71 } 72 73 /* 74 * Note that ptimer_trigger() might call the device callback function, 75 * which can then modify timer state, so we must not cache any fields 76 * from ptimer_state until after we have called it. 77 */ 78 delta = s->delta; 79 period = s->period; 80 period_frac = s->period_frac; 81 82 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 83 delta = s->delta = s->limit; 84 } 85 86 if (s->period == 0) { 87 if (!qtest_enabled()) { 88 fprintf(stderr, "Timer with period zero, disabling\n"); 89 } 90 timer_del(s->timer); 91 s->enabled = 0; 92 return; 93 } 94 95 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 96 if (delta_adjust != DELTA_NO_ADJUST) { 97 delta += delta_adjust; 98 } 99 } 100 101 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { 102 if (s->enabled == 1 && s->limit == 0) { 103 delta = 1; 104 } 105 } 106 107 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 108 if (delta_adjust != DELTA_NO_ADJUST) { 109 delta = 1; 110 } 111 } 112 113 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 114 if (s->enabled == 1 && s->limit != 0) { 115 delta = 1; 116 } 117 } 118 119 if (delta == 0) { 120 if (!qtest_enabled()) { 121 fprintf(stderr, "Timer with delta zero, disabling\n"); 122 } 123 timer_del(s->timer); 124 s->enabled = 0; 125 return; 126 } 127 128 /* 129 * Artificially limit timeout rate to something 130 * achievable under QEMU. Otherwise, QEMU spends all 131 * its time generating timer interrupts, and there 132 * is no forward progress. 133 * About ten microseconds is the fastest that really works 134 * on the current generation of host machines. 135 */ 136 137 if (s->enabled == 1 && (delta * period < 10000) && 138 !icount_enabled() && !qtest_enabled()) { 139 period = 10000 / delta; 140 period_frac = 0; 141 } 142 143 s->last_event = s->next_event; 144 s->next_event = s->last_event + delta * period; 145 if (period_frac) { 146 s->next_event += ((int64_t)period_frac * delta) >> 32; 147 } 148 timer_mod(s->timer, s->next_event); 149 } 150 151 static void ptimer_tick(void *opaque) 152 { 153 ptimer_state *s = (ptimer_state *)opaque; 154 bool trigger = true; 155 156 /* 157 * We perform all the tick actions within a begin/commit block 158 * because the callback function that ptimer_trigger() calls 159 * might make calls into the ptimer APIs that provoke another 160 * trigger, and we want that to cause the callback function 161 * to be called iteratively, not recursively. 162 */ 163 ptimer_transaction_begin(s); 164 165 if (s->enabled == 2) { 166 s->delta = 0; 167 s->enabled = 0; 168 } else { 169 int delta_adjust = DELTA_ADJUST; 170 171 if (s->delta == 0 || s->limit == 0) { 172 /* If a "continuous trigger" policy is not used and limit == 0, 173 we should error out. delta == 0 means that this tick is 174 caused by a "no immediate reload" policy, so it shouldn't 175 be adjusted. */ 176 delta_adjust = DELTA_NO_ADJUST; 177 } 178 179 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 180 /* Avoid re-trigger on deferred reload if "no immediate trigger" 181 policy isn't used. */ 182 trigger = (delta_adjust == DELTA_ADJUST); 183 } 184 185 s->delta = s->limit; 186 187 ptimer_reload(s, delta_adjust); 188 } 189 190 if (trigger) { 191 ptimer_trigger(s); 192 } 193 194 ptimer_transaction_commit(s); 195 } 196 197 uint64_t ptimer_get_count(ptimer_state *s) 198 { 199 uint64_t counter; 200 201 if (s->enabled && s->delta != 0) { 202 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 203 int64_t next = s->next_event; 204 int64_t last = s->last_event; 205 bool expired = (now - next >= 0); 206 bool oneshot = (s->enabled == 2); 207 208 /* Figure out the current counter value. */ 209 if (expired) { 210 /* Prevent timer underflowing if it should already have 211 triggered. */ 212 counter = 0; 213 } else { 214 uint64_t rem; 215 uint64_t div; 216 int clz1, clz2; 217 int shift; 218 uint32_t period_frac = s->period_frac; 219 uint64_t period = s->period; 220 221 if (!oneshot && (s->delta * period < 10000) && 222 !icount_enabled() && !qtest_enabled()) { 223 period = 10000 / s->delta; 224 period_frac = 0; 225 } 226 227 /* We need to divide time by period, where time is stored in 228 rem (64-bit integer) and period is stored in period/period_frac 229 (64.32 fixed point). 230 231 Doing full precision division is hard, so scale values and 232 do a 64-bit division. The result should be rounded down, 233 so that the rounding error never causes the timer to go 234 backwards. 235 */ 236 237 rem = next - now; 238 div = period; 239 240 clz1 = clz64(rem); 241 clz2 = clz64(div); 242 shift = clz1 < clz2 ? clz1 : clz2; 243 244 rem <<= shift; 245 div <<= shift; 246 if (shift >= 32) { 247 div |= ((uint64_t)period_frac << (shift - 32)); 248 } else { 249 if (shift != 0) 250 div |= (period_frac >> (32 - shift)); 251 /* Look at remaining bits of period_frac and round div up if 252 necessary. */ 253 if ((uint32_t)(period_frac << shift)) 254 div += 1; 255 } 256 counter = rem / div; 257 258 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 259 /* Before wrapping around, timer should stay with counter = 0 260 for a one period. */ 261 if (!oneshot && s->delta == s->limit) { 262 if (now == last) { 263 /* Counter == delta here, check whether it was 264 adjusted and if it was, then right now it is 265 that "one period". */ 266 if (counter == s->limit + DELTA_ADJUST) { 267 return 0; 268 } 269 } else if (counter == s->limit) { 270 /* Since the counter is rounded down and now != last, 271 the counter == limit means that delta was adjusted 272 by +1 and right now it is that adjusted period. */ 273 return 0; 274 } 275 } 276 } 277 } 278 279 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { 280 /* If now == last then delta == limit, i.e. the counter already 281 represents the correct value. It would be rounded down a 1ns 282 later. */ 283 if (now != last) { 284 counter += 1; 285 } 286 } 287 } else { 288 counter = s->delta; 289 } 290 return counter; 291 } 292 293 void ptimer_set_count(ptimer_state *s, uint64_t count) 294 { 295 assert(s->in_transaction); 296 s->delta = count; 297 if (s->enabled) { 298 s->need_reload = true; 299 } 300 } 301 302 void ptimer_run(ptimer_state *s, int oneshot) 303 { 304 bool was_disabled = !s->enabled; 305 306 assert(s->in_transaction); 307 308 if (was_disabled && s->period == 0) { 309 if (!qtest_enabled()) { 310 fprintf(stderr, "Timer with period zero, disabling\n"); 311 } 312 return; 313 } 314 s->enabled = oneshot ? 2 : 1; 315 if (was_disabled) { 316 s->need_reload = true; 317 } 318 } 319 320 /* Pause a timer. Note that this may cause it to "lose" time, even if it 321 is immediately restarted. */ 322 void ptimer_stop(ptimer_state *s) 323 { 324 assert(s->in_transaction); 325 326 if (!s->enabled) 327 return; 328 329 s->delta = ptimer_get_count(s); 330 timer_del(s->timer); 331 s->enabled = 0; 332 s->need_reload = false; 333 } 334 335 /* Set counter increment interval in nanoseconds. */ 336 void ptimer_set_period(ptimer_state *s, int64_t period) 337 { 338 assert(s->in_transaction); 339 s->delta = ptimer_get_count(s); 340 s->period = period; 341 s->period_frac = 0; 342 if (s->enabled) { 343 s->need_reload = true; 344 } 345 } 346 347 /* Set counter frequency in Hz. */ 348 void ptimer_set_freq(ptimer_state *s, uint32_t freq) 349 { 350 assert(s->in_transaction); 351 s->delta = ptimer_get_count(s); 352 s->period = 1000000000ll / freq; 353 s->period_frac = (1000000000ll << 32) / freq; 354 if (s->enabled) { 355 s->need_reload = true; 356 } 357 } 358 359 /* Set the initial countdown value. If reload is nonzero then also set 360 count = limit. */ 361 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) 362 { 363 assert(s->in_transaction); 364 s->limit = limit; 365 if (reload) 366 s->delta = limit; 367 if (s->enabled && reload) { 368 s->need_reload = true; 369 } 370 } 371 372 uint64_t ptimer_get_limit(ptimer_state *s) 373 { 374 return s->limit; 375 } 376 377 void ptimer_transaction_begin(ptimer_state *s) 378 { 379 assert(!s->in_transaction); 380 s->in_transaction = true; 381 s->need_reload = false; 382 } 383 384 void ptimer_transaction_commit(ptimer_state *s) 385 { 386 assert(s->in_transaction); 387 /* 388 * We must loop here because ptimer_reload() can call the callback 389 * function, which might then update ptimer state in a way that 390 * means we need to do another reload and possibly another callback. 391 * A disabled timer never needs reloading (and if we don't check 392 * this then we loop forever if ptimer_reload() disables the timer). 393 */ 394 while (s->need_reload && s->enabled) { 395 s->need_reload = false; 396 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 397 ptimer_reload(s, 0); 398 } 399 /* Now we've finished reload we can leave the transaction block. */ 400 s->in_transaction = false; 401 } 402 403 const VMStateDescription vmstate_ptimer = { 404 .name = "ptimer", 405 .version_id = 1, 406 .minimum_version_id = 1, 407 .fields = (VMStateField[]) { 408 VMSTATE_UINT8(enabled, ptimer_state), 409 VMSTATE_UINT64(limit, ptimer_state), 410 VMSTATE_UINT64(delta, ptimer_state), 411 VMSTATE_UINT32(period_frac, ptimer_state), 412 VMSTATE_INT64(period, ptimer_state), 413 VMSTATE_INT64(last_event, ptimer_state), 414 VMSTATE_INT64(next_event, ptimer_state), 415 VMSTATE_TIMER_PTR(timer, ptimer_state), 416 VMSTATE_END_OF_LIST() 417 } 418 }; 419 420 ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque, 421 uint8_t policy_mask) 422 { 423 ptimer_state *s; 424 425 /* The callback function is mandatory. */ 426 assert(callback); 427 428 s = g_new0(ptimer_state, 1); 429 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); 430 s->policy_mask = policy_mask; 431 s->callback = callback; 432 s->callback_opaque = callback_opaque; 433 434 /* 435 * These two policies are incompatible -- trigger-on-decrement implies 436 * a timer trigger when the count becomes 0, but no-immediate-trigger 437 * implies a trigger when the count stops being 0. 438 */ 439 assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) && 440 (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER))); 441 return s; 442 } 443 444 void ptimer_free(ptimer_state *s) 445 { 446 timer_free(s->timer); 447 g_free(s); 448 } 449