xref: /openbmc/qemu/hw/core/ptimer.c (revision 4a09d0bb)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 #include "sysemu/qtest.h"
15 
16 #define DELTA_ADJUST     1
17 #define DELTA_NO_ADJUST -1
18 
19 struct ptimer_state
20 {
21     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
22     uint64_t limit;
23     uint64_t delta;
24     uint32_t period_frac;
25     int64_t period;
26     int64_t last_event;
27     int64_t next_event;
28     uint8_t policy_mask;
29     QEMUBH *bh;
30     QEMUTimer *timer;
31 };
32 
33 /* Use a bottom-half routine to avoid reentrancy issues.  */
34 static void ptimer_trigger(ptimer_state *s)
35 {
36     if (s->bh) {
37         replay_bh_schedule_event(s->bh);
38     }
39 }
40 
41 static void ptimer_reload(ptimer_state *s, int delta_adjust)
42 {
43     uint32_t period_frac = s->period_frac;
44     uint64_t period = s->period;
45     uint64_t delta = s->delta;
46 
47     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
48         ptimer_trigger(s);
49     }
50 
51     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
52         delta = s->delta = s->limit;
53     }
54 
55     if (s->period == 0) {
56         if (!qtest_enabled()) {
57             fprintf(stderr, "Timer with period zero, disabling\n");
58         }
59         timer_del(s->timer);
60         s->enabled = 0;
61         return;
62     }
63 
64     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
65         if (delta_adjust != DELTA_NO_ADJUST) {
66             delta += delta_adjust;
67         }
68     }
69 
70     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
71         if (s->enabled == 1 && s->limit == 0) {
72             delta = 1;
73         }
74     }
75 
76     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
77         if (delta_adjust != DELTA_NO_ADJUST) {
78             delta = 1;
79         }
80     }
81 
82     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
83         if (s->enabled == 1 && s->limit != 0) {
84             delta = 1;
85         }
86     }
87 
88     if (delta == 0) {
89         if (!qtest_enabled()) {
90             fprintf(stderr, "Timer with delta zero, disabling\n");
91         }
92         timer_del(s->timer);
93         s->enabled = 0;
94         return;
95     }
96 
97     /*
98      * Artificially limit timeout rate to something
99      * achievable under QEMU.  Otherwise, QEMU spends all
100      * its time generating timer interrupts, and there
101      * is no forward progress.
102      * About ten microseconds is the fastest that really works
103      * on the current generation of host machines.
104      */
105 
106     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
107         period = 10000 / delta;
108         period_frac = 0;
109     }
110 
111     s->last_event = s->next_event;
112     s->next_event = s->last_event + delta * period;
113     if (period_frac) {
114         s->next_event += ((int64_t)period_frac * delta) >> 32;
115     }
116     timer_mod(s->timer, s->next_event);
117 }
118 
119 static void ptimer_tick(void *opaque)
120 {
121     ptimer_state *s = (ptimer_state *)opaque;
122     bool trigger = true;
123 
124     if (s->enabled == 2) {
125         s->delta = 0;
126         s->enabled = 0;
127     } else {
128         int delta_adjust = DELTA_ADJUST;
129 
130         if (s->delta == 0 || s->limit == 0) {
131             /* If a "continuous trigger" policy is not used and limit == 0,
132                we should error out. delta == 0 means that this tick is
133                caused by a "no immediate reload" policy, so it shouldn't
134                be adjusted.  */
135             delta_adjust = DELTA_NO_ADJUST;
136         }
137 
138         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
139             /* Avoid re-trigger on deferred reload if "no immediate trigger"
140                policy isn't used.  */
141             trigger = (delta_adjust == DELTA_ADJUST);
142         }
143 
144         s->delta = s->limit;
145 
146         ptimer_reload(s, delta_adjust);
147     }
148 
149     if (trigger) {
150         ptimer_trigger(s);
151     }
152 }
153 
154 uint64_t ptimer_get_count(ptimer_state *s)
155 {
156     uint64_t counter;
157 
158     if (s->enabled && s->delta != 0) {
159         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
160         int64_t next = s->next_event;
161         int64_t last = s->last_event;
162         bool expired = (now - next >= 0);
163         bool oneshot = (s->enabled == 2);
164 
165         /* Figure out the current counter value.  */
166         if (expired) {
167             /* Prevent timer underflowing if it should already have
168                triggered.  */
169             counter = 0;
170         } else {
171             uint64_t rem;
172             uint64_t div;
173             int clz1, clz2;
174             int shift;
175             uint32_t period_frac = s->period_frac;
176             uint64_t period = s->period;
177 
178             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
179                 period = 10000 / s->delta;
180                 period_frac = 0;
181             }
182 
183             /* We need to divide time by period, where time is stored in
184                rem (64-bit integer) and period is stored in period/period_frac
185                (64.32 fixed point).
186 
187                Doing full precision division is hard, so scale values and
188                do a 64-bit division.  The result should be rounded down,
189                so that the rounding error never causes the timer to go
190                backwards.
191             */
192 
193             rem = next - now;
194             div = period;
195 
196             clz1 = clz64(rem);
197             clz2 = clz64(div);
198             shift = clz1 < clz2 ? clz1 : clz2;
199 
200             rem <<= shift;
201             div <<= shift;
202             if (shift >= 32) {
203                 div |= ((uint64_t)period_frac << (shift - 32));
204             } else {
205                 if (shift != 0)
206                     div |= (period_frac >> (32 - shift));
207                 /* Look at remaining bits of period_frac and round div up if
208                    necessary.  */
209                 if ((uint32_t)(period_frac << shift))
210                     div += 1;
211             }
212             counter = rem / div;
213 
214             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
215                 /* Before wrapping around, timer should stay with counter = 0
216                    for a one period.  */
217                 if (!oneshot && s->delta == s->limit) {
218                     if (now == last) {
219                         /* Counter == delta here, check whether it was
220                            adjusted and if it was, then right now it is
221                            that "one period".  */
222                         if (counter == s->limit + DELTA_ADJUST) {
223                             return 0;
224                         }
225                     } else if (counter == s->limit) {
226                         /* Since the counter is rounded down and now != last,
227                            the counter == limit means that delta was adjusted
228                            by +1 and right now it is that adjusted period.  */
229                         return 0;
230                     }
231                 }
232             }
233         }
234 
235         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
236             /* If now == last then delta == limit, i.e. the counter already
237                represents the correct value. It would be rounded down a 1ns
238                later.  */
239             if (now != last) {
240                 counter += 1;
241             }
242         }
243     } else {
244         counter = s->delta;
245     }
246     return counter;
247 }
248 
249 void ptimer_set_count(ptimer_state *s, uint64_t count)
250 {
251     s->delta = count;
252     if (s->enabled) {
253         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254         ptimer_reload(s, 0);
255     }
256 }
257 
258 void ptimer_run(ptimer_state *s, int oneshot)
259 {
260     bool was_disabled = !s->enabled;
261 
262     if (was_disabled && s->period == 0) {
263         if (!qtest_enabled()) {
264             fprintf(stderr, "Timer with period zero, disabling\n");
265         }
266         return;
267     }
268     s->enabled = oneshot ? 2 : 1;
269     if (was_disabled) {
270         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
271         ptimer_reload(s, 0);
272     }
273 }
274 
275 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
276    is immediately restarted.  */
277 void ptimer_stop(ptimer_state *s)
278 {
279     if (!s->enabled)
280         return;
281 
282     s->delta = ptimer_get_count(s);
283     timer_del(s->timer);
284     s->enabled = 0;
285 }
286 
287 /* Set counter increment interval in nanoseconds.  */
288 void ptimer_set_period(ptimer_state *s, int64_t period)
289 {
290     s->delta = ptimer_get_count(s);
291     s->period = period;
292     s->period_frac = 0;
293     if (s->enabled) {
294         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
295         ptimer_reload(s, 0);
296     }
297 }
298 
299 /* Set counter frequency in Hz.  */
300 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
301 {
302     s->delta = ptimer_get_count(s);
303     s->period = 1000000000ll / freq;
304     s->period_frac = (1000000000ll << 32) / freq;
305     if (s->enabled) {
306         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
307         ptimer_reload(s, 0);
308     }
309 }
310 
311 /* Set the initial countdown value.  If reload is nonzero then also set
312    count = limit.  */
313 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
314 {
315     s->limit = limit;
316     if (reload)
317         s->delta = limit;
318     if (s->enabled && reload) {
319         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
320         ptimer_reload(s, 0);
321     }
322 }
323 
324 uint64_t ptimer_get_limit(ptimer_state *s)
325 {
326     return s->limit;
327 }
328 
329 const VMStateDescription vmstate_ptimer = {
330     .name = "ptimer",
331     .version_id = 1,
332     .minimum_version_id = 1,
333     .fields = (VMStateField[]) {
334         VMSTATE_UINT8(enabled, ptimer_state),
335         VMSTATE_UINT64(limit, ptimer_state),
336         VMSTATE_UINT64(delta, ptimer_state),
337         VMSTATE_UINT32(period_frac, ptimer_state),
338         VMSTATE_INT64(period, ptimer_state),
339         VMSTATE_INT64(last_event, ptimer_state),
340         VMSTATE_INT64(next_event, ptimer_state),
341         VMSTATE_TIMER_PTR(timer, ptimer_state),
342         VMSTATE_END_OF_LIST()
343     }
344 };
345 
346 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
347 {
348     ptimer_state *s;
349 
350     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
351     s->bh = bh;
352     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
353     s->policy_mask = policy_mask;
354     return s;
355 }
356