1 /* 2 * General purpose implementation of a simple periodic countdown timer. 3 * 4 * Copyright (c) 2007 CodeSourcery. 5 * 6 * This code is licensed under the GNU LGPL. 7 */ 8 #include "qemu/osdep.h" 9 #include "hw/hw.h" 10 #include "qemu/timer.h" 11 #include "hw/ptimer.h" 12 #include "qemu/host-utils.h" 13 #include "sysemu/replay.h" 14 #include "sysemu/qtest.h" 15 16 #define DELTA_ADJUST 1 17 #define DELTA_NO_ADJUST -1 18 19 struct ptimer_state 20 { 21 uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot. */ 22 uint64_t limit; 23 uint64_t delta; 24 uint32_t period_frac; 25 int64_t period; 26 int64_t last_event; 27 int64_t next_event; 28 uint8_t policy_mask; 29 QEMUBH *bh; 30 QEMUTimer *timer; 31 }; 32 33 /* Use a bottom-half routine to avoid reentrancy issues. */ 34 static void ptimer_trigger(ptimer_state *s) 35 { 36 if (s->bh) { 37 replay_bh_schedule_event(s->bh); 38 } 39 } 40 41 static void ptimer_reload(ptimer_state *s, int delta_adjust) 42 { 43 uint32_t period_frac = s->period_frac; 44 uint64_t period = s->period; 45 uint64_t delta = s->delta; 46 47 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 48 ptimer_trigger(s); 49 } 50 51 if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 52 delta = s->delta = s->limit; 53 } 54 55 if (s->period == 0) { 56 if (!qtest_enabled()) { 57 fprintf(stderr, "Timer with period zero, disabling\n"); 58 } 59 timer_del(s->timer); 60 s->enabled = 0; 61 return; 62 } 63 64 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 65 if (delta_adjust != DELTA_NO_ADJUST) { 66 delta += delta_adjust; 67 } 68 } 69 70 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) { 71 if (s->enabled == 1 && s->limit == 0) { 72 delta = 1; 73 } 74 } 75 76 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 77 if (delta_adjust != DELTA_NO_ADJUST) { 78 delta = 1; 79 } 80 } 81 82 if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) { 83 if (s->enabled == 1 && s->limit != 0) { 84 delta = 1; 85 } 86 } 87 88 if (delta == 0) { 89 if (!qtest_enabled()) { 90 fprintf(stderr, "Timer with delta zero, disabling\n"); 91 } 92 timer_del(s->timer); 93 s->enabled = 0; 94 return; 95 } 96 97 /* 98 * Artificially limit timeout rate to something 99 * achievable under QEMU. Otherwise, QEMU spends all 100 * its time generating timer interrupts, and there 101 * is no forward progress. 102 * About ten microseconds is the fastest that really works 103 * on the current generation of host machines. 104 */ 105 106 if (s->enabled == 1 && (delta * period < 10000) && !use_icount) { 107 period = 10000 / delta; 108 period_frac = 0; 109 } 110 111 s->last_event = s->next_event; 112 s->next_event = s->last_event + delta * period; 113 if (period_frac) { 114 s->next_event += ((int64_t)period_frac * delta) >> 32; 115 } 116 timer_mod(s->timer, s->next_event); 117 } 118 119 static void ptimer_tick(void *opaque) 120 { 121 ptimer_state *s = (ptimer_state *)opaque; 122 bool trigger = true; 123 124 if (s->enabled == 2) { 125 s->delta = 0; 126 s->enabled = 0; 127 } else { 128 int delta_adjust = DELTA_ADJUST; 129 130 if (s->delta == 0 || s->limit == 0) { 131 /* If a "continuous trigger" policy is not used and limit == 0, 132 we should error out. delta == 0 means that this tick is 133 caused by a "no immediate reload" policy, so it shouldn't 134 be adjusted. */ 135 delta_adjust = DELTA_NO_ADJUST; 136 } 137 138 if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) { 139 /* Avoid re-trigger on deferred reload if "no immediate trigger" 140 policy isn't used. */ 141 trigger = (delta_adjust == DELTA_ADJUST); 142 } 143 144 s->delta = s->limit; 145 146 ptimer_reload(s, delta_adjust); 147 } 148 149 if (trigger) { 150 ptimer_trigger(s); 151 } 152 } 153 154 uint64_t ptimer_get_count(ptimer_state *s) 155 { 156 uint64_t counter; 157 158 if (s->enabled && s->delta != 0) { 159 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 160 int64_t next = s->next_event; 161 int64_t last = s->last_event; 162 bool expired = (now - next >= 0); 163 bool oneshot = (s->enabled == 2); 164 165 /* Figure out the current counter value. */ 166 if (expired) { 167 /* Prevent timer underflowing if it should already have 168 triggered. */ 169 counter = 0; 170 } else { 171 uint64_t rem; 172 uint64_t div; 173 int clz1, clz2; 174 int shift; 175 uint32_t period_frac = s->period_frac; 176 uint64_t period = s->period; 177 178 if (!oneshot && (s->delta * period < 10000) && !use_icount) { 179 period = 10000 / s->delta; 180 period_frac = 0; 181 } 182 183 /* We need to divide time by period, where time is stored in 184 rem (64-bit integer) and period is stored in period/period_frac 185 (64.32 fixed point). 186 187 Doing full precision division is hard, so scale values and 188 do a 64-bit division. The result should be rounded down, 189 so that the rounding error never causes the timer to go 190 backwards. 191 */ 192 193 rem = next - now; 194 div = period; 195 196 clz1 = clz64(rem); 197 clz2 = clz64(div); 198 shift = clz1 < clz2 ? clz1 : clz2; 199 200 rem <<= shift; 201 div <<= shift; 202 if (shift >= 32) { 203 div |= ((uint64_t)period_frac << (shift - 32)); 204 } else { 205 if (shift != 0) 206 div |= (period_frac >> (32 - shift)); 207 /* Look at remaining bits of period_frac and round div up if 208 necessary. */ 209 if ((uint32_t)(period_frac << shift)) 210 div += 1; 211 } 212 counter = rem / div; 213 214 if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) { 215 /* Before wrapping around, timer should stay with counter = 0 216 for a one period. */ 217 if (!oneshot && s->delta == s->limit) { 218 if (now == last) { 219 /* Counter == delta here, check whether it was 220 adjusted and if it was, then right now it is 221 that "one period". */ 222 if (counter == s->limit + DELTA_ADJUST) { 223 return 0; 224 } 225 } else if (counter == s->limit) { 226 /* Since the counter is rounded down and now != last, 227 the counter == limit means that delta was adjusted 228 by +1 and right now it is that adjusted period. */ 229 return 0; 230 } 231 } 232 } 233 } 234 235 if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) { 236 /* If now == last then delta == limit, i.e. the counter already 237 represents the correct value. It would be rounded down a 1ns 238 later. */ 239 if (now != last) { 240 counter += 1; 241 } 242 } 243 } else { 244 counter = s->delta; 245 } 246 return counter; 247 } 248 249 void ptimer_set_count(ptimer_state *s, uint64_t count) 250 { 251 s->delta = count; 252 if (s->enabled) { 253 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 254 ptimer_reload(s, 0); 255 } 256 } 257 258 void ptimer_run(ptimer_state *s, int oneshot) 259 { 260 bool was_disabled = !s->enabled; 261 262 if (was_disabled && s->period == 0) { 263 if (!qtest_enabled()) { 264 fprintf(stderr, "Timer with period zero, disabling\n"); 265 } 266 return; 267 } 268 s->enabled = oneshot ? 2 : 1; 269 if (was_disabled) { 270 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 271 ptimer_reload(s, 0); 272 } 273 } 274 275 /* Pause a timer. Note that this may cause it to "lose" time, even if it 276 is immediately restarted. */ 277 void ptimer_stop(ptimer_state *s) 278 { 279 if (!s->enabled) 280 return; 281 282 s->delta = ptimer_get_count(s); 283 timer_del(s->timer); 284 s->enabled = 0; 285 } 286 287 /* Set counter increment interval in nanoseconds. */ 288 void ptimer_set_period(ptimer_state *s, int64_t period) 289 { 290 s->delta = ptimer_get_count(s); 291 s->period = period; 292 s->period_frac = 0; 293 if (s->enabled) { 294 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 295 ptimer_reload(s, 0); 296 } 297 } 298 299 /* Set counter frequency in Hz. */ 300 void ptimer_set_freq(ptimer_state *s, uint32_t freq) 301 { 302 s->delta = ptimer_get_count(s); 303 s->period = 1000000000ll / freq; 304 s->period_frac = (1000000000ll << 32) / freq; 305 if (s->enabled) { 306 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 307 ptimer_reload(s, 0); 308 } 309 } 310 311 /* Set the initial countdown value. If reload is nonzero then also set 312 count = limit. */ 313 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload) 314 { 315 s->limit = limit; 316 if (reload) 317 s->delta = limit; 318 if (s->enabled && reload) { 319 s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 320 ptimer_reload(s, 0); 321 } 322 } 323 324 uint64_t ptimer_get_limit(ptimer_state *s) 325 { 326 return s->limit; 327 } 328 329 const VMStateDescription vmstate_ptimer = { 330 .name = "ptimer", 331 .version_id = 1, 332 .minimum_version_id = 1, 333 .fields = (VMStateField[]) { 334 VMSTATE_UINT8(enabled, ptimer_state), 335 VMSTATE_UINT64(limit, ptimer_state), 336 VMSTATE_UINT64(delta, ptimer_state), 337 VMSTATE_UINT32(period_frac, ptimer_state), 338 VMSTATE_INT64(period, ptimer_state), 339 VMSTATE_INT64(last_event, ptimer_state), 340 VMSTATE_INT64(next_event, ptimer_state), 341 VMSTATE_TIMER_PTR(timer, ptimer_state), 342 VMSTATE_END_OF_LIST() 343 } 344 }; 345 346 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask) 347 { 348 ptimer_state *s; 349 350 s = (ptimer_state *)g_malloc0(sizeof(ptimer_state)); 351 s->bh = bh; 352 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s); 353 s->policy_mask = policy_mask; 354 return s; 355 } 356