xref: /openbmc/qemu/hw/core/ptimer.c (revision 49ab747f)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 #include "hw/hw.h"
9 #include "qemu/timer.h"
10 #include "hw/ptimer.h"
11 #include "qemu/host-utils.h"
12 
13 struct ptimer_state
14 {
15     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
16     uint64_t limit;
17     uint64_t delta;
18     uint32_t period_frac;
19     int64_t period;
20     int64_t last_event;
21     int64_t next_event;
22     QEMUBH *bh;
23     QEMUTimer *timer;
24 };
25 
26 /* Use a bottom-half routine to avoid reentrancy issues.  */
27 static void ptimer_trigger(ptimer_state *s)
28 {
29     if (s->bh) {
30         qemu_bh_schedule(s->bh);
31     }
32 }
33 
34 static void ptimer_reload(ptimer_state *s)
35 {
36     if (s->delta == 0) {
37         ptimer_trigger(s);
38         s->delta = s->limit;
39     }
40     if (s->delta == 0 || s->period == 0) {
41         fprintf(stderr, "Timer with period zero, disabling\n");
42         s->enabled = 0;
43         return;
44     }
45 
46     s->last_event = s->next_event;
47     s->next_event = s->last_event + s->delta * s->period;
48     if (s->period_frac) {
49         s->next_event += ((int64_t)s->period_frac * s->delta) >> 32;
50     }
51     qemu_mod_timer(s->timer, s->next_event);
52 }
53 
54 static void ptimer_tick(void *opaque)
55 {
56     ptimer_state *s = (ptimer_state *)opaque;
57     ptimer_trigger(s);
58     s->delta = 0;
59     if (s->enabled == 2) {
60         s->enabled = 0;
61     } else {
62         ptimer_reload(s);
63     }
64 }
65 
66 uint64_t ptimer_get_count(ptimer_state *s)
67 {
68     int64_t now;
69     uint64_t counter;
70 
71     if (s->enabled) {
72         now = qemu_get_clock_ns(vm_clock);
73         /* Figure out the current counter value.  */
74         if (now - s->next_event > 0
75             || s->period == 0) {
76             /* Prevent timer underflowing if it should already have
77                triggered.  */
78             counter = 0;
79         } else {
80             uint64_t rem;
81             uint64_t div;
82             int clz1, clz2;
83             int shift;
84 
85             /* We need to divide time by period, where time is stored in
86                rem (64-bit integer) and period is stored in period/period_frac
87                (64.32 fixed point).
88 
89                Doing full precision division is hard, so scale values and
90                do a 64-bit division.  The result should be rounded down,
91                so that the rounding error never causes the timer to go
92                backwards.
93             */
94 
95             rem = s->next_event - now;
96             div = s->period;
97 
98             clz1 = clz64(rem);
99             clz2 = clz64(div);
100             shift = clz1 < clz2 ? clz1 : clz2;
101 
102             rem <<= shift;
103             div <<= shift;
104             if (shift >= 32) {
105                 div |= ((uint64_t)s->period_frac << (shift - 32));
106             } else {
107                 if (shift != 0)
108                     div |= (s->period_frac >> (32 - shift));
109                 /* Look at remaining bits of period_frac and round div up if
110                    necessary.  */
111                 if ((uint32_t)(s->period_frac << shift))
112                     div += 1;
113             }
114             counter = rem / div;
115         }
116     } else {
117         counter = s->delta;
118     }
119     return counter;
120 }
121 
122 void ptimer_set_count(ptimer_state *s, uint64_t count)
123 {
124     s->delta = count;
125     if (s->enabled) {
126         s->next_event = qemu_get_clock_ns(vm_clock);
127         ptimer_reload(s);
128     }
129 }
130 
131 void ptimer_run(ptimer_state *s, int oneshot)
132 {
133     if (s->enabled) {
134         return;
135     }
136     if (s->period == 0) {
137         fprintf(stderr, "Timer with period zero, disabling\n");
138         return;
139     }
140     s->enabled = oneshot ? 2 : 1;
141     s->next_event = qemu_get_clock_ns(vm_clock);
142     ptimer_reload(s);
143 }
144 
145 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
146    is immediately restarted.  */
147 void ptimer_stop(ptimer_state *s)
148 {
149     if (!s->enabled)
150         return;
151 
152     s->delta = ptimer_get_count(s);
153     qemu_del_timer(s->timer);
154     s->enabled = 0;
155 }
156 
157 /* Set counter increment interval in nanoseconds.  */
158 void ptimer_set_period(ptimer_state *s, int64_t period)
159 {
160     s->period = period;
161     s->period_frac = 0;
162     if (s->enabled) {
163         s->next_event = qemu_get_clock_ns(vm_clock);
164         ptimer_reload(s);
165     }
166 }
167 
168 /* Set counter frequency in Hz.  */
169 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
170 {
171     s->period = 1000000000ll / freq;
172     s->period_frac = (1000000000ll << 32) / freq;
173     if (s->enabled) {
174         s->next_event = qemu_get_clock_ns(vm_clock);
175         ptimer_reload(s);
176     }
177 }
178 
179 /* Set the initial countdown value.  If reload is nonzero then also set
180    count = limit.  */
181 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
182 {
183     /*
184      * Artificially limit timeout rate to something
185      * achievable under QEMU.  Otherwise, QEMU spends all
186      * its time generating timer interrupts, and there
187      * is no forward progress.
188      * About ten microseconds is the fastest that really works
189      * on the current generation of host machines.
190      */
191 
192     if (limit * s->period < 10000 && s->period) {
193         limit = 10000 / s->period;
194     }
195 
196     s->limit = limit;
197     if (reload)
198         s->delta = limit;
199     if (s->enabled && reload) {
200         s->next_event = qemu_get_clock_ns(vm_clock);
201         ptimer_reload(s);
202     }
203 }
204 
205 const VMStateDescription vmstate_ptimer = {
206     .name = "ptimer",
207     .version_id = 1,
208     .minimum_version_id = 1,
209     .minimum_version_id_old = 1,
210     .fields      = (VMStateField[]) {
211         VMSTATE_UINT8(enabled, ptimer_state),
212         VMSTATE_UINT64(limit, ptimer_state),
213         VMSTATE_UINT64(delta, ptimer_state),
214         VMSTATE_UINT32(period_frac, ptimer_state),
215         VMSTATE_INT64(period, ptimer_state),
216         VMSTATE_INT64(last_event, ptimer_state),
217         VMSTATE_INT64(next_event, ptimer_state),
218         VMSTATE_TIMER(timer, ptimer_state),
219         VMSTATE_END_OF_LIST()
220     }
221 };
222 
223 ptimer_state *ptimer_init(QEMUBH *bh)
224 {
225     ptimer_state *s;
226 
227     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
228     s->bh = bh;
229     s->timer = qemu_new_timer_ns(vm_clock, ptimer_tick, s);
230     return s;
231 }
232