xref: /openbmc/qemu/hw/core/ptimer.c (revision 2b5c0322b7d9d2032578bd1efccf72f4ab1b7074)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 #include "sysemu/qtest.h"
15 
16 #define DELTA_ADJUST    1
17 
18 struct ptimer_state
19 {
20     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
21     uint64_t limit;
22     uint64_t delta;
23     uint32_t period_frac;
24     int64_t period;
25     int64_t last_event;
26     int64_t next_event;
27     uint8_t policy_mask;
28     QEMUBH *bh;
29     QEMUTimer *timer;
30 };
31 
32 /* Use a bottom-half routine to avoid reentrancy issues.  */
33 static void ptimer_trigger(ptimer_state *s)
34 {
35     if (s->bh) {
36         replay_bh_schedule_event(s->bh);
37     }
38 }
39 
40 static void ptimer_reload(ptimer_state *s, int delta_adjust)
41 {
42     uint32_t period_frac = s->period_frac;
43     uint64_t period = s->period;
44     uint64_t delta = s->delta;
45 
46     if (delta == 0) {
47         ptimer_trigger(s);
48         delta = s->delta = s->limit;
49     }
50     if (delta == 0 || s->period == 0) {
51         if (!qtest_enabled()) {
52             fprintf(stderr, "Timer with period zero, disabling\n");
53         }
54         timer_del(s->timer);
55         s->enabled = 0;
56         return;
57     }
58 
59     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
60         delta += delta_adjust;
61     }
62 
63     /*
64      * Artificially limit timeout rate to something
65      * achievable under QEMU.  Otherwise, QEMU spends all
66      * its time generating timer interrupts, and there
67      * is no forward progress.
68      * About ten microseconds is the fastest that really works
69      * on the current generation of host machines.
70      */
71 
72     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
73         period = 10000 / delta;
74         period_frac = 0;
75     }
76 
77     s->last_event = s->next_event;
78     s->next_event = s->last_event + delta * period;
79     if (period_frac) {
80         s->next_event += ((int64_t)period_frac * delta) >> 32;
81     }
82     timer_mod(s->timer, s->next_event);
83 }
84 
85 static void ptimer_tick(void *opaque)
86 {
87     ptimer_state *s = (ptimer_state *)opaque;
88     ptimer_trigger(s);
89     s->delta = 0;
90     if (s->enabled == 2) {
91         s->enabled = 0;
92     } else {
93         ptimer_reload(s, DELTA_ADJUST);
94     }
95 }
96 
97 uint64_t ptimer_get_count(ptimer_state *s)
98 {
99     uint64_t counter;
100 
101     if (s->enabled) {
102         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
103         int64_t next = s->next_event;
104         int64_t last = s->last_event;
105         bool expired = (now - next >= 0);
106         bool oneshot = (s->enabled == 2);
107 
108         /* Figure out the current counter value.  */
109         if (expired) {
110             /* Prevent timer underflowing if it should already have
111                triggered.  */
112             counter = 0;
113         } else {
114             uint64_t rem;
115             uint64_t div;
116             int clz1, clz2;
117             int shift;
118             uint32_t period_frac = s->period_frac;
119             uint64_t period = s->period;
120 
121             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
122                 period = 10000 / s->delta;
123                 period_frac = 0;
124             }
125 
126             /* We need to divide time by period, where time is stored in
127                rem (64-bit integer) and period is stored in period/period_frac
128                (64.32 fixed point).
129 
130                Doing full precision division is hard, so scale values and
131                do a 64-bit division.  The result should be rounded down,
132                so that the rounding error never causes the timer to go
133                backwards.
134             */
135 
136             rem = next - now;
137             div = period;
138 
139             clz1 = clz64(rem);
140             clz2 = clz64(div);
141             shift = clz1 < clz2 ? clz1 : clz2;
142 
143             rem <<= shift;
144             div <<= shift;
145             if (shift >= 32) {
146                 div |= ((uint64_t)period_frac << (shift - 32));
147             } else {
148                 if (shift != 0)
149                     div |= (period_frac >> (32 - shift));
150                 /* Look at remaining bits of period_frac and round div up if
151                    necessary.  */
152                 if ((uint32_t)(period_frac << shift))
153                     div += 1;
154             }
155             counter = rem / div;
156 
157             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
158                 /* Before wrapping around, timer should stay with counter = 0
159                    for a one period.  */
160                 if (!oneshot && s->delta == s->limit) {
161                     if (now == last) {
162                         /* Counter == delta here, check whether it was
163                            adjusted and if it was, then right now it is
164                            that "one period".  */
165                         if (counter == s->limit + DELTA_ADJUST) {
166                             return 0;
167                         }
168                     } else if (counter == s->limit) {
169                         /* Since the counter is rounded down and now != last,
170                            the counter == limit means that delta was adjusted
171                            by +1 and right now it is that adjusted period.  */
172                         return 0;
173                     }
174                 }
175             }
176         }
177     } else {
178         counter = s->delta;
179     }
180     return counter;
181 }
182 
183 void ptimer_set_count(ptimer_state *s, uint64_t count)
184 {
185     s->delta = count;
186     if (s->enabled) {
187         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
188         ptimer_reload(s, 0);
189     }
190 }
191 
192 void ptimer_run(ptimer_state *s, int oneshot)
193 {
194     bool was_disabled = !s->enabled;
195 
196     if (was_disabled && s->period == 0) {
197         if (!qtest_enabled()) {
198             fprintf(stderr, "Timer with period zero, disabling\n");
199         }
200         return;
201     }
202     s->enabled = oneshot ? 2 : 1;
203     if (was_disabled) {
204         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
205         ptimer_reload(s, 0);
206     }
207 }
208 
209 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
210    is immediately restarted.  */
211 void ptimer_stop(ptimer_state *s)
212 {
213     if (!s->enabled)
214         return;
215 
216     s->delta = ptimer_get_count(s);
217     timer_del(s->timer);
218     s->enabled = 0;
219 }
220 
221 /* Set counter increment interval in nanoseconds.  */
222 void ptimer_set_period(ptimer_state *s, int64_t period)
223 {
224     s->delta = ptimer_get_count(s);
225     s->period = period;
226     s->period_frac = 0;
227     if (s->enabled) {
228         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
229         ptimer_reload(s, 0);
230     }
231 }
232 
233 /* Set counter frequency in Hz.  */
234 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
235 {
236     s->delta = ptimer_get_count(s);
237     s->period = 1000000000ll / freq;
238     s->period_frac = (1000000000ll << 32) / freq;
239     if (s->enabled) {
240         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
241         ptimer_reload(s, 0);
242     }
243 }
244 
245 /* Set the initial countdown value.  If reload is nonzero then also set
246    count = limit.  */
247 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
248 {
249     s->limit = limit;
250     if (reload)
251         s->delta = limit;
252     if (s->enabled && reload) {
253         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
254         ptimer_reload(s, 0);
255     }
256 }
257 
258 uint64_t ptimer_get_limit(ptimer_state *s)
259 {
260     return s->limit;
261 }
262 
263 const VMStateDescription vmstate_ptimer = {
264     .name = "ptimer",
265     .version_id = 1,
266     .minimum_version_id = 1,
267     .fields = (VMStateField[]) {
268         VMSTATE_UINT8(enabled, ptimer_state),
269         VMSTATE_UINT64(limit, ptimer_state),
270         VMSTATE_UINT64(delta, ptimer_state),
271         VMSTATE_UINT32(period_frac, ptimer_state),
272         VMSTATE_INT64(period, ptimer_state),
273         VMSTATE_INT64(last_event, ptimer_state),
274         VMSTATE_INT64(next_event, ptimer_state),
275         VMSTATE_TIMER_PTR(timer, ptimer_state),
276         VMSTATE_END_OF_LIST()
277     }
278 };
279 
280 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
281 {
282     ptimer_state *s;
283 
284     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
285     s->bh = bh;
286     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
287     s->policy_mask = policy_mask;
288     return s;
289 }
290