xref: /openbmc/qemu/hw/core/ptimer.c (revision 10df8ff1)
1 /*
2  * General purpose implementation of a simple periodic countdown timer.
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  *
6  * This code is licensed under the GNU LGPL.
7  */
8 #include "qemu/osdep.h"
9 #include "hw/hw.h"
10 #include "qemu/timer.h"
11 #include "hw/ptimer.h"
12 #include "qemu/host-utils.h"
13 #include "sysemu/replay.h"
14 #include "sysemu/qtest.h"
15 #include "block/aio.h"
16 #include "sysemu/cpus.h"
17 
18 #define DELTA_ADJUST     1
19 #define DELTA_NO_ADJUST -1
20 
21 struct ptimer_state
22 {
23     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
24     uint64_t limit;
25     uint64_t delta;
26     uint32_t period_frac;
27     int64_t period;
28     int64_t last_event;
29     int64_t next_event;
30     uint8_t policy_mask;
31     QEMUBH *bh;
32     QEMUTimer *timer;
33 };
34 
35 /* Use a bottom-half routine to avoid reentrancy issues.  */
36 static void ptimer_trigger(ptimer_state *s)
37 {
38     if (s->bh) {
39         replay_bh_schedule_event(s->bh);
40     }
41 }
42 
43 static void ptimer_reload(ptimer_state *s, int delta_adjust)
44 {
45     uint32_t period_frac = s->period_frac;
46     uint64_t period = s->period;
47     uint64_t delta = s->delta;
48     bool suppress_trigger = false;
49 
50     /*
51      * Note that if delta_adjust is 0 then we must be here because of
52      * a count register write or timer start, not because of timer expiry.
53      * In that case the policy might require us to suppress the timer trigger
54      * that we would otherwise generate for a zero delta.
55      */
56     if (delta_adjust == 0 &&
57         (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
58         suppress_trigger = true;
59     }
60     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
61         && !suppress_trigger) {
62         ptimer_trigger(s);
63     }
64 
65     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
66         delta = s->delta = s->limit;
67     }
68 
69     if (s->period == 0) {
70         if (!qtest_enabled()) {
71             fprintf(stderr, "Timer with period zero, disabling\n");
72         }
73         timer_del(s->timer);
74         s->enabled = 0;
75         return;
76     }
77 
78     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
79         if (delta_adjust != DELTA_NO_ADJUST) {
80             delta += delta_adjust;
81         }
82     }
83 
84     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
85         if (s->enabled == 1 && s->limit == 0) {
86             delta = 1;
87         }
88     }
89 
90     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
91         if (delta_adjust != DELTA_NO_ADJUST) {
92             delta = 1;
93         }
94     }
95 
96     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
97         if (s->enabled == 1 && s->limit != 0) {
98             delta = 1;
99         }
100     }
101 
102     if (delta == 0) {
103         if (!qtest_enabled()) {
104             fprintf(stderr, "Timer with delta zero, disabling\n");
105         }
106         timer_del(s->timer);
107         s->enabled = 0;
108         return;
109     }
110 
111     /*
112      * Artificially limit timeout rate to something
113      * achievable under QEMU.  Otherwise, QEMU spends all
114      * its time generating timer interrupts, and there
115      * is no forward progress.
116      * About ten microseconds is the fastest that really works
117      * on the current generation of host machines.
118      */
119 
120     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
121         period = 10000 / delta;
122         period_frac = 0;
123     }
124 
125     s->last_event = s->next_event;
126     s->next_event = s->last_event + delta * period;
127     if (period_frac) {
128         s->next_event += ((int64_t)period_frac * delta) >> 32;
129     }
130     timer_mod(s->timer, s->next_event);
131 }
132 
133 static void ptimer_tick(void *opaque)
134 {
135     ptimer_state *s = (ptimer_state *)opaque;
136     bool trigger = true;
137 
138     if (s->enabled == 2) {
139         s->delta = 0;
140         s->enabled = 0;
141     } else {
142         int delta_adjust = DELTA_ADJUST;
143 
144         if (s->delta == 0 || s->limit == 0) {
145             /* If a "continuous trigger" policy is not used and limit == 0,
146                we should error out. delta == 0 means that this tick is
147                caused by a "no immediate reload" policy, so it shouldn't
148                be adjusted.  */
149             delta_adjust = DELTA_NO_ADJUST;
150         }
151 
152         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
153             /* Avoid re-trigger on deferred reload if "no immediate trigger"
154                policy isn't used.  */
155             trigger = (delta_adjust == DELTA_ADJUST);
156         }
157 
158         s->delta = s->limit;
159 
160         ptimer_reload(s, delta_adjust);
161     }
162 
163     if (trigger) {
164         ptimer_trigger(s);
165     }
166 }
167 
168 uint64_t ptimer_get_count(ptimer_state *s)
169 {
170     uint64_t counter;
171 
172     if (s->enabled && s->delta != 0) {
173         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
174         int64_t next = s->next_event;
175         int64_t last = s->last_event;
176         bool expired = (now - next >= 0);
177         bool oneshot = (s->enabled == 2);
178 
179         /* Figure out the current counter value.  */
180         if (expired) {
181             /* Prevent timer underflowing if it should already have
182                triggered.  */
183             counter = 0;
184         } else {
185             uint64_t rem;
186             uint64_t div;
187             int clz1, clz2;
188             int shift;
189             uint32_t period_frac = s->period_frac;
190             uint64_t period = s->period;
191 
192             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
193                 period = 10000 / s->delta;
194                 period_frac = 0;
195             }
196 
197             /* We need to divide time by period, where time is stored in
198                rem (64-bit integer) and period is stored in period/period_frac
199                (64.32 fixed point).
200 
201                Doing full precision division is hard, so scale values and
202                do a 64-bit division.  The result should be rounded down,
203                so that the rounding error never causes the timer to go
204                backwards.
205             */
206 
207             rem = next - now;
208             div = period;
209 
210             clz1 = clz64(rem);
211             clz2 = clz64(div);
212             shift = clz1 < clz2 ? clz1 : clz2;
213 
214             rem <<= shift;
215             div <<= shift;
216             if (shift >= 32) {
217                 div |= ((uint64_t)period_frac << (shift - 32));
218             } else {
219                 if (shift != 0)
220                     div |= (period_frac >> (32 - shift));
221                 /* Look at remaining bits of period_frac and round div up if
222                    necessary.  */
223                 if ((uint32_t)(period_frac << shift))
224                     div += 1;
225             }
226             counter = rem / div;
227 
228             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
229                 /* Before wrapping around, timer should stay with counter = 0
230                    for a one period.  */
231                 if (!oneshot && s->delta == s->limit) {
232                     if (now == last) {
233                         /* Counter == delta here, check whether it was
234                            adjusted and if it was, then right now it is
235                            that "one period".  */
236                         if (counter == s->limit + DELTA_ADJUST) {
237                             return 0;
238                         }
239                     } else if (counter == s->limit) {
240                         /* Since the counter is rounded down and now != last,
241                            the counter == limit means that delta was adjusted
242                            by +1 and right now it is that adjusted period.  */
243                         return 0;
244                     }
245                 }
246             }
247         }
248 
249         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
250             /* If now == last then delta == limit, i.e. the counter already
251                represents the correct value. It would be rounded down a 1ns
252                later.  */
253             if (now != last) {
254                 counter += 1;
255             }
256         }
257     } else {
258         counter = s->delta;
259     }
260     return counter;
261 }
262 
263 void ptimer_set_count(ptimer_state *s, uint64_t count)
264 {
265     s->delta = count;
266     if (s->enabled) {
267         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
268         ptimer_reload(s, 0);
269     }
270 }
271 
272 void ptimer_run(ptimer_state *s, int oneshot)
273 {
274     bool was_disabled = !s->enabled;
275 
276     if (was_disabled && s->period == 0) {
277         if (!qtest_enabled()) {
278             fprintf(stderr, "Timer with period zero, disabling\n");
279         }
280         return;
281     }
282     s->enabled = oneshot ? 2 : 1;
283     if (was_disabled) {
284         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
285         ptimer_reload(s, 0);
286     }
287 }
288 
289 /* Pause a timer.  Note that this may cause it to "lose" time, even if it
290    is immediately restarted.  */
291 void ptimer_stop(ptimer_state *s)
292 {
293     if (!s->enabled)
294         return;
295 
296     s->delta = ptimer_get_count(s);
297     timer_del(s->timer);
298     s->enabled = 0;
299 }
300 
301 /* Set counter increment interval in nanoseconds.  */
302 void ptimer_set_period(ptimer_state *s, int64_t period)
303 {
304     s->delta = ptimer_get_count(s);
305     s->period = period;
306     s->period_frac = 0;
307     if (s->enabled) {
308         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
309         ptimer_reload(s, 0);
310     }
311 }
312 
313 /* Set counter frequency in Hz.  */
314 void ptimer_set_freq(ptimer_state *s, uint32_t freq)
315 {
316     s->delta = ptimer_get_count(s);
317     s->period = 1000000000ll / freq;
318     s->period_frac = (1000000000ll << 32) / freq;
319     if (s->enabled) {
320         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
321         ptimer_reload(s, 0);
322     }
323 }
324 
325 /* Set the initial countdown value.  If reload is nonzero then also set
326    count = limit.  */
327 void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
328 {
329     s->limit = limit;
330     if (reload)
331         s->delta = limit;
332     if (s->enabled && reload) {
333         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
334         ptimer_reload(s, 0);
335     }
336 }
337 
338 uint64_t ptimer_get_limit(ptimer_state *s)
339 {
340     return s->limit;
341 }
342 
343 const VMStateDescription vmstate_ptimer = {
344     .name = "ptimer",
345     .version_id = 1,
346     .minimum_version_id = 1,
347     .fields = (VMStateField[]) {
348         VMSTATE_UINT8(enabled, ptimer_state),
349         VMSTATE_UINT64(limit, ptimer_state),
350         VMSTATE_UINT64(delta, ptimer_state),
351         VMSTATE_UINT32(period_frac, ptimer_state),
352         VMSTATE_INT64(period, ptimer_state),
353         VMSTATE_INT64(last_event, ptimer_state),
354         VMSTATE_INT64(next_event, ptimer_state),
355         VMSTATE_TIMER_PTR(timer, ptimer_state),
356         VMSTATE_END_OF_LIST()
357     }
358 };
359 
360 ptimer_state *ptimer_init(QEMUBH *bh, uint8_t policy_mask)
361 {
362     ptimer_state *s;
363 
364     s = (ptimer_state *)g_malloc0(sizeof(ptimer_state));
365     s->bh = bh;
366     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
367     s->policy_mask = policy_mask;
368 
369     /*
370      * These two policies are incompatible -- trigger-on-decrement implies
371      * a timer trigger when the count becomes 0, but no-immediate-trigger
372      * implies a trigger when the count stops being 0.
373      */
374     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
375              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
376     return s;
377 }
378 
379 void ptimer_free(ptimer_state *s)
380 {
381     qemu_bh_delete(s->bh);
382     timer_free(s->timer);
383     g_free(s);
384 }
385