1 /* 2 * NUMA parameter parsing routines 3 * 4 * Copyright (c) 2014 Fujitsu Ltd. 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "sysemu/hostmem.h" 28 #include "sysemu/numa.h" 29 #include "sysemu/sysemu.h" 30 #include "exec/cpu-common.h" 31 #include "exec/ramlist.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/error-report.h" 34 #include "qapi/error.h" 35 #include "qapi/opts-visitor.h" 36 #include "qapi/qapi-visit-machine.h" 37 #include "sysemu/qtest.h" 38 #include "hw/core/cpu.h" 39 #include "hw/mem/pc-dimm.h" 40 #include "migration/vmstate.h" 41 #include "hw/boards.h" 42 #include "hw/mem/memory-device.h" 43 #include "qemu/option.h" 44 #include "qemu/config-file.h" 45 #include "qemu/cutils.h" 46 47 QemuOptsList qemu_numa_opts = { 48 .name = "numa", 49 .implied_opt_name = "type", 50 .head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head), 51 .desc = { { 0 } } /* validated with OptsVisitor */ 52 }; 53 54 static int have_memdevs; 55 bool numa_uses_legacy_mem(void) 56 { 57 return !have_memdevs; 58 } 59 60 static int have_mem; 61 static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one. 62 * For all nodes, nodeid < max_numa_nodeid 63 */ 64 65 static void parse_numa_node(MachineState *ms, NumaNodeOptions *node, 66 Error **errp) 67 { 68 Error *err = NULL; 69 uint16_t nodenr; 70 uint16List *cpus = NULL; 71 MachineClass *mc = MACHINE_GET_CLASS(ms); 72 unsigned int max_cpus = ms->smp.max_cpus; 73 NodeInfo *numa_info = ms->numa_state->nodes; 74 75 if (node->has_nodeid) { 76 nodenr = node->nodeid; 77 } else { 78 nodenr = ms->numa_state->num_nodes; 79 } 80 81 if (nodenr >= MAX_NODES) { 82 error_setg(errp, "Max number of NUMA nodes reached: %" 83 PRIu16 "", nodenr); 84 return; 85 } 86 87 if (numa_info[nodenr].present) { 88 error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr); 89 return; 90 } 91 92 for (cpus = node->cpus; cpus; cpus = cpus->next) { 93 CpuInstanceProperties props; 94 if (cpus->value >= max_cpus) { 95 error_setg(errp, 96 "CPU index (%" PRIu16 ")" 97 " should be smaller than maxcpus (%d)", 98 cpus->value, max_cpus); 99 return; 100 } 101 props = mc->cpu_index_to_instance_props(ms, cpus->value); 102 props.node_id = nodenr; 103 props.has_node_id = true; 104 machine_set_cpu_numa_node(ms, &props, &err); 105 if (err) { 106 error_propagate(errp, err); 107 return; 108 } 109 } 110 111 have_memdevs = have_memdevs ? : node->has_memdev; 112 have_mem = have_mem ? : node->has_mem; 113 if ((node->has_mem && have_memdevs) || (node->has_memdev && have_mem)) { 114 error_setg(errp, "numa configuration should use either mem= or memdev=," 115 "mixing both is not allowed"); 116 return; 117 } 118 119 if (node->has_mem) { 120 numa_info[nodenr].node_mem = node->mem; 121 if (!qtest_enabled()) { 122 warn_report("Parameter -numa node,mem is deprecated," 123 " use -numa node,memdev instead"); 124 } 125 } 126 if (node->has_memdev) { 127 Object *o; 128 o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL); 129 if (!o) { 130 error_setg(errp, "memdev=%s is ambiguous", node->memdev); 131 return; 132 } 133 134 object_ref(o); 135 numa_info[nodenr].node_mem = object_property_get_uint(o, "size", NULL); 136 numa_info[nodenr].node_memdev = MEMORY_BACKEND(o); 137 } 138 139 /* 140 * If not set the initiator, set it to MAX_NODES. And if 141 * HMAT is enabled and this node has no cpus, QEMU will raise error. 142 */ 143 numa_info[nodenr].initiator = MAX_NODES; 144 if (node->has_initiator) { 145 if (!ms->numa_state->hmat_enabled) { 146 error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " 147 "(HMAT) is disabled, enable it with -machine hmat=on " 148 "before using any of hmat specific options"); 149 return; 150 } 151 152 if (node->initiator >= MAX_NODES) { 153 error_report("The initiator id %" PRIu16 " expects an integer " 154 "between 0 and %d", node->initiator, 155 MAX_NODES - 1); 156 return; 157 } 158 159 numa_info[nodenr].initiator = node->initiator; 160 } 161 numa_info[nodenr].present = true; 162 max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1); 163 ms->numa_state->num_nodes++; 164 } 165 166 static 167 void parse_numa_distance(MachineState *ms, NumaDistOptions *dist, Error **errp) 168 { 169 uint16_t src = dist->src; 170 uint16_t dst = dist->dst; 171 uint8_t val = dist->val; 172 NodeInfo *numa_info = ms->numa_state->nodes; 173 174 if (src >= MAX_NODES || dst >= MAX_NODES) { 175 error_setg(errp, "Parameter '%s' expects an integer between 0 and %d", 176 src >= MAX_NODES ? "src" : "dst", MAX_NODES - 1); 177 return; 178 } 179 180 if (!numa_info[src].present || !numa_info[dst].present) { 181 error_setg(errp, "Source/Destination NUMA node is missing. " 182 "Please use '-numa node' option to declare it first."); 183 return; 184 } 185 186 if (val < NUMA_DISTANCE_MIN) { 187 error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, " 188 "it shouldn't be less than %d.", 189 val, NUMA_DISTANCE_MIN); 190 return; 191 } 192 193 if (src == dst && val != NUMA_DISTANCE_MIN) { 194 error_setg(errp, "Local distance of node %d should be %d.", 195 src, NUMA_DISTANCE_MIN); 196 return; 197 } 198 199 numa_info[src].distance[dst] = val; 200 ms->numa_state->have_numa_distance = true; 201 } 202 203 void parse_numa_hmat_lb(NumaState *numa_state, NumaHmatLBOptions *node, 204 Error **errp) 205 { 206 int i, first_bit, last_bit; 207 uint64_t max_entry, temp_base, bitmap_copy; 208 NodeInfo *numa_info = numa_state->nodes; 209 HMAT_LB_Info *hmat_lb = 210 numa_state->hmat_lb[node->hierarchy][node->data_type]; 211 HMAT_LB_Data lb_data = {}; 212 HMAT_LB_Data *lb_temp; 213 214 /* Error checking */ 215 if (node->initiator > numa_state->num_nodes) { 216 error_setg(errp, "Invalid initiator=%d, it should be less than %d", 217 node->initiator, numa_state->num_nodes); 218 return; 219 } 220 if (node->target > numa_state->num_nodes) { 221 error_setg(errp, "Invalid target=%d, it should be less than %d", 222 node->target, numa_state->num_nodes); 223 return; 224 } 225 if (!numa_info[node->initiator].has_cpu) { 226 error_setg(errp, "Invalid initiator=%d, it isn't an " 227 "initiator proximity domain", node->initiator); 228 return; 229 } 230 if (!numa_info[node->target].present) { 231 error_setg(errp, "The target=%d should point to an existing node", 232 node->target); 233 return; 234 } 235 236 if (!hmat_lb) { 237 hmat_lb = g_malloc0(sizeof(*hmat_lb)); 238 numa_state->hmat_lb[node->hierarchy][node->data_type] = hmat_lb; 239 hmat_lb->list = g_array_new(false, true, sizeof(HMAT_LB_Data)); 240 } 241 hmat_lb->hierarchy = node->hierarchy; 242 hmat_lb->data_type = node->data_type; 243 lb_data.initiator = node->initiator; 244 lb_data.target = node->target; 245 246 if (node->data_type <= HMATLB_DATA_TYPE_WRITE_LATENCY) { 247 /* Input latency data */ 248 249 if (!node->has_latency) { 250 error_setg(errp, "Missing 'latency' option"); 251 return; 252 } 253 if (node->has_bandwidth) { 254 error_setg(errp, "Invalid option 'bandwidth' since " 255 "the data type is latency"); 256 return; 257 } 258 259 /* Detect duplicate configuration */ 260 for (i = 0; i < hmat_lb->list->len; i++) { 261 lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i); 262 263 if (node->initiator == lb_temp->initiator && 264 node->target == lb_temp->target) { 265 error_setg(errp, "Duplicate configuration of the latency for " 266 "initiator=%d and target=%d", node->initiator, 267 node->target); 268 return; 269 } 270 } 271 272 hmat_lb->base = hmat_lb->base ? hmat_lb->base : UINT64_MAX; 273 274 if (node->latency) { 275 /* Calculate the temporary base and compressed latency */ 276 max_entry = node->latency; 277 temp_base = 1; 278 while (QEMU_IS_ALIGNED(max_entry, 10)) { 279 max_entry /= 10; 280 temp_base *= 10; 281 } 282 283 /* Calculate the max compressed latency */ 284 temp_base = MIN(hmat_lb->base, temp_base); 285 max_entry = node->latency / hmat_lb->base; 286 max_entry = MAX(hmat_lb->range_bitmap, max_entry); 287 288 /* 289 * For latency hmat_lb->range_bitmap record the max compressed 290 * latency which should be less than 0xFFFF (UINT16_MAX) 291 */ 292 if (max_entry >= UINT16_MAX) { 293 error_setg(errp, "Latency %" PRIu64 " between initiator=%d and " 294 "target=%d should not differ from previously entered " 295 "min or max values on more than %d", node->latency, 296 node->initiator, node->target, UINT16_MAX - 1); 297 return; 298 } else { 299 hmat_lb->base = temp_base; 300 hmat_lb->range_bitmap = max_entry; 301 } 302 303 /* 304 * Set lb_info_provided bit 0 as 1, 305 * latency information is provided 306 */ 307 numa_info[node->target].lb_info_provided |= BIT(0); 308 } 309 lb_data.data = node->latency; 310 } else if (node->data_type >= HMATLB_DATA_TYPE_ACCESS_BANDWIDTH) { 311 /* Input bandwidth data */ 312 if (!node->has_bandwidth) { 313 error_setg(errp, "Missing 'bandwidth' option"); 314 return; 315 } 316 if (node->has_latency) { 317 error_setg(errp, "Invalid option 'latency' since " 318 "the data type is bandwidth"); 319 return; 320 } 321 if (!QEMU_IS_ALIGNED(node->bandwidth, MiB)) { 322 error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d and " 323 "target=%d should be 1MB aligned", node->bandwidth, 324 node->initiator, node->target); 325 return; 326 } 327 328 /* Detect duplicate configuration */ 329 for (i = 0; i < hmat_lb->list->len; i++) { 330 lb_temp = &g_array_index(hmat_lb->list, HMAT_LB_Data, i); 331 332 if (node->initiator == lb_temp->initiator && 333 node->target == lb_temp->target) { 334 error_setg(errp, "Duplicate configuration of the bandwidth for " 335 "initiator=%d and target=%d", node->initiator, 336 node->target); 337 return; 338 } 339 } 340 341 hmat_lb->base = hmat_lb->base ? hmat_lb->base : 1; 342 343 if (node->bandwidth) { 344 /* Keep bitmap unchanged when bandwidth out of range */ 345 bitmap_copy = hmat_lb->range_bitmap; 346 bitmap_copy |= node->bandwidth; 347 first_bit = ctz64(bitmap_copy); 348 temp_base = UINT64_C(1) << first_bit; 349 max_entry = node->bandwidth / temp_base; 350 last_bit = 64 - clz64(bitmap_copy); 351 352 /* 353 * For bandwidth, first_bit record the base unit of bandwidth bits, 354 * last_bit record the last bit of the max bandwidth. The max 355 * compressed bandwidth should be less than 0xFFFF (UINT16_MAX) 356 */ 357 if ((last_bit - first_bit) > UINT16_BITS || 358 max_entry >= UINT16_MAX) { 359 error_setg(errp, "Bandwidth %" PRIu64 " between initiator=%d " 360 "and target=%d should not differ from previously " 361 "entered values on more than %d", node->bandwidth, 362 node->initiator, node->target, UINT16_MAX - 1); 363 return; 364 } else { 365 hmat_lb->base = temp_base; 366 hmat_lb->range_bitmap = bitmap_copy; 367 } 368 369 /* 370 * Set lb_info_provided bit 1 as 1, 371 * bandwidth information is provided 372 */ 373 numa_info[node->target].lb_info_provided |= BIT(1); 374 } 375 lb_data.data = node->bandwidth; 376 } else { 377 assert(0); 378 } 379 380 g_array_append_val(hmat_lb->list, lb_data); 381 } 382 383 void parse_numa_hmat_cache(MachineState *ms, NumaHmatCacheOptions *node, 384 Error **errp) 385 { 386 int nb_numa_nodes = ms->numa_state->num_nodes; 387 NodeInfo *numa_info = ms->numa_state->nodes; 388 NumaHmatCacheOptions *hmat_cache = NULL; 389 390 if (node->node_id >= nb_numa_nodes) { 391 error_setg(errp, "Invalid node-id=%" PRIu32 ", it should be less " 392 "than %d", node->node_id, nb_numa_nodes); 393 return; 394 } 395 396 if (numa_info[node->node_id].lb_info_provided != (BIT(0) | BIT(1))) { 397 error_setg(errp, "The latency and bandwidth information of " 398 "node-id=%" PRIu32 " should be provided before memory side " 399 "cache attributes", node->node_id); 400 return; 401 } 402 403 if (node->level < 1 || node->level >= HMAT_LB_LEVELS) { 404 error_setg(errp, "Invalid level=%" PRIu8 ", it should be larger than 0 " 405 "and less than or equal to %d", node->level, 406 HMAT_LB_LEVELS - 1); 407 return; 408 } 409 410 assert(node->associativity < HMAT_CACHE_ASSOCIATIVITY__MAX); 411 assert(node->policy < HMAT_CACHE_WRITE_POLICY__MAX); 412 if (ms->numa_state->hmat_cache[node->node_id][node->level]) { 413 error_setg(errp, "Duplicate configuration of the side cache for " 414 "node-id=%" PRIu32 " and level=%" PRIu8, 415 node->node_id, node->level); 416 return; 417 } 418 419 if ((node->level > 1) && 420 ms->numa_state->hmat_cache[node->node_id][node->level - 1] && 421 (node->size >= 422 ms->numa_state->hmat_cache[node->node_id][node->level - 1]->size)) { 423 error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8 424 " should be less than the size(%" PRIu64 ") of " 425 "level=%u", node->size, node->level, 426 ms->numa_state->hmat_cache[node->node_id] 427 [node->level - 1]->size, 428 node->level - 1); 429 return; 430 } 431 432 if ((node->level < HMAT_LB_LEVELS - 1) && 433 ms->numa_state->hmat_cache[node->node_id][node->level + 1] && 434 (node->size <= 435 ms->numa_state->hmat_cache[node->node_id][node->level + 1]->size)) { 436 error_setg(errp, "Invalid size=%" PRIu64 ", the size of level=%" PRIu8 437 " should be larger than the size(%" PRIu64 ") of " 438 "level=%u", node->size, node->level, 439 ms->numa_state->hmat_cache[node->node_id] 440 [node->level + 1]->size, 441 node->level + 1); 442 return; 443 } 444 445 hmat_cache = g_malloc0(sizeof(*hmat_cache)); 446 memcpy(hmat_cache, node, sizeof(*hmat_cache)); 447 ms->numa_state->hmat_cache[node->node_id][node->level] = hmat_cache; 448 } 449 450 void set_numa_options(MachineState *ms, NumaOptions *object, Error **errp) 451 { 452 Error *err = NULL; 453 454 if (!ms->numa_state) { 455 error_setg(errp, "NUMA is not supported by this machine-type"); 456 goto end; 457 } 458 459 switch (object->type) { 460 case NUMA_OPTIONS_TYPE_NODE: 461 parse_numa_node(ms, &object->u.node, &err); 462 if (err) { 463 goto end; 464 } 465 break; 466 case NUMA_OPTIONS_TYPE_DIST: 467 parse_numa_distance(ms, &object->u.dist, &err); 468 if (err) { 469 goto end; 470 } 471 break; 472 case NUMA_OPTIONS_TYPE_CPU: 473 if (!object->u.cpu.has_node_id) { 474 error_setg(&err, "Missing mandatory node-id property"); 475 goto end; 476 } 477 if (!ms->numa_state->nodes[object->u.cpu.node_id].present) { 478 error_setg(&err, "Invalid node-id=%" PRId64 ", NUMA node must be " 479 "defined with -numa node,nodeid=ID before it's used with " 480 "-numa cpu,node-id=ID", object->u.cpu.node_id); 481 goto end; 482 } 483 484 machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu), 485 &err); 486 break; 487 case NUMA_OPTIONS_TYPE_HMAT_LB: 488 if (!ms->numa_state->hmat_enabled) { 489 error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " 490 "(HMAT) is disabled, enable it with -machine hmat=on " 491 "before using any of hmat specific options"); 492 return; 493 } 494 495 parse_numa_hmat_lb(ms->numa_state, &object->u.hmat_lb, &err); 496 if (err) { 497 goto end; 498 } 499 break; 500 case NUMA_OPTIONS_TYPE_HMAT_CACHE: 501 if (!ms->numa_state->hmat_enabled) { 502 error_setg(errp, "ACPI Heterogeneous Memory Attribute Table " 503 "(HMAT) is disabled, enable it with -machine hmat=on " 504 "before using any of hmat specific options"); 505 return; 506 } 507 508 parse_numa_hmat_cache(ms, &object->u.hmat_cache, &err); 509 if (err) { 510 goto end; 511 } 512 break; 513 default: 514 abort(); 515 } 516 517 end: 518 error_propagate(errp, err); 519 } 520 521 static int parse_numa(void *opaque, QemuOpts *opts, Error **errp) 522 { 523 NumaOptions *object = NULL; 524 MachineState *ms = MACHINE(opaque); 525 Error *err = NULL; 526 Visitor *v = opts_visitor_new(opts); 527 528 visit_type_NumaOptions(v, NULL, &object, &err); 529 visit_free(v); 530 if (err) { 531 goto end; 532 } 533 534 /* Fix up legacy suffix-less format */ 535 if ((object->type == NUMA_OPTIONS_TYPE_NODE) && object->u.node.has_mem) { 536 const char *mem_str = qemu_opt_get(opts, "mem"); 537 qemu_strtosz_MiB(mem_str, NULL, &object->u.node.mem); 538 } 539 540 set_numa_options(ms, object, &err); 541 542 end: 543 qapi_free_NumaOptions(object); 544 if (err) { 545 error_propagate(errp, err); 546 return -1; 547 } 548 549 return 0; 550 } 551 552 /* If all node pair distances are symmetric, then only distances 553 * in one direction are enough. If there is even one asymmetric 554 * pair, though, then all distances must be provided. The 555 * distance from a node to itself is always NUMA_DISTANCE_MIN, 556 * so providing it is never necessary. 557 */ 558 static void validate_numa_distance(MachineState *ms) 559 { 560 int src, dst; 561 bool is_asymmetrical = false; 562 int nb_numa_nodes = ms->numa_state->num_nodes; 563 NodeInfo *numa_info = ms->numa_state->nodes; 564 565 for (src = 0; src < nb_numa_nodes; src++) { 566 for (dst = src; dst < nb_numa_nodes; dst++) { 567 if (numa_info[src].distance[dst] == 0 && 568 numa_info[dst].distance[src] == 0) { 569 if (src != dst) { 570 error_report("The distance between node %d and %d is " 571 "missing, at least one distance value " 572 "between each nodes should be provided.", 573 src, dst); 574 exit(EXIT_FAILURE); 575 } 576 } 577 578 if (numa_info[src].distance[dst] != 0 && 579 numa_info[dst].distance[src] != 0 && 580 numa_info[src].distance[dst] != 581 numa_info[dst].distance[src]) { 582 is_asymmetrical = true; 583 } 584 } 585 } 586 587 if (is_asymmetrical) { 588 for (src = 0; src < nb_numa_nodes; src++) { 589 for (dst = 0; dst < nb_numa_nodes; dst++) { 590 if (src != dst && numa_info[src].distance[dst] == 0) { 591 error_report("At least one asymmetrical pair of " 592 "distances is given, please provide distances " 593 "for both directions of all node pairs."); 594 exit(EXIT_FAILURE); 595 } 596 } 597 } 598 } 599 } 600 601 static void complete_init_numa_distance(MachineState *ms) 602 { 603 int src, dst; 604 NodeInfo *numa_info = ms->numa_state->nodes; 605 606 /* Fixup NUMA distance by symmetric policy because if it is an 607 * asymmetric distance table, it should be a complete table and 608 * there would not be any missing distance except local node, which 609 * is verified by validate_numa_distance above. 610 */ 611 for (src = 0; src < ms->numa_state->num_nodes; src++) { 612 for (dst = 0; dst < ms->numa_state->num_nodes; dst++) { 613 if (numa_info[src].distance[dst] == 0) { 614 if (src == dst) { 615 numa_info[src].distance[dst] = NUMA_DISTANCE_MIN; 616 } else { 617 numa_info[src].distance[dst] = numa_info[dst].distance[src]; 618 } 619 } 620 } 621 } 622 } 623 624 void numa_legacy_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, 625 int nb_nodes, ram_addr_t size) 626 { 627 int i; 628 uint64_t usedmem = 0; 629 630 /* Align each node according to the alignment 631 * requirements of the machine class 632 */ 633 634 for (i = 0; i < nb_nodes - 1; i++) { 635 nodes[i].node_mem = (size / nb_nodes) & 636 ~((1 << mc->numa_mem_align_shift) - 1); 637 usedmem += nodes[i].node_mem; 638 } 639 nodes[i].node_mem = size - usedmem; 640 } 641 642 void numa_default_auto_assign_ram(MachineClass *mc, NodeInfo *nodes, 643 int nb_nodes, ram_addr_t size) 644 { 645 int i; 646 uint64_t usedmem = 0, node_mem; 647 uint64_t granularity = size / nb_nodes; 648 uint64_t propagate = 0; 649 650 for (i = 0; i < nb_nodes - 1; i++) { 651 node_mem = (granularity + propagate) & 652 ~((1 << mc->numa_mem_align_shift) - 1); 653 propagate = granularity + propagate - node_mem; 654 nodes[i].node_mem = node_mem; 655 usedmem += node_mem; 656 } 657 nodes[i].node_mem = size - usedmem; 658 } 659 660 static void numa_init_memdev_container(MachineState *ms, MemoryRegion *ram) 661 { 662 int i; 663 uint64_t addr = 0; 664 665 for (i = 0; i < ms->numa_state->num_nodes; i++) { 666 uint64_t size = ms->numa_state->nodes[i].node_mem; 667 HostMemoryBackend *backend = ms->numa_state->nodes[i].node_memdev; 668 if (!backend) { 669 continue; 670 } 671 MemoryRegion *seg = machine_consume_memdev(ms, backend); 672 memory_region_add_subregion(ram, addr, seg); 673 addr += size; 674 } 675 } 676 677 void numa_complete_configuration(MachineState *ms) 678 { 679 int i; 680 MachineClass *mc = MACHINE_GET_CLASS(ms); 681 NodeInfo *numa_info = ms->numa_state->nodes; 682 683 /* 684 * If memory hotplug is enabled (slots > 0) but without '-numa' 685 * options explicitly on CLI, guestes will break. 686 * 687 * Windows: won't enable memory hotplug without SRAT table at all 688 * 689 * Linux: if QEMU is started with initial memory all below 4Gb 690 * and no SRAT table present, guest kernel will use nommu DMA ops, 691 * which breaks 32bit hw drivers when memory is hotplugged and 692 * guest tries to use it with that drivers. 693 * 694 * Enable NUMA implicitly by adding a new NUMA node automatically. 695 * 696 * Or if MachineClass::auto_enable_numa is true and no NUMA nodes, 697 * assume there is just one node with whole RAM. 698 */ 699 if (ms->numa_state->num_nodes == 0 && 700 ((ms->ram_slots > 0 && 701 mc->auto_enable_numa_with_memhp) || 702 mc->auto_enable_numa)) { 703 NumaNodeOptions node = { }; 704 parse_numa_node(ms, &node, &error_abort); 705 numa_info[0].node_mem = ram_size; 706 } 707 708 assert(max_numa_nodeid <= MAX_NODES); 709 710 /* No support for sparse NUMA node IDs yet: */ 711 for (i = max_numa_nodeid - 1; i >= 0; i--) { 712 /* Report large node IDs first, to make mistakes easier to spot */ 713 if (!numa_info[i].present) { 714 error_report("numa: Node ID missing: %d", i); 715 exit(1); 716 } 717 } 718 719 /* This must be always true if all nodes are present: */ 720 assert(ms->numa_state->num_nodes == max_numa_nodeid); 721 722 if (ms->numa_state->num_nodes > 0) { 723 uint64_t numa_total; 724 725 if (ms->numa_state->num_nodes > MAX_NODES) { 726 ms->numa_state->num_nodes = MAX_NODES; 727 } 728 729 /* If no memory size is given for any node, assume the default case 730 * and distribute the available memory equally across all nodes 731 */ 732 for (i = 0; i < ms->numa_state->num_nodes; i++) { 733 if (numa_info[i].node_mem != 0) { 734 break; 735 } 736 } 737 if (i == ms->numa_state->num_nodes) { 738 assert(mc->numa_auto_assign_ram); 739 mc->numa_auto_assign_ram(mc, numa_info, 740 ms->numa_state->num_nodes, ram_size); 741 if (!qtest_enabled()) { 742 warn_report("Default splitting of RAM between nodes is deprecated," 743 " Use '-numa node,memdev' to explictly define RAM" 744 " allocation per node"); 745 } 746 } 747 748 numa_total = 0; 749 for (i = 0; i < ms->numa_state->num_nodes; i++) { 750 numa_total += numa_info[i].node_mem; 751 } 752 if (numa_total != ram_size) { 753 error_report("total memory for NUMA nodes (0x%" PRIx64 ")" 754 " should equal RAM size (0x" RAM_ADDR_FMT ")", 755 numa_total, ram_size); 756 exit(1); 757 } 758 759 if (!numa_uses_legacy_mem() && mc->default_ram_id) { 760 ms->ram = g_new(MemoryRegion, 1); 761 memory_region_init(ms->ram, OBJECT(ms), mc->default_ram_id, 762 ram_size); 763 numa_init_memdev_container(ms, ms->ram); 764 } 765 /* QEMU needs at least all unique node pair distances to build 766 * the whole NUMA distance table. QEMU treats the distance table 767 * as symmetric by default, i.e. distance A->B == distance B->A. 768 * Thus, QEMU is able to complete the distance table 769 * initialization even though only distance A->B is provided and 770 * distance B->A is not. QEMU knows the distance of a node to 771 * itself is always 10, so A->A distances may be omitted. When 772 * the distances of two nodes of a pair differ, i.e. distance 773 * A->B != distance B->A, then that means the distance table is 774 * asymmetric. In this case, the distances for both directions 775 * of all node pairs are required. 776 */ 777 if (ms->numa_state->have_numa_distance) { 778 /* Validate enough NUMA distance information was provided. */ 779 validate_numa_distance(ms); 780 781 /* Validation succeeded, now fill in any missing distances. */ 782 complete_init_numa_distance(ms); 783 } 784 } 785 } 786 787 void parse_numa_opts(MachineState *ms) 788 { 789 qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, &error_fatal); 790 } 791 792 void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp) 793 { 794 int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort); 795 796 if (node_id == CPU_UNSET_NUMA_NODE_ID) { 797 /* due to bug in libvirt, it doesn't pass node-id from props on 798 * device_add as expected, so we have to fix it up here */ 799 if (slot->props.has_node_id) { 800 object_property_set_int(OBJECT(dev), slot->props.node_id, 801 "node-id", errp); 802 } 803 } else if (node_id != slot->props.node_id) { 804 error_setg(errp, "invalid node-id, must be %"PRId64, 805 slot->props.node_id); 806 } 807 } 808 809 static void numa_stat_memory_devices(NumaNodeMem node_mem[]) 810 { 811 MemoryDeviceInfoList *info_list = qmp_memory_device_list(); 812 MemoryDeviceInfoList *info; 813 PCDIMMDeviceInfo *pcdimm_info; 814 VirtioPMEMDeviceInfo *vpi; 815 816 for (info = info_list; info; info = info->next) { 817 MemoryDeviceInfo *value = info->value; 818 819 if (value) { 820 switch (value->type) { 821 case MEMORY_DEVICE_INFO_KIND_DIMM: 822 case MEMORY_DEVICE_INFO_KIND_NVDIMM: 823 pcdimm_info = value->type == MEMORY_DEVICE_INFO_KIND_DIMM ? 824 value->u.dimm.data : value->u.nvdimm.data; 825 node_mem[pcdimm_info->node].node_mem += pcdimm_info->size; 826 node_mem[pcdimm_info->node].node_plugged_mem += 827 pcdimm_info->size; 828 break; 829 case MEMORY_DEVICE_INFO_KIND_VIRTIO_PMEM: 830 vpi = value->u.virtio_pmem.data; 831 /* TODO: once we support numa, assign to right node */ 832 node_mem[0].node_mem += vpi->size; 833 node_mem[0].node_plugged_mem += vpi->size; 834 break; 835 default: 836 g_assert_not_reached(); 837 } 838 } 839 } 840 qapi_free_MemoryDeviceInfoList(info_list); 841 } 842 843 void query_numa_node_mem(NumaNodeMem node_mem[], MachineState *ms) 844 { 845 int i; 846 847 if (ms->numa_state == NULL || ms->numa_state->num_nodes <= 0) { 848 return; 849 } 850 851 numa_stat_memory_devices(node_mem); 852 for (i = 0; i < ms->numa_state->num_nodes; i++) { 853 node_mem[i].node_mem += ms->numa_state->nodes[i].node_mem; 854 } 855 } 856 857 void ram_block_notifier_add(RAMBlockNotifier *n) 858 { 859 QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next); 860 } 861 862 void ram_block_notifier_remove(RAMBlockNotifier *n) 863 { 864 QLIST_REMOVE(n, next); 865 } 866 867 void ram_block_notify_add(void *host, size_t size) 868 { 869 RAMBlockNotifier *notifier; 870 871 QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { 872 notifier->ram_block_added(notifier, host, size); 873 } 874 } 875 876 void ram_block_notify_remove(void *host, size_t size) 877 { 878 RAMBlockNotifier *notifier; 879 880 QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) { 881 notifier->ram_block_removed(notifier, host, size); 882 } 883 } 884