1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qemu/error-report.h" 48 #include "qapi/error.h" 49 #include "qapi/qapi-commands-machine.h" 50 #include "qapi/type-helpers.h" 51 #include "trace.h" 52 #include "hw/hw.h" 53 #include "disas/disas.h" 54 #include "migration/vmstate.h" 55 #include "monitor/monitor.h" 56 #include "system/reset.h" 57 #include "system/system.h" 58 #include "uboot_image.h" 59 #include "hw/loader.h" 60 #include "hw/nvram/fw_cfg.h" 61 #include "exec/memory.h" 62 #include "hw/boards.h" 63 #include "qemu/cutils.h" 64 #include "system/runstate.h" 65 #include "tcg/debuginfo.h" 66 67 #include <zlib.h> 68 69 static int roms_loaded; 70 71 /* return the size or -1 if error */ 72 int64_t get_image_size(const char *filename) 73 { 74 int fd; 75 int64_t size; 76 fd = open(filename, O_RDONLY | O_BINARY); 77 if (fd < 0) 78 return -1; 79 size = lseek(fd, 0, SEEK_END); 80 close(fd); 81 return size; 82 } 83 84 /* return the size or -1 if error */ 85 ssize_t load_image_size(const char *filename, void *addr, size_t size) 86 { 87 int fd; 88 ssize_t actsize, l = 0; 89 90 fd = open(filename, O_RDONLY | O_BINARY); 91 if (fd < 0) { 92 return -1; 93 } 94 95 while ((actsize = read(fd, addr + l, size - l)) > 0) { 96 l += actsize; 97 } 98 99 close(fd); 100 101 return actsize < 0 ? -1 : l; 102 } 103 104 /* read()-like version */ 105 ssize_t read_targphys(const char *name, 106 int fd, hwaddr dst_addr, size_t nbytes) 107 { 108 uint8_t *buf; 109 ssize_t did; 110 111 buf = g_malloc(nbytes); 112 did = read(fd, buf, nbytes); 113 if (did > 0) 114 rom_add_blob_fixed("read", buf, did, dst_addr); 115 g_free(buf); 116 return did; 117 } 118 119 ssize_t load_image_targphys(const char *filename, 120 hwaddr addr, uint64_t max_sz) 121 { 122 return load_image_targphys_as(filename, addr, max_sz, NULL); 123 } 124 125 /* return the size or -1 if error */ 126 ssize_t load_image_targphys_as(const char *filename, 127 hwaddr addr, uint64_t max_sz, AddressSpace *as) 128 { 129 ssize_t size; 130 131 size = get_image_size(filename); 132 if (size < 0 || size > max_sz) { 133 return -1; 134 } 135 if (size > 0) { 136 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 137 return -1; 138 } 139 } 140 return size; 141 } 142 143 ssize_t load_image_mr(const char *filename, MemoryRegion *mr) 144 { 145 ssize_t size; 146 147 if (!memory_access_is_direct(mr, false)) { 148 /* Can only load an image into RAM or ROM */ 149 return -1; 150 } 151 152 size = get_image_size(filename); 153 154 if (size < 0 || size > memory_region_size(mr)) { 155 return -1; 156 } 157 if (size > 0) { 158 if (rom_add_file_mr(filename, mr, -1) < 0) { 159 return -1; 160 } 161 } 162 return size; 163 } 164 165 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 166 const char *source) 167 { 168 const char *nulp; 169 char *ptr; 170 171 if (buf_size <= 0) return; 172 nulp = memchr(source, 0, buf_size); 173 if (nulp) { 174 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 175 } else { 176 rom_add_blob_fixed(name, source, buf_size, dest); 177 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 178 *ptr = 0; 179 } 180 } 181 182 /* A.OUT loader */ 183 184 struct exec 185 { 186 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 187 uint32_t a_text; /* length of text, in bytes */ 188 uint32_t a_data; /* length of data, in bytes */ 189 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 190 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 191 uint32_t a_entry; /* start address */ 192 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 193 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 194 }; 195 196 static void bswap_ahdr(struct exec *e) 197 { 198 bswap32s(&e->a_info); 199 bswap32s(&e->a_text); 200 bswap32s(&e->a_data); 201 bswap32s(&e->a_bss); 202 bswap32s(&e->a_syms); 203 bswap32s(&e->a_entry); 204 bswap32s(&e->a_trsize); 205 bswap32s(&e->a_drsize); 206 } 207 208 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 209 #define OMAGIC 0407 210 #define NMAGIC 0410 211 #define ZMAGIC 0413 212 #define QMAGIC 0314 213 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 214 #define N_TXTOFF(x) \ 215 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 216 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 217 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 218 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 219 220 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 221 222 #define N_DATADDR(x, target_page_size) \ 223 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 224 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 225 226 227 ssize_t load_aout(const char *filename, hwaddr addr, int max_sz, 228 int bswap_needed, hwaddr target_page_size) 229 { 230 int fd; 231 ssize_t size, ret; 232 struct exec e; 233 uint32_t magic; 234 235 fd = open(filename, O_RDONLY | O_BINARY); 236 if (fd < 0) 237 return -1; 238 239 size = read(fd, &e, sizeof(e)); 240 if (size < 0) 241 goto fail; 242 243 if (bswap_needed) { 244 bswap_ahdr(&e); 245 } 246 247 magic = N_MAGIC(e); 248 switch (magic) { 249 case ZMAGIC: 250 case QMAGIC: 251 case OMAGIC: 252 if (e.a_text + e.a_data > max_sz) 253 goto fail; 254 lseek(fd, N_TXTOFF(e), SEEK_SET); 255 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 256 if (size < 0) 257 goto fail; 258 break; 259 case NMAGIC: 260 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 261 goto fail; 262 lseek(fd, N_TXTOFF(e), SEEK_SET); 263 size = read_targphys(filename, fd, addr, e.a_text); 264 if (size < 0) 265 goto fail; 266 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 267 e.a_data); 268 if (ret < 0) 269 goto fail; 270 size += ret; 271 break; 272 default: 273 goto fail; 274 } 275 close(fd); 276 return size; 277 fail: 278 close(fd); 279 return -1; 280 } 281 282 /* ELF loader */ 283 284 static void *load_at(int fd, off_t offset, size_t size) 285 { 286 void *ptr; 287 if (lseek(fd, offset, SEEK_SET) < 0) 288 return NULL; 289 ptr = g_malloc(size); 290 if (read(fd, ptr, size) != size) { 291 g_free(ptr); 292 return NULL; 293 } 294 return ptr; 295 } 296 297 #ifdef ELF_CLASS 298 #undef ELF_CLASS 299 #endif 300 301 #define ELF_CLASS ELFCLASS32 302 #include "elf.h" 303 304 #define SZ 32 305 #define elf_word uint32_t 306 #define elf_sword int32_t 307 #define bswapSZs bswap32s 308 #include "hw/elf_ops.h.inc" 309 310 #undef elfhdr 311 #undef elf_phdr 312 #undef elf_shdr 313 #undef elf_sym 314 #undef elf_rela 315 #undef elf_note 316 #undef elf_word 317 #undef elf_sword 318 #undef bswapSZs 319 #undef SZ 320 #define elfhdr elf64_hdr 321 #define elf_phdr elf64_phdr 322 #define elf_note elf64_note 323 #define elf_shdr elf64_shdr 324 #define elf_sym elf64_sym 325 #define elf_rela elf64_rela 326 #define elf_word uint64_t 327 #define elf_sword int64_t 328 #define bswapSZs bswap64s 329 #define SZ 64 330 #include "hw/elf_ops.h.inc" 331 332 const char *load_elf_strerror(ssize_t error) 333 { 334 switch (error) { 335 case 0: 336 return "No error"; 337 case ELF_LOAD_FAILED: 338 return "Failed to load ELF"; 339 case ELF_LOAD_NOT_ELF: 340 return "The image is not ELF"; 341 case ELF_LOAD_WRONG_ARCH: 342 return "The image is from incompatible architecture"; 343 case ELF_LOAD_WRONG_ENDIAN: 344 return "The image has incorrect endianness"; 345 case ELF_LOAD_TOO_BIG: 346 return "The image segments are too big to load"; 347 default: 348 return "Unknown error"; 349 } 350 } 351 352 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 353 { 354 int fd; 355 uint8_t e_ident_local[EI_NIDENT]; 356 uint8_t *e_ident; 357 size_t hdr_size, off; 358 bool is64l; 359 360 if (!hdr) { 361 hdr = e_ident_local; 362 } 363 e_ident = hdr; 364 365 fd = open(filename, O_RDONLY | O_BINARY); 366 if (fd < 0) { 367 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 368 return; 369 } 370 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 371 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 372 goto fail; 373 } 374 if (e_ident[0] != ELFMAG0 || 375 e_ident[1] != ELFMAG1 || 376 e_ident[2] != ELFMAG2 || 377 e_ident[3] != ELFMAG3) { 378 error_setg(errp, "Bad ELF magic"); 379 goto fail; 380 } 381 382 is64l = e_ident[EI_CLASS] == ELFCLASS64; 383 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 384 if (is64) { 385 *is64 = is64l; 386 } 387 388 off = EI_NIDENT; 389 while (hdr != e_ident_local && off < hdr_size) { 390 size_t br = read(fd, hdr + off, hdr_size - off); 391 switch (br) { 392 case 0: 393 error_setg(errp, "File too short: %s", filename); 394 goto fail; 395 case -1: 396 error_setg_errno(errp, errno, "Failed to read file: %s", 397 filename); 398 goto fail; 399 } 400 off += br; 401 } 402 403 fail: 404 close(fd); 405 } 406 407 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 408 ssize_t load_elf(const char *filename, 409 uint64_t (*elf_note_fn)(void *, void *, bool), 410 uint64_t (*translate_fn)(void *, uint64_t), 411 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 412 uint64_t *highaddr, uint32_t *pflags, int big_endian, 413 int elf_machine, int clear_lsb, int data_swab) 414 { 415 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 416 pentry, lowaddr, highaddr, pflags, big_endian, 417 elf_machine, clear_lsb, data_swab, NULL); 418 } 419 420 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 421 ssize_t load_elf_as(const char *filename, 422 uint64_t (*elf_note_fn)(void *, void *, bool), 423 uint64_t (*translate_fn)(void *, uint64_t), 424 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 425 uint64_t *highaddr, uint32_t *pflags, int big_endian, 426 int elf_machine, int clear_lsb, int data_swab, 427 AddressSpace *as) 428 { 429 return load_elf_ram_sym(filename, elf_note_fn, 430 translate_fn, translate_opaque, 431 pentry, lowaddr, highaddr, pflags, big_endian, 432 elf_machine, clear_lsb, data_swab, as, 433 true, NULL); 434 } 435 436 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 437 ssize_t load_elf_ram_sym(const char *filename, 438 uint64_t (*elf_note_fn)(void *, void *, bool), 439 uint64_t (*translate_fn)(void *, uint64_t), 440 void *translate_opaque, uint64_t *pentry, 441 uint64_t *lowaddr, uint64_t *highaddr, 442 uint32_t *pflags, int big_endian, int elf_machine, 443 int clear_lsb, int data_swab, 444 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 445 { 446 int fd, data_order, target_data_order, must_swab; 447 ssize_t ret = ELF_LOAD_FAILED; 448 uint8_t e_ident[EI_NIDENT]; 449 450 fd = open(filename, O_RDONLY | O_BINARY); 451 if (fd < 0) { 452 perror(filename); 453 return -1; 454 } 455 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 456 goto fail; 457 if (e_ident[0] != ELFMAG0 || 458 e_ident[1] != ELFMAG1 || 459 e_ident[2] != ELFMAG2 || 460 e_ident[3] != ELFMAG3) { 461 ret = ELF_LOAD_NOT_ELF; 462 goto fail; 463 } 464 #if HOST_BIG_ENDIAN 465 data_order = ELFDATA2MSB; 466 #else 467 data_order = ELFDATA2LSB; 468 #endif 469 must_swab = data_order != e_ident[EI_DATA]; 470 if (big_endian) { 471 target_data_order = ELFDATA2MSB; 472 } else { 473 target_data_order = ELFDATA2LSB; 474 } 475 476 if (target_data_order != e_ident[EI_DATA]) { 477 ret = ELF_LOAD_WRONG_ENDIAN; 478 goto fail; 479 } 480 481 lseek(fd, 0, SEEK_SET); 482 if (e_ident[EI_CLASS] == ELFCLASS64) { 483 ret = load_elf64(filename, fd, elf_note_fn, 484 translate_fn, translate_opaque, must_swab, 485 pentry, lowaddr, highaddr, pflags, elf_machine, 486 clear_lsb, data_swab, as, load_rom, sym_cb); 487 } else { 488 ret = load_elf32(filename, fd, elf_note_fn, 489 translate_fn, translate_opaque, must_swab, 490 pentry, lowaddr, highaddr, pflags, elf_machine, 491 clear_lsb, data_swab, as, load_rom, sym_cb); 492 } 493 494 if (ret > 0) { 495 debuginfo_report_elf(filename, fd, 0); 496 } 497 498 fail: 499 close(fd); 500 return ret; 501 } 502 503 static void bswap_uboot_header(uboot_image_header_t *hdr) 504 { 505 #if !HOST_BIG_ENDIAN 506 bswap32s(&hdr->ih_magic); 507 bswap32s(&hdr->ih_hcrc); 508 bswap32s(&hdr->ih_time); 509 bswap32s(&hdr->ih_size); 510 bswap32s(&hdr->ih_load); 511 bswap32s(&hdr->ih_ep); 512 bswap32s(&hdr->ih_dcrc); 513 #endif 514 } 515 516 517 #define ZALLOC_ALIGNMENT 16 518 519 static void *zalloc(void *x, unsigned items, unsigned size) 520 { 521 void *p; 522 523 size *= items; 524 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 525 526 p = g_malloc(size); 527 528 return (p); 529 } 530 531 static void zfree(void *x, void *addr) 532 { 533 g_free(addr); 534 } 535 536 537 #define HEAD_CRC 2 538 #define EXTRA_FIELD 4 539 #define ORIG_NAME 8 540 #define COMMENT 0x10 541 #define RESERVED 0xe0 542 543 #define DEFLATED 8 544 545 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 546 { 547 z_stream s = {}; 548 ssize_t dstbytes; 549 int r, i, flags; 550 551 /* skip header */ 552 i = 10; 553 if (srclen < 4) { 554 goto toosmall; 555 } 556 flags = src[3]; 557 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 558 puts ("Error: Bad gzipped data\n"); 559 return -1; 560 } 561 if ((flags & EXTRA_FIELD) != 0) { 562 if (srclen < 12) { 563 goto toosmall; 564 } 565 i = 12 + src[10] + (src[11] << 8); 566 } 567 if ((flags & ORIG_NAME) != 0) { 568 while (i < srclen && src[i++] != 0) { 569 /* do nothing */ 570 } 571 } 572 if ((flags & COMMENT) != 0) { 573 while (i < srclen && src[i++] != 0) { 574 /* do nothing */ 575 } 576 } 577 if ((flags & HEAD_CRC) != 0) { 578 i += 2; 579 } 580 if (i >= srclen) { 581 goto toosmall; 582 } 583 584 s.zalloc = zalloc; 585 s.zfree = zfree; 586 587 r = inflateInit2(&s, -MAX_WBITS); 588 if (r != Z_OK) { 589 printf ("Error: inflateInit2() returned %d\n", r); 590 return (-1); 591 } 592 s.next_in = src + i; 593 s.avail_in = srclen - i; 594 s.next_out = dst; 595 s.avail_out = dstlen; 596 r = inflate(&s, Z_FINISH); 597 if (r != Z_OK && r != Z_STREAM_END) { 598 printf ("Error: inflate() returned %d\n", r); 599 inflateEnd(&s); 600 return -1; 601 } 602 dstbytes = s.next_out - (unsigned char *) dst; 603 inflateEnd(&s); 604 605 return dstbytes; 606 607 toosmall: 608 puts("Error: gunzip out of data in header\n"); 609 return -1; 610 } 611 612 /* Load a U-Boot image. */ 613 static ssize_t load_uboot_image(const char *filename, hwaddr *ep, 614 hwaddr *loadaddr, int *is_linux, 615 uint8_t image_type, 616 uint64_t (*translate_fn)(void *, uint64_t), 617 void *translate_opaque, AddressSpace *as) 618 { 619 int fd; 620 ssize_t size; 621 hwaddr address; 622 uboot_image_header_t h; 623 uboot_image_header_t *hdr = &h; 624 uint8_t *data = NULL; 625 int ret = -1; 626 int do_uncompress = 0; 627 628 fd = open(filename, O_RDONLY | O_BINARY); 629 if (fd < 0) 630 return -1; 631 632 size = read(fd, hdr, sizeof(uboot_image_header_t)); 633 if (size < sizeof(uboot_image_header_t)) { 634 goto out; 635 } 636 637 bswap_uboot_header(hdr); 638 639 if (hdr->ih_magic != IH_MAGIC) 640 goto out; 641 642 if (hdr->ih_type != image_type) { 643 if (!(image_type == IH_TYPE_KERNEL && 644 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 645 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 646 image_type); 647 goto out; 648 } 649 } 650 651 /* TODO: Implement other image types. */ 652 switch (hdr->ih_type) { 653 case IH_TYPE_KERNEL_NOLOAD: 654 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 655 fprintf(stderr, "this image format (kernel_noload) cannot be " 656 "loaded on this machine type"); 657 goto out; 658 } 659 660 hdr->ih_load = *loadaddr + sizeof(*hdr); 661 hdr->ih_ep += hdr->ih_load; 662 /* fall through */ 663 case IH_TYPE_KERNEL: 664 address = hdr->ih_load; 665 if (translate_fn) { 666 address = translate_fn(translate_opaque, address); 667 } 668 if (loadaddr) { 669 *loadaddr = hdr->ih_load; 670 } 671 672 switch (hdr->ih_comp) { 673 case IH_COMP_NONE: 674 break; 675 case IH_COMP_GZIP: 676 do_uncompress = 1; 677 break; 678 default: 679 fprintf(stderr, 680 "Unable to load u-boot images with compression type %d\n", 681 hdr->ih_comp); 682 goto out; 683 } 684 685 if (ep) { 686 *ep = hdr->ih_ep; 687 } 688 689 /* TODO: Check CPU type. */ 690 if (is_linux) { 691 if (hdr->ih_os == IH_OS_LINUX) { 692 *is_linux = 1; 693 } else if (hdr->ih_os == IH_OS_VXWORKS) { 694 /* 695 * VxWorks 7 uses the same boot interface as the Linux kernel 696 * on Arm (64-bit only), PowerPC and RISC-V architectures. 697 */ 698 switch (hdr->ih_arch) { 699 case IH_ARCH_ARM64: 700 case IH_ARCH_PPC: 701 case IH_ARCH_RISCV: 702 *is_linux = 1; 703 break; 704 default: 705 *is_linux = 0; 706 break; 707 } 708 } else { 709 *is_linux = 0; 710 } 711 } 712 713 break; 714 case IH_TYPE_RAMDISK: 715 address = *loadaddr; 716 break; 717 default: 718 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 719 goto out; 720 } 721 722 data = g_malloc(hdr->ih_size); 723 724 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 725 fprintf(stderr, "Error reading file\n"); 726 goto out; 727 } 728 729 if (do_uncompress) { 730 uint8_t *compressed_data; 731 size_t max_bytes; 732 ssize_t bytes; 733 734 compressed_data = data; 735 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 736 data = g_malloc(max_bytes); 737 738 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 739 g_free(compressed_data); 740 if (bytes < 0) { 741 fprintf(stderr, "Unable to decompress gzipped image!\n"); 742 goto out; 743 } 744 hdr->ih_size = bytes; 745 } 746 747 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 748 749 ret = hdr->ih_size; 750 751 out: 752 g_free(data); 753 close(fd); 754 return ret; 755 } 756 757 ssize_t load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 758 int *is_linux, 759 uint64_t (*translate_fn)(void *, uint64_t), 760 void *translate_opaque) 761 { 762 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 763 translate_fn, translate_opaque, NULL); 764 } 765 766 ssize_t load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 767 int *is_linux, 768 uint64_t (*translate_fn)(void *, uint64_t), 769 void *translate_opaque, AddressSpace *as) 770 { 771 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 772 translate_fn, translate_opaque, as); 773 } 774 775 /* Load a ramdisk. */ 776 ssize_t load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 777 { 778 return load_ramdisk_as(filename, addr, max_sz, NULL); 779 } 780 781 ssize_t load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 782 AddressSpace *as) 783 { 784 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 785 NULL, NULL, as); 786 } 787 788 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 789 ssize_t load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 790 uint8_t **buffer) 791 { 792 uint8_t *compressed_data = NULL; 793 uint8_t *data = NULL; 794 gsize len; 795 ssize_t bytes; 796 int ret = -1; 797 798 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 799 NULL)) { 800 goto out; 801 } 802 803 /* Is it a gzip-compressed file? */ 804 if (len < 2 || 805 compressed_data[0] != 0x1f || 806 compressed_data[1] != 0x8b) { 807 goto out; 808 } 809 810 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 811 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 812 } 813 814 data = g_malloc(max_sz); 815 bytes = gunzip(data, max_sz, compressed_data, len); 816 if (bytes < 0) { 817 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 818 filename); 819 goto out; 820 } 821 822 /* trim to actual size and return to caller */ 823 *buffer = g_realloc(data, bytes); 824 ret = bytes; 825 /* ownership has been transferred to caller */ 826 data = NULL; 827 828 out: 829 g_free(compressed_data); 830 g_free(data); 831 return ret; 832 } 833 834 835 /* The PE/COFF MS-DOS stub magic number */ 836 #define EFI_PE_MSDOS_MAGIC "MZ" 837 838 /* 839 * The Linux header magic number for a EFI PE/COFF 840 * image targeting an unspecified architecture. 841 */ 842 #define EFI_PE_LINUX_MAGIC "\xcd\x23\x82\x81" 843 844 /* 845 * Bootable Linux kernel images may be packaged as EFI zboot images, which are 846 * self-decompressing executables when loaded via EFI. The compressed payload 847 * can also be extracted from the image and decompressed by a non-EFI loader. 848 * 849 * The de facto specification for this format is at the following URL: 850 * 851 * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/firmware/efi/libstub/zboot-header.S 852 * 853 * This definition is based on Linux upstream commit 29636a5ce87beba. 854 */ 855 struct linux_efi_zboot_header { 856 uint8_t msdos_magic[2]; /* PE/COFF 'MZ' magic number */ 857 uint8_t reserved0[2]; 858 uint8_t zimg[4]; /* "zimg" for Linux EFI zboot images */ 859 uint32_t payload_offset; /* LE offset to compressed payload */ 860 uint32_t payload_size; /* LE size of the compressed payload */ 861 uint8_t reserved1[8]; 862 char compression_type[32]; /* Compression type, NUL terminated */ 863 uint8_t linux_magic[4]; /* Linux header magic */ 864 uint32_t pe_header_offset; /* LE offset to the PE header */ 865 }; 866 867 /* 868 * Check whether *buffer points to a Linux EFI zboot image in memory. 869 * 870 * If it does, attempt to decompress it to a new buffer, and free the old one. 871 * If any of this fails, return an error to the caller. 872 * 873 * If the image is not a Linux EFI zboot image, do nothing and return success. 874 */ 875 ssize_t unpack_efi_zboot_image(uint8_t **buffer, ssize_t *size) 876 { 877 const struct linux_efi_zboot_header *header; 878 uint8_t *data = NULL; 879 ssize_t ploff, plsize; 880 ssize_t bytes; 881 882 /* ignore if this is too small to be a EFI zboot image */ 883 if (*size < sizeof(*header)) { 884 return 0; 885 } 886 887 header = (struct linux_efi_zboot_header *)*buffer; 888 889 /* ignore if this is not a Linux EFI zboot image */ 890 if (memcmp(&header->msdos_magic, EFI_PE_MSDOS_MAGIC, 2) != 0 || 891 memcmp(&header->zimg, "zimg", 4) != 0 || 892 memcmp(&header->linux_magic, EFI_PE_LINUX_MAGIC, 4) != 0) { 893 return 0; 894 } 895 896 if (strcmp(header->compression_type, "gzip") != 0) { 897 fprintf(stderr, 898 "unable to handle EFI zboot image with \"%.*s\" compression\n", 899 (int)sizeof(header->compression_type) - 1, 900 header->compression_type); 901 return -1; 902 } 903 904 ploff = ldl_le_p(&header->payload_offset); 905 plsize = ldl_le_p(&header->payload_size); 906 907 if (ploff < 0 || plsize < 0 || ploff + plsize > *size) { 908 fprintf(stderr, "unable to handle corrupt EFI zboot image\n"); 909 return -1; 910 } 911 912 data = g_malloc(LOAD_IMAGE_MAX_GUNZIP_BYTES); 913 bytes = gunzip(data, LOAD_IMAGE_MAX_GUNZIP_BYTES, *buffer + ploff, plsize); 914 if (bytes < 0) { 915 fprintf(stderr, "failed to decompress EFI zboot image\n"); 916 g_free(data); 917 return -1; 918 } 919 920 g_free(*buffer); 921 *buffer = g_realloc(data, bytes); 922 *size = bytes; 923 return bytes; 924 } 925 926 /* 927 * Functions for reboot-persistent memory regions. 928 * - used for vga bios and option roms. 929 * - also linux kernel (-kernel / -initrd). 930 */ 931 932 typedef struct Rom Rom; 933 934 struct Rom { 935 char *name; 936 char *path; 937 938 /* datasize is the amount of memory allocated in "data". If datasize is less 939 * than romsize, it means that the area from datasize to romsize is filled 940 * with zeros. 941 */ 942 size_t romsize; 943 size_t datasize; 944 945 uint8_t *data; 946 MemoryRegion *mr; 947 AddressSpace *as; 948 int isrom; 949 char *fw_dir; 950 char *fw_file; 951 GMappedFile *mapped_file; 952 953 bool committed; 954 955 hwaddr addr; 956 QTAILQ_ENTRY(Rom) next; 957 }; 958 959 static FWCfgState *fw_cfg; 960 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 961 962 /* 963 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 964 * rom_add_elf_program()) 965 */ 966 static void rom_free_data(Rom *rom) 967 { 968 if (rom->mapped_file) { 969 g_mapped_file_unref(rom->mapped_file); 970 rom->mapped_file = NULL; 971 } else { 972 g_free(rom->data); 973 } 974 975 rom->data = NULL; 976 } 977 978 static void rom_free(Rom *rom) 979 { 980 rom_free_data(rom); 981 g_free(rom->path); 982 g_free(rom->name); 983 g_free(rom->fw_dir); 984 g_free(rom->fw_file); 985 g_free(rom); 986 } 987 988 static inline bool rom_order_compare(Rom *rom, Rom *item) 989 { 990 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 991 (rom->as == item->as && rom->addr >= item->addr); 992 } 993 994 static void rom_insert(Rom *rom) 995 { 996 Rom *item; 997 998 if (roms_loaded) { 999 hw_error ("ROM images must be loaded at startup\n"); 1000 } 1001 1002 /* The user didn't specify an address space, this is the default */ 1003 if (!rom->as) { 1004 rom->as = &address_space_memory; 1005 } 1006 1007 rom->committed = false; 1008 1009 /* List is ordered by load address in the same address space */ 1010 QTAILQ_FOREACH(item, &roms, next) { 1011 if (rom_order_compare(rom, item)) { 1012 continue; 1013 } 1014 QTAILQ_INSERT_BEFORE(item, rom, next); 1015 return; 1016 } 1017 QTAILQ_INSERT_TAIL(&roms, rom, next); 1018 } 1019 1020 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 1021 { 1022 if (fw_cfg) { 1023 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 1024 } 1025 } 1026 1027 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 1028 { 1029 void *data; 1030 1031 rom->mr = g_malloc(sizeof(*rom->mr)); 1032 memory_region_init_resizeable_ram(rom->mr, owner, name, 1033 rom->datasize, rom->romsize, 1034 fw_cfg_resized, 1035 &error_fatal); 1036 memory_region_set_readonly(rom->mr, ro); 1037 vmstate_register_ram_global(rom->mr); 1038 1039 data = memory_region_get_ram_ptr(rom->mr); 1040 memcpy(data, rom->data, rom->datasize); 1041 1042 return data; 1043 } 1044 1045 ssize_t rom_add_file(const char *file, const char *fw_dir, 1046 hwaddr addr, int32_t bootindex, 1047 bool has_option_rom, MemoryRegion *mr, 1048 AddressSpace *as) 1049 { 1050 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1051 Rom *rom; 1052 gsize size; 1053 g_autoptr(GError) gerr = NULL; 1054 char devpath[100]; 1055 1056 if (as && mr) { 1057 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 1058 "not valid when loading a rom\n"); 1059 /* We haven't allocated anything so we don't need any cleanup */ 1060 return -1; 1061 } 1062 1063 rom = g_malloc0(sizeof(*rom)); 1064 rom->name = g_strdup(file); 1065 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 1066 rom->as = as; 1067 if (rom->path == NULL) { 1068 rom->path = g_strdup(file); 1069 } 1070 1071 if (!g_file_get_contents(rom->path, (gchar **) &rom->data, 1072 &size, &gerr)) { 1073 fprintf(stderr, "rom: file %-20s: error %s\n", 1074 rom->name, gerr->message); 1075 goto err; 1076 } 1077 1078 if (fw_dir) { 1079 rom->fw_dir = g_strdup(fw_dir); 1080 rom->fw_file = g_strdup(file); 1081 } 1082 rom->addr = addr; 1083 rom->romsize = size; 1084 rom->datasize = rom->romsize; 1085 rom_insert(rom); 1086 if (rom->fw_file && fw_cfg) { 1087 const char *basename; 1088 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1089 void *data; 1090 1091 basename = strrchr(rom->fw_file, '/'); 1092 if (basename) { 1093 basename++; 1094 } else { 1095 basename = rom->fw_file; 1096 } 1097 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1098 basename); 1099 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1100 1101 if ((!has_option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1102 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1103 } else { 1104 data = rom->data; 1105 } 1106 1107 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1108 } else { 1109 if (mr) { 1110 rom->mr = mr; 1111 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1112 } else { 1113 snprintf(devpath, sizeof(devpath), "/rom@" HWADDR_FMT_plx, addr); 1114 } 1115 } 1116 1117 add_boot_device_path(bootindex, NULL, devpath); 1118 return 0; 1119 1120 err: 1121 rom_free(rom); 1122 return -1; 1123 } 1124 1125 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1126 size_t max_len, hwaddr addr, const char *fw_file_name, 1127 FWCfgCallback fw_callback, void *callback_opaque, 1128 AddressSpace *as, bool read_only) 1129 { 1130 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1131 Rom *rom; 1132 MemoryRegion *mr = NULL; 1133 1134 rom = g_malloc0(sizeof(*rom)); 1135 rom->name = g_strdup(name); 1136 rom->as = as; 1137 rom->addr = addr; 1138 rom->romsize = max_len ? max_len : len; 1139 rom->datasize = len; 1140 g_assert(rom->romsize >= rom->datasize); 1141 rom->data = g_malloc0(rom->datasize); 1142 memcpy(rom->data, blob, len); 1143 rom_insert(rom); 1144 if (fw_file_name && fw_cfg) { 1145 char devpath[100]; 1146 void *data; 1147 1148 if (read_only) { 1149 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1150 } else { 1151 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1152 } 1153 1154 if (mc->rom_file_has_mr) { 1155 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1156 mr = rom->mr; 1157 } else { 1158 data = rom->data; 1159 } 1160 1161 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1162 fw_callback, NULL, callback_opaque, 1163 data, rom->datasize, read_only); 1164 } 1165 return mr; 1166 } 1167 1168 /* This function is specific for elf program because we don't need to allocate 1169 * all the rom. We just allocate the first part and the rest is just zeros. This 1170 * is why romsize and datasize are different. Also, this function takes its own 1171 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1172 */ 1173 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1174 size_t datasize, size_t romsize, hwaddr addr, 1175 AddressSpace *as) 1176 { 1177 Rom *rom; 1178 1179 rom = g_malloc0(sizeof(*rom)); 1180 rom->name = g_strdup(name); 1181 rom->addr = addr; 1182 rom->datasize = datasize; 1183 rom->romsize = romsize; 1184 rom->data = data; 1185 rom->as = as; 1186 1187 if (mapped_file && data) { 1188 g_mapped_file_ref(mapped_file); 1189 rom->mapped_file = mapped_file; 1190 } 1191 1192 rom_insert(rom); 1193 return 0; 1194 } 1195 1196 ssize_t rom_add_vga(const char *file) 1197 { 1198 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1199 } 1200 1201 ssize_t rom_add_option(const char *file, int32_t bootindex) 1202 { 1203 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1204 } 1205 1206 static void rom_reset(void *unused) 1207 { 1208 Rom *rom; 1209 1210 QTAILQ_FOREACH(rom, &roms, next) { 1211 if (rom->fw_file) { 1212 continue; 1213 } 1214 /* 1215 * We don't need to fill in the RAM with ROM data because we'll fill 1216 * the data in during the next incoming migration in all cases. Note 1217 * that some of those RAMs can actually be modified by the guest. 1218 */ 1219 if (runstate_check(RUN_STATE_INMIGRATE)) { 1220 if (rom->data && rom->isrom) { 1221 /* 1222 * Free it so that a rom_reset after migration doesn't 1223 * overwrite a potentially modified 'rom'. 1224 */ 1225 rom_free_data(rom); 1226 } 1227 continue; 1228 } 1229 1230 if (rom->data == NULL) { 1231 continue; 1232 } 1233 if (rom->mr) { 1234 void *host = memory_region_get_ram_ptr(rom->mr); 1235 memcpy(host, rom->data, rom->datasize); 1236 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1237 } else { 1238 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1239 rom->data, rom->datasize); 1240 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1241 rom->romsize - rom->datasize, 1242 MEMTXATTRS_UNSPECIFIED); 1243 } 1244 if (rom->isrom) { 1245 /* rom needs to be written only once */ 1246 rom_free_data(rom); 1247 } 1248 /* 1249 * The rom loader is really on the same level as firmware in the guest 1250 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1251 * that the instruction cache for that new region is clear, so that the 1252 * CPU definitely fetches its instructions from the just written data. 1253 */ 1254 cpu_flush_icache_range(rom->addr, rom->datasize); 1255 1256 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1257 } 1258 } 1259 1260 /* Return true if two consecutive ROMs in the ROM list overlap */ 1261 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1262 { 1263 if (!last_rom) { 1264 return false; 1265 } 1266 return last_rom->as == this_rom->as && 1267 last_rom->addr + last_rom->romsize > this_rom->addr; 1268 } 1269 1270 static const char *rom_as_name(Rom *rom) 1271 { 1272 const char *name = rom->as ? rom->as->name : NULL; 1273 return name ?: "anonymous"; 1274 } 1275 1276 static void rom_print_overlap_error_header(void) 1277 { 1278 error_report("Some ROM regions are overlapping"); 1279 error_printf( 1280 "These ROM regions might have been loaded by " 1281 "direct user request or by default.\n" 1282 "They could be BIOS/firmware images, a guest kernel, " 1283 "initrd or some other file loaded into guest memory.\n" 1284 "Check whether you intended to load all this guest code, and " 1285 "whether it has been built to load to the correct addresses.\n"); 1286 } 1287 1288 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1289 { 1290 error_printf( 1291 "\nThe following two regions overlap (in the %s address space):\n", 1292 rom_as_name(rom)); 1293 error_printf( 1294 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1295 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1296 error_printf( 1297 " %s (addresses 0x" HWADDR_FMT_plx " - 0x" HWADDR_FMT_plx ")\n", 1298 rom->name, rom->addr, rom->addr + rom->romsize); 1299 } 1300 1301 int rom_check_and_register_reset(void) 1302 { 1303 MemoryRegionSection section; 1304 Rom *rom, *last_rom = NULL; 1305 bool found_overlap = false; 1306 1307 QTAILQ_FOREACH(rom, &roms, next) { 1308 if (rom->fw_file) { 1309 continue; 1310 } 1311 if (!rom->mr) { 1312 if (roms_overlap(last_rom, rom)) { 1313 if (!found_overlap) { 1314 found_overlap = true; 1315 rom_print_overlap_error_header(); 1316 } 1317 rom_print_one_overlap_error(last_rom, rom); 1318 /* Keep going through the list so we report all overlaps */ 1319 } 1320 last_rom = rom; 1321 } 1322 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1323 rom->addr, 1); 1324 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1325 memory_region_unref(section.mr); 1326 } 1327 if (found_overlap) { 1328 return -1; 1329 } 1330 1331 qemu_register_reset(rom_reset, NULL); 1332 roms_loaded = 1; 1333 return 0; 1334 } 1335 1336 void rom_set_fw(FWCfgState *f) 1337 { 1338 fw_cfg = f; 1339 } 1340 1341 void rom_set_order_override(int order) 1342 { 1343 if (!fw_cfg) 1344 return; 1345 fw_cfg_set_order_override(fw_cfg, order); 1346 } 1347 1348 void rom_reset_order_override(void) 1349 { 1350 if (!fw_cfg) 1351 return; 1352 fw_cfg_reset_order_override(fw_cfg); 1353 } 1354 1355 void rom_transaction_begin(void) 1356 { 1357 Rom *rom; 1358 1359 /* Ignore ROMs added without the transaction API */ 1360 QTAILQ_FOREACH(rom, &roms, next) { 1361 rom->committed = true; 1362 } 1363 } 1364 1365 void rom_transaction_end(bool commit) 1366 { 1367 Rom *rom; 1368 Rom *tmp; 1369 1370 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1371 if (rom->committed) { 1372 continue; 1373 } 1374 if (commit) { 1375 rom->committed = true; 1376 } else { 1377 QTAILQ_REMOVE(&roms, rom, next); 1378 rom_free(rom); 1379 } 1380 } 1381 } 1382 1383 static Rom *find_rom(hwaddr addr, size_t size) 1384 { 1385 Rom *rom; 1386 1387 QTAILQ_FOREACH(rom, &roms, next) { 1388 if (rom->fw_file) { 1389 continue; 1390 } 1391 if (rom->mr) { 1392 continue; 1393 } 1394 if (rom->addr > addr) { 1395 continue; 1396 } 1397 if (rom->addr + rom->romsize < addr + size) { 1398 continue; 1399 } 1400 return rom; 1401 } 1402 return NULL; 1403 } 1404 1405 typedef struct RomSec { 1406 hwaddr base; 1407 int se; /* start/end flag */ 1408 } RomSec; 1409 1410 1411 /* 1412 * Sort into address order. We break ties between rom-startpoints 1413 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1414 * transition before the 1->0 transition. Either way round would 1415 * work, but this way saves a little work later by avoiding 1416 * dealing with "gaps" of 0 length. 1417 */ 1418 static gint sort_secs(gconstpointer a, gconstpointer b) 1419 { 1420 RomSec *ra = (RomSec *) a; 1421 RomSec *rb = (RomSec *) b; 1422 1423 if (ra->base == rb->base) { 1424 return ra->se - rb->se; 1425 } 1426 return ra->base > rb->base ? 1 : -1; 1427 } 1428 1429 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1430 { 1431 RomSec *cand = g_new(RomSec, 1); 1432 cand->base = base; 1433 cand->se = se; 1434 return g_list_prepend(secs, cand); 1435 } 1436 1437 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1438 { 1439 Rom *rom; 1440 RomSec *cand; 1441 RomGap res = {0, 0}; 1442 hwaddr gapstart = base; 1443 GList *it, *secs = NULL; 1444 int count = 0; 1445 1446 QTAILQ_FOREACH(rom, &roms, next) { 1447 /* Ignore blobs being loaded to special places */ 1448 if (rom->mr || rom->fw_file) { 1449 continue; 1450 } 1451 /* ignore anything finishing below base */ 1452 if (rom->addr + rom->romsize <= base) { 1453 continue; 1454 } 1455 /* ignore anything starting above the region */ 1456 if (rom->addr >= base + size) { 1457 continue; 1458 } 1459 1460 /* Save the start and end of each relevant ROM */ 1461 secs = add_romsec_to_list(secs, rom->addr, 1); 1462 1463 if (rom->addr + rom->romsize < base + size) { 1464 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1465 } 1466 } 1467 1468 /* sentinel */ 1469 secs = add_romsec_to_list(secs, base + size, 1); 1470 1471 secs = g_list_sort(secs, sort_secs); 1472 1473 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1474 cand = (RomSec *) it->data; 1475 if (count == 0 && count + cand->se == 1) { 1476 size_t gap = cand->base - gapstart; 1477 if (gap > res.size) { 1478 res.base = gapstart; 1479 res.size = gap; 1480 } 1481 } else if (count == 1 && count + cand->se == 0) { 1482 gapstart = cand->base; 1483 } 1484 count += cand->se; 1485 } 1486 1487 g_list_free_full(secs, g_free); 1488 return res; 1489 } 1490 1491 /* 1492 * Copies memory from registered ROMs to dest. Any memory that is contained in 1493 * a ROM between addr and addr + size is copied. Note that this can involve 1494 * multiple ROMs, which need not start at addr and need not end at addr + size. 1495 */ 1496 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1497 { 1498 hwaddr end = addr + size; 1499 uint8_t *s, *d = dest; 1500 size_t l = 0; 1501 Rom *rom; 1502 1503 QTAILQ_FOREACH(rom, &roms, next) { 1504 if (rom->fw_file) { 1505 continue; 1506 } 1507 if (rom->mr) { 1508 continue; 1509 } 1510 if (rom->addr + rom->romsize < addr) { 1511 continue; 1512 } 1513 if (rom->addr > end || rom->addr < addr) { 1514 break; 1515 } 1516 1517 d = dest + (rom->addr - addr); 1518 s = rom->data; 1519 l = rom->datasize; 1520 1521 if ((d + l) > (dest + size)) { 1522 l = dest - d; 1523 } 1524 1525 if (l > 0) { 1526 memcpy(d, s, l); 1527 } 1528 1529 if (rom->romsize > rom->datasize) { 1530 /* If datasize is less than romsize, it means that we didn't 1531 * allocate all the ROM because the trailing data are only zeros. 1532 */ 1533 1534 d += l; 1535 l = rom->romsize - rom->datasize; 1536 1537 if ((d + l) > (dest + size)) { 1538 /* Rom size doesn't fit in the destination area. Adjust to avoid 1539 * overflow. 1540 */ 1541 l = dest - d; 1542 } 1543 1544 if (l > 0) { 1545 memset(d, 0x0, l); 1546 } 1547 } 1548 } 1549 1550 return (d + l) - dest; 1551 } 1552 1553 void *rom_ptr(hwaddr addr, size_t size) 1554 { 1555 Rom *rom; 1556 1557 rom = find_rom(addr, size); 1558 if (!rom || !rom->data) 1559 return NULL; 1560 return rom->data + (addr - rom->addr); 1561 } 1562 1563 typedef struct FindRomCBData { 1564 size_t size; /* Amount of data we want from ROM, in bytes */ 1565 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1566 hwaddr xlat; /* Offset of addr within mr */ 1567 void *rom; /* Output: rom data pointer, if found */ 1568 } FindRomCBData; 1569 1570 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1571 hwaddr offset_in_region, void *opaque) 1572 { 1573 FindRomCBData *cbdata = opaque; 1574 hwaddr alias_addr; 1575 1576 if (mr != cbdata->mr) { 1577 return false; 1578 } 1579 1580 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1581 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1582 if (!cbdata->rom) { 1583 return false; 1584 } 1585 /* Found a match, stop iterating */ 1586 return true; 1587 } 1588 1589 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1590 { 1591 /* 1592 * Find any ROM data for the given guest address range. If there 1593 * is a ROM blob then return a pointer to the host memory 1594 * corresponding to 'addr'; otherwise return NULL. 1595 * 1596 * We look not only for ROM blobs that were loaded directly to 1597 * addr, but also for ROM blobs that were loaded to aliases of 1598 * that memory at other addresses within the AddressSpace. 1599 * 1600 * Note that we do not check @as against the 'as' member in the 1601 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1602 * AddressSpace which the rom blob should be written to, whereas 1603 * our @as argument is the AddressSpace which we are (effectively) 1604 * reading from, and the same underlying RAM will often be visible 1605 * in multiple AddressSpaces. (A common example is a ROM blob 1606 * written to the 'system' address space but then read back via a 1607 * CPU's cpu->as pointer.) This does mean we might potentially 1608 * return a false-positive match if a ROM blob was loaded into an 1609 * AS which is entirely separate and distinct from the one we're 1610 * querying, but this issue exists also for rom_ptr() and hasn't 1611 * caused any problems in practice. 1612 */ 1613 FlatView *fv; 1614 void *rom; 1615 hwaddr len_unused; 1616 FindRomCBData cbdata = {}; 1617 1618 /* Easy case: there's data at the actual address */ 1619 rom = rom_ptr(addr, size); 1620 if (rom) { 1621 return rom; 1622 } 1623 1624 RCU_READ_LOCK_GUARD(); 1625 1626 fv = address_space_to_flatview(as); 1627 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1628 false, MEMTXATTRS_UNSPECIFIED); 1629 if (!cbdata.mr) { 1630 /* Nothing at this address, so there can't be any aliasing */ 1631 return NULL; 1632 } 1633 cbdata.size = size; 1634 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1635 return cbdata.rom; 1636 } 1637 1638 HumanReadableText *qmp_x_query_roms(Error **errp) 1639 { 1640 Rom *rom; 1641 g_autoptr(GString) buf = g_string_new(""); 1642 1643 QTAILQ_FOREACH(rom, &roms, next) { 1644 if (rom->mr) { 1645 g_string_append_printf(buf, "%s" 1646 " size=0x%06zx name=\"%s\"\n", 1647 memory_region_name(rom->mr), 1648 rom->romsize, 1649 rom->name); 1650 } else if (!rom->fw_file) { 1651 g_string_append_printf(buf, "addr=" HWADDR_FMT_plx 1652 " size=0x%06zx mem=%s name=\"%s\"\n", 1653 rom->addr, rom->romsize, 1654 rom->isrom ? "rom" : "ram", 1655 rom->name); 1656 } else { 1657 g_string_append_printf(buf, "fw=%s/%s" 1658 " size=0x%06zx name=\"%s\"\n", 1659 rom->fw_dir, 1660 rom->fw_file, 1661 rom->romsize, 1662 rom->name); 1663 } 1664 } 1665 1666 return human_readable_text_from_str(buf); 1667 } 1668 1669 typedef enum HexRecord HexRecord; 1670 enum HexRecord { 1671 DATA_RECORD = 0, 1672 EOF_RECORD, 1673 EXT_SEG_ADDR_RECORD, 1674 START_SEG_ADDR_RECORD, 1675 EXT_LINEAR_ADDR_RECORD, 1676 START_LINEAR_ADDR_RECORD, 1677 }; 1678 1679 /* Each record contains a 16-bit address which is combined with the upper 16 1680 * bits of the implicit "next address" to form a 32-bit address. 1681 */ 1682 #define NEXT_ADDR_MASK 0xffff0000 1683 1684 #define DATA_FIELD_MAX_LEN 0xff 1685 #define LEN_EXCEPT_DATA 0x5 1686 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1687 * sizeof(checksum) */ 1688 typedef struct { 1689 uint8_t byte_count; 1690 uint16_t address; 1691 uint8_t record_type; 1692 uint8_t data[DATA_FIELD_MAX_LEN]; 1693 uint8_t checksum; 1694 } HexLine; 1695 1696 /* return 0 or -1 if error */ 1697 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1698 uint32_t *index, const bool in_process) 1699 { 1700 /* +-------+---------------+-------+---------------------+--------+ 1701 * | byte | |record | | | 1702 * | count | address | type | data |checksum| 1703 * +-------+---------------+-------+---------------------+--------+ 1704 * ^ ^ ^ ^ ^ ^ 1705 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1706 */ 1707 uint8_t value = 0; 1708 uint32_t idx = *index; 1709 /* ignore space */ 1710 if (g_ascii_isspace(c)) { 1711 return true; 1712 } 1713 if (!g_ascii_isxdigit(c) || !in_process) { 1714 return false; 1715 } 1716 value = g_ascii_xdigit_value(c); 1717 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1718 if (idx < 2) { 1719 line->byte_count |= value; 1720 } else if (2 <= idx && idx < 6) { 1721 line->address <<= 4; 1722 line->address += g_ascii_xdigit_value(c); 1723 } else if (6 <= idx && idx < 8) { 1724 line->record_type |= value; 1725 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1726 line->data[(idx - 8) >> 1] |= value; 1727 } else if (8 + 2 * line->byte_count <= idx && 1728 idx < 10 + 2 * line->byte_count) { 1729 line->checksum |= value; 1730 } else { 1731 return false; 1732 } 1733 *our_checksum += value; 1734 ++(*index); 1735 return true; 1736 } 1737 1738 typedef struct { 1739 const char *filename; 1740 HexLine line; 1741 uint8_t *bin_buf; 1742 hwaddr *start_addr; 1743 int total_size; 1744 uint32_t next_address_to_write; 1745 uint32_t current_address; 1746 uint32_t current_rom_index; 1747 uint32_t rom_start_address; 1748 AddressSpace *as; 1749 bool complete; 1750 } HexParser; 1751 1752 /* return size or -1 if error */ 1753 static int handle_record_type(HexParser *parser) 1754 { 1755 HexLine *line = &(parser->line); 1756 switch (line->record_type) { 1757 case DATA_RECORD: 1758 parser->current_address = 1759 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1760 /* verify this is a contiguous block of memory */ 1761 if (parser->current_address != parser->next_address_to_write) { 1762 if (parser->current_rom_index != 0) { 1763 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1764 parser->current_rom_index, 1765 parser->rom_start_address, parser->as); 1766 } 1767 parser->rom_start_address = parser->current_address; 1768 parser->current_rom_index = 0; 1769 } 1770 1771 /* copy from line buffer to output bin_buf */ 1772 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1773 line->byte_count); 1774 parser->current_rom_index += line->byte_count; 1775 parser->total_size += line->byte_count; 1776 /* save next address to write */ 1777 parser->next_address_to_write = 1778 parser->current_address + line->byte_count; 1779 break; 1780 1781 case EOF_RECORD: 1782 if (parser->current_rom_index != 0) { 1783 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1784 parser->current_rom_index, 1785 parser->rom_start_address, parser->as); 1786 } 1787 parser->complete = true; 1788 return parser->total_size; 1789 case EXT_SEG_ADDR_RECORD: 1790 case EXT_LINEAR_ADDR_RECORD: 1791 if (line->byte_count != 2 && line->address != 0) { 1792 return -1; 1793 } 1794 1795 if (parser->current_rom_index != 0) { 1796 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1797 parser->current_rom_index, 1798 parser->rom_start_address, parser->as); 1799 } 1800 1801 /* save next address to write, 1802 * in case of non-contiguous block of memory */ 1803 parser->next_address_to_write = (line->data[0] << 12) | 1804 (line->data[1] << 4); 1805 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1806 parser->next_address_to_write <<= 12; 1807 } 1808 1809 parser->rom_start_address = parser->next_address_to_write; 1810 parser->current_rom_index = 0; 1811 break; 1812 1813 case START_SEG_ADDR_RECORD: 1814 if (line->byte_count != 4 && line->address != 0) { 1815 return -1; 1816 } 1817 1818 /* x86 16-bit CS:IP segmented addressing */ 1819 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1820 ((line->data[2] << 8) | line->data[3]); 1821 break; 1822 1823 case START_LINEAR_ADDR_RECORD: 1824 if (line->byte_count != 4 && line->address != 0) { 1825 return -1; 1826 } 1827 1828 *(parser->start_addr) = ldl_be_p(line->data); 1829 break; 1830 1831 default: 1832 return -1; 1833 } 1834 1835 return parser->total_size; 1836 } 1837 1838 /* return size or -1 if error */ 1839 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1840 size_t hex_blob_size, AddressSpace *as) 1841 { 1842 bool in_process = false; /* avoid re-enter and 1843 * check whether record begin with ':' */ 1844 uint8_t *end = hex_blob + hex_blob_size; 1845 uint8_t our_checksum = 0; 1846 uint32_t record_index = 0; 1847 HexParser parser = { 1848 .filename = filename, 1849 .bin_buf = g_malloc(hex_blob_size), 1850 .start_addr = addr, 1851 .as = as, 1852 .complete = false 1853 }; 1854 1855 rom_transaction_begin(); 1856 1857 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1858 switch (*hex_blob) { 1859 case '\r': 1860 case '\n': 1861 if (!in_process) { 1862 break; 1863 } 1864 1865 in_process = false; 1866 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1867 record_index || 1868 our_checksum != 0) { 1869 parser.total_size = -1; 1870 goto out; 1871 } 1872 1873 if (handle_record_type(&parser) == -1) { 1874 parser.total_size = -1; 1875 goto out; 1876 } 1877 break; 1878 1879 /* start of a new record. */ 1880 case ':': 1881 memset(&parser.line, 0, sizeof(HexLine)); 1882 in_process = true; 1883 record_index = 0; 1884 break; 1885 1886 /* decoding lines */ 1887 default: 1888 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1889 &record_index, in_process)) { 1890 parser.total_size = -1; 1891 goto out; 1892 } 1893 break; 1894 } 1895 } 1896 1897 out: 1898 g_free(parser.bin_buf); 1899 rom_transaction_end(parser.total_size != -1); 1900 return parser.total_size; 1901 } 1902 1903 /* return size or -1 if error */ 1904 ssize_t load_targphys_hex_as(const char *filename, hwaddr *entry, 1905 AddressSpace *as) 1906 { 1907 gsize hex_blob_size; 1908 gchar *hex_blob; 1909 ssize_t total_size = 0; 1910 1911 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1912 return -1; 1913 } 1914 1915 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1916 hex_blob_size, as); 1917 1918 g_free(hex_blob); 1919 return total_size; 1920 } 1921