1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu-common.h" 47 #include "qapi/error.h" 48 #include "trace.h" 49 #include "hw/hw.h" 50 #include "disas/disas.h" 51 #include "migration/vmstate.h" 52 #include "monitor/monitor.h" 53 #include "sysemu/reset.h" 54 #include "sysemu/sysemu.h" 55 #include "uboot_image.h" 56 #include "hw/loader.h" 57 #include "hw/nvram/fw_cfg.h" 58 #include "exec/memory.h" 59 #include "exec/address-spaces.h" 60 #include "hw/boards.h" 61 #include "qemu/cutils.h" 62 #include "sysemu/runstate.h" 63 64 #include <zlib.h> 65 66 static int roms_loaded; 67 68 /* return the size or -1 if error */ 69 int64_t get_image_size(const char *filename) 70 { 71 int fd; 72 int64_t size; 73 fd = open(filename, O_RDONLY | O_BINARY); 74 if (fd < 0) 75 return -1; 76 size = lseek(fd, 0, SEEK_END); 77 close(fd); 78 return size; 79 } 80 81 /* return the size or -1 if error */ 82 ssize_t load_image_size(const char *filename, void *addr, size_t size) 83 { 84 int fd; 85 ssize_t actsize, l = 0; 86 87 fd = open(filename, O_RDONLY | O_BINARY); 88 if (fd < 0) { 89 return -1; 90 } 91 92 while ((actsize = read(fd, addr + l, size - l)) > 0) { 93 l += actsize; 94 } 95 96 close(fd); 97 98 return actsize < 0 ? -1 : l; 99 } 100 101 /* read()-like version */ 102 ssize_t read_targphys(const char *name, 103 int fd, hwaddr dst_addr, size_t nbytes) 104 { 105 uint8_t *buf; 106 ssize_t did; 107 108 buf = g_malloc(nbytes); 109 did = read(fd, buf, nbytes); 110 if (did > 0) 111 rom_add_blob_fixed("read", buf, did, dst_addr); 112 g_free(buf); 113 return did; 114 } 115 116 int load_image_targphys(const char *filename, 117 hwaddr addr, uint64_t max_sz) 118 { 119 return load_image_targphys_as(filename, addr, max_sz, NULL); 120 } 121 122 /* return the size or -1 if error */ 123 int load_image_targphys_as(const char *filename, 124 hwaddr addr, uint64_t max_sz, AddressSpace *as) 125 { 126 int size; 127 128 size = get_image_size(filename); 129 if (size < 0 || size > max_sz) { 130 return -1; 131 } 132 if (size > 0) { 133 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 134 return -1; 135 } 136 } 137 return size; 138 } 139 140 int load_image_mr(const char *filename, MemoryRegion *mr) 141 { 142 int size; 143 144 if (!memory_access_is_direct(mr, false)) { 145 /* Can only load an image into RAM or ROM */ 146 return -1; 147 } 148 149 size = get_image_size(filename); 150 151 if (size < 0 || size > memory_region_size(mr)) { 152 return -1; 153 } 154 if (size > 0) { 155 if (rom_add_file_mr(filename, mr, -1) < 0) { 156 return -1; 157 } 158 } 159 return size; 160 } 161 162 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 163 const char *source) 164 { 165 const char *nulp; 166 char *ptr; 167 168 if (buf_size <= 0) return; 169 nulp = memchr(source, 0, buf_size); 170 if (nulp) { 171 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 172 } else { 173 rom_add_blob_fixed(name, source, buf_size, dest); 174 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 175 *ptr = 0; 176 } 177 } 178 179 /* A.OUT loader */ 180 181 struct exec 182 { 183 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 184 uint32_t a_text; /* length of text, in bytes */ 185 uint32_t a_data; /* length of data, in bytes */ 186 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 187 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 188 uint32_t a_entry; /* start address */ 189 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 190 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 191 }; 192 193 static void bswap_ahdr(struct exec *e) 194 { 195 bswap32s(&e->a_info); 196 bswap32s(&e->a_text); 197 bswap32s(&e->a_data); 198 bswap32s(&e->a_bss); 199 bswap32s(&e->a_syms); 200 bswap32s(&e->a_entry); 201 bswap32s(&e->a_trsize); 202 bswap32s(&e->a_drsize); 203 } 204 205 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 206 #define OMAGIC 0407 207 #define NMAGIC 0410 208 #define ZMAGIC 0413 209 #define QMAGIC 0314 210 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 211 #define N_TXTOFF(x) \ 212 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 213 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 214 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 215 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 216 217 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 218 219 #define N_DATADDR(x, target_page_size) \ 220 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 221 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 222 223 224 int load_aout(const char *filename, hwaddr addr, int max_sz, 225 int bswap_needed, hwaddr target_page_size) 226 { 227 int fd; 228 ssize_t size, ret; 229 struct exec e; 230 uint32_t magic; 231 232 fd = open(filename, O_RDONLY | O_BINARY); 233 if (fd < 0) 234 return -1; 235 236 size = read(fd, &e, sizeof(e)); 237 if (size < 0) 238 goto fail; 239 240 if (bswap_needed) { 241 bswap_ahdr(&e); 242 } 243 244 magic = N_MAGIC(e); 245 switch (magic) { 246 case ZMAGIC: 247 case QMAGIC: 248 case OMAGIC: 249 if (e.a_text + e.a_data > max_sz) 250 goto fail; 251 lseek(fd, N_TXTOFF(e), SEEK_SET); 252 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 253 if (size < 0) 254 goto fail; 255 break; 256 case NMAGIC: 257 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 258 goto fail; 259 lseek(fd, N_TXTOFF(e), SEEK_SET); 260 size = read_targphys(filename, fd, addr, e.a_text); 261 if (size < 0) 262 goto fail; 263 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 264 e.a_data); 265 if (ret < 0) 266 goto fail; 267 size += ret; 268 break; 269 default: 270 goto fail; 271 } 272 close(fd); 273 return size; 274 fail: 275 close(fd); 276 return -1; 277 } 278 279 /* ELF loader */ 280 281 static void *load_at(int fd, off_t offset, size_t size) 282 { 283 void *ptr; 284 if (lseek(fd, offset, SEEK_SET) < 0) 285 return NULL; 286 ptr = g_malloc(size); 287 if (read(fd, ptr, size) != size) { 288 g_free(ptr); 289 return NULL; 290 } 291 return ptr; 292 } 293 294 #ifdef ELF_CLASS 295 #undef ELF_CLASS 296 #endif 297 298 #define ELF_CLASS ELFCLASS32 299 #include "elf.h" 300 301 #define SZ 32 302 #define elf_word uint32_t 303 #define elf_sword int32_t 304 #define bswapSZs bswap32s 305 #include "hw/elf_ops.h" 306 307 #undef elfhdr 308 #undef elf_phdr 309 #undef elf_shdr 310 #undef elf_sym 311 #undef elf_rela 312 #undef elf_note 313 #undef elf_word 314 #undef elf_sword 315 #undef bswapSZs 316 #undef SZ 317 #define elfhdr elf64_hdr 318 #define elf_phdr elf64_phdr 319 #define elf_note elf64_note 320 #define elf_shdr elf64_shdr 321 #define elf_sym elf64_sym 322 #define elf_rela elf64_rela 323 #define elf_word uint64_t 324 #define elf_sword int64_t 325 #define bswapSZs bswap64s 326 #define SZ 64 327 #include "hw/elf_ops.h" 328 329 const char *load_elf_strerror(int error) 330 { 331 switch (error) { 332 case 0: 333 return "No error"; 334 case ELF_LOAD_FAILED: 335 return "Failed to load ELF"; 336 case ELF_LOAD_NOT_ELF: 337 return "The image is not ELF"; 338 case ELF_LOAD_WRONG_ARCH: 339 return "The image is from incompatible architecture"; 340 case ELF_LOAD_WRONG_ENDIAN: 341 return "The image has incorrect endianness"; 342 case ELF_LOAD_TOO_BIG: 343 return "The image segments are too big to load"; 344 default: 345 return "Unknown error"; 346 } 347 } 348 349 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 350 { 351 int fd; 352 uint8_t e_ident_local[EI_NIDENT]; 353 uint8_t *e_ident; 354 size_t hdr_size, off; 355 bool is64l; 356 357 if (!hdr) { 358 hdr = e_ident_local; 359 } 360 e_ident = hdr; 361 362 fd = open(filename, O_RDONLY | O_BINARY); 363 if (fd < 0) { 364 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 365 return; 366 } 367 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 368 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 369 goto fail; 370 } 371 if (e_ident[0] != ELFMAG0 || 372 e_ident[1] != ELFMAG1 || 373 e_ident[2] != ELFMAG2 || 374 e_ident[3] != ELFMAG3) { 375 error_setg(errp, "Bad ELF magic"); 376 goto fail; 377 } 378 379 is64l = e_ident[EI_CLASS] == ELFCLASS64; 380 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 381 if (is64) { 382 *is64 = is64l; 383 } 384 385 off = EI_NIDENT; 386 while (hdr != e_ident_local && off < hdr_size) { 387 size_t br = read(fd, hdr + off, hdr_size - off); 388 switch (br) { 389 case 0: 390 error_setg(errp, "File too short: %s", filename); 391 goto fail; 392 case -1: 393 error_setg_errno(errp, errno, "Failed to read file: %s", 394 filename); 395 goto fail; 396 } 397 off += br; 398 } 399 400 fail: 401 close(fd); 402 } 403 404 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 405 int load_elf(const char *filename, 406 uint64_t (*elf_note_fn)(void *, void *, bool), 407 uint64_t (*translate_fn)(void *, uint64_t), 408 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 409 uint64_t *highaddr, int big_endian, int elf_machine, 410 int clear_lsb, int data_swab) 411 { 412 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 413 pentry, lowaddr, highaddr, big_endian, elf_machine, 414 clear_lsb, data_swab, NULL); 415 } 416 417 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 418 int load_elf_as(const char *filename, 419 uint64_t (*elf_note_fn)(void *, void *, bool), 420 uint64_t (*translate_fn)(void *, uint64_t), 421 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 422 uint64_t *highaddr, int big_endian, int elf_machine, 423 int clear_lsb, int data_swab, AddressSpace *as) 424 { 425 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 426 pentry, lowaddr, highaddr, big_endian, elf_machine, 427 clear_lsb, data_swab, as, true); 428 } 429 430 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 431 int load_elf_ram(const char *filename, 432 uint64_t (*elf_note_fn)(void *, void *, bool), 433 uint64_t (*translate_fn)(void *, uint64_t), 434 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 435 uint64_t *highaddr, int big_endian, int elf_machine, 436 int clear_lsb, int data_swab, AddressSpace *as, 437 bool load_rom) 438 { 439 return load_elf_ram_sym(filename, elf_note_fn, 440 translate_fn, translate_opaque, 441 pentry, lowaddr, highaddr, big_endian, 442 elf_machine, clear_lsb, data_swab, as, 443 load_rom, NULL); 444 } 445 446 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 447 int load_elf_ram_sym(const char *filename, 448 uint64_t (*elf_note_fn)(void *, void *, bool), 449 uint64_t (*translate_fn)(void *, uint64_t), 450 void *translate_opaque, uint64_t *pentry, 451 uint64_t *lowaddr, uint64_t *highaddr, int big_endian, 452 int elf_machine, int clear_lsb, int data_swab, 453 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 454 { 455 int fd, data_order, target_data_order, must_swab, ret = ELF_LOAD_FAILED; 456 uint8_t e_ident[EI_NIDENT]; 457 458 fd = open(filename, O_RDONLY | O_BINARY); 459 if (fd < 0) { 460 perror(filename); 461 return -1; 462 } 463 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 464 goto fail; 465 if (e_ident[0] != ELFMAG0 || 466 e_ident[1] != ELFMAG1 || 467 e_ident[2] != ELFMAG2 || 468 e_ident[3] != ELFMAG3) { 469 ret = ELF_LOAD_NOT_ELF; 470 goto fail; 471 } 472 #ifdef HOST_WORDS_BIGENDIAN 473 data_order = ELFDATA2MSB; 474 #else 475 data_order = ELFDATA2LSB; 476 #endif 477 must_swab = data_order != e_ident[EI_DATA]; 478 if (big_endian) { 479 target_data_order = ELFDATA2MSB; 480 } else { 481 target_data_order = ELFDATA2LSB; 482 } 483 484 if (target_data_order != e_ident[EI_DATA]) { 485 ret = ELF_LOAD_WRONG_ENDIAN; 486 goto fail; 487 } 488 489 lseek(fd, 0, SEEK_SET); 490 if (e_ident[EI_CLASS] == ELFCLASS64) { 491 ret = load_elf64(filename, fd, elf_note_fn, 492 translate_fn, translate_opaque, must_swab, 493 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 494 data_swab, as, load_rom, sym_cb); 495 } else { 496 ret = load_elf32(filename, fd, elf_note_fn, 497 translate_fn, translate_opaque, must_swab, 498 pentry, lowaddr, highaddr, elf_machine, clear_lsb, 499 data_swab, as, load_rom, sym_cb); 500 } 501 502 fail: 503 close(fd); 504 return ret; 505 } 506 507 static void bswap_uboot_header(uboot_image_header_t *hdr) 508 { 509 #ifndef HOST_WORDS_BIGENDIAN 510 bswap32s(&hdr->ih_magic); 511 bswap32s(&hdr->ih_hcrc); 512 bswap32s(&hdr->ih_time); 513 bswap32s(&hdr->ih_size); 514 bswap32s(&hdr->ih_load); 515 bswap32s(&hdr->ih_ep); 516 bswap32s(&hdr->ih_dcrc); 517 #endif 518 } 519 520 521 #define ZALLOC_ALIGNMENT 16 522 523 static void *zalloc(void *x, unsigned items, unsigned size) 524 { 525 void *p; 526 527 size *= items; 528 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 529 530 p = g_malloc(size); 531 532 return (p); 533 } 534 535 static void zfree(void *x, void *addr) 536 { 537 g_free(addr); 538 } 539 540 541 #define HEAD_CRC 2 542 #define EXTRA_FIELD 4 543 #define ORIG_NAME 8 544 #define COMMENT 0x10 545 #define RESERVED 0xe0 546 547 #define DEFLATED 8 548 549 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 550 { 551 z_stream s; 552 ssize_t dstbytes; 553 int r, i, flags; 554 555 /* skip header */ 556 i = 10; 557 flags = src[3]; 558 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 559 puts ("Error: Bad gzipped data\n"); 560 return -1; 561 } 562 if ((flags & EXTRA_FIELD) != 0) 563 i = 12 + src[10] + (src[11] << 8); 564 if ((flags & ORIG_NAME) != 0) 565 while (src[i++] != 0) 566 ; 567 if ((flags & COMMENT) != 0) 568 while (src[i++] != 0) 569 ; 570 if ((flags & HEAD_CRC) != 0) 571 i += 2; 572 if (i >= srclen) { 573 puts ("Error: gunzip out of data in header\n"); 574 return -1; 575 } 576 577 s.zalloc = zalloc; 578 s.zfree = zfree; 579 580 r = inflateInit2(&s, -MAX_WBITS); 581 if (r != Z_OK) { 582 printf ("Error: inflateInit2() returned %d\n", r); 583 return (-1); 584 } 585 s.next_in = src + i; 586 s.avail_in = srclen - i; 587 s.next_out = dst; 588 s.avail_out = dstlen; 589 r = inflate(&s, Z_FINISH); 590 if (r != Z_OK && r != Z_STREAM_END) { 591 printf ("Error: inflate() returned %d\n", r); 592 return -1; 593 } 594 dstbytes = s.next_out - (unsigned char *) dst; 595 inflateEnd(&s); 596 597 return dstbytes; 598 } 599 600 /* Load a U-Boot image. */ 601 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 602 int *is_linux, uint8_t image_type, 603 uint64_t (*translate_fn)(void *, uint64_t), 604 void *translate_opaque, AddressSpace *as) 605 { 606 int fd; 607 int size; 608 hwaddr address; 609 uboot_image_header_t h; 610 uboot_image_header_t *hdr = &h; 611 uint8_t *data = NULL; 612 int ret = -1; 613 int do_uncompress = 0; 614 615 fd = open(filename, O_RDONLY | O_BINARY); 616 if (fd < 0) 617 return -1; 618 619 size = read(fd, hdr, sizeof(uboot_image_header_t)); 620 if (size < sizeof(uboot_image_header_t)) { 621 goto out; 622 } 623 624 bswap_uboot_header(hdr); 625 626 if (hdr->ih_magic != IH_MAGIC) 627 goto out; 628 629 if (hdr->ih_type != image_type) { 630 if (!(image_type == IH_TYPE_KERNEL && 631 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 632 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 633 image_type); 634 goto out; 635 } 636 } 637 638 /* TODO: Implement other image types. */ 639 switch (hdr->ih_type) { 640 case IH_TYPE_KERNEL_NOLOAD: 641 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 642 fprintf(stderr, "this image format (kernel_noload) cannot be " 643 "loaded on this machine type"); 644 goto out; 645 } 646 647 hdr->ih_load = *loadaddr + sizeof(*hdr); 648 hdr->ih_ep += hdr->ih_load; 649 /* fall through */ 650 case IH_TYPE_KERNEL: 651 address = hdr->ih_load; 652 if (translate_fn) { 653 address = translate_fn(translate_opaque, address); 654 } 655 if (loadaddr) { 656 *loadaddr = hdr->ih_load; 657 } 658 659 switch (hdr->ih_comp) { 660 case IH_COMP_NONE: 661 break; 662 case IH_COMP_GZIP: 663 do_uncompress = 1; 664 break; 665 default: 666 fprintf(stderr, 667 "Unable to load u-boot images with compression type %d\n", 668 hdr->ih_comp); 669 goto out; 670 } 671 672 if (ep) { 673 *ep = hdr->ih_ep; 674 } 675 676 /* TODO: Check CPU type. */ 677 if (is_linux) { 678 if (hdr->ih_os == IH_OS_LINUX) { 679 *is_linux = 1; 680 } else { 681 *is_linux = 0; 682 } 683 } 684 685 break; 686 case IH_TYPE_RAMDISK: 687 address = *loadaddr; 688 break; 689 default: 690 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 691 goto out; 692 } 693 694 data = g_malloc(hdr->ih_size); 695 696 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 697 fprintf(stderr, "Error reading file\n"); 698 goto out; 699 } 700 701 if (do_uncompress) { 702 uint8_t *compressed_data; 703 size_t max_bytes; 704 ssize_t bytes; 705 706 compressed_data = data; 707 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 708 data = g_malloc(max_bytes); 709 710 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 711 g_free(compressed_data); 712 if (bytes < 0) { 713 fprintf(stderr, "Unable to decompress gzipped image!\n"); 714 goto out; 715 } 716 hdr->ih_size = bytes; 717 } 718 719 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 720 721 ret = hdr->ih_size; 722 723 out: 724 g_free(data); 725 close(fd); 726 return ret; 727 } 728 729 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 730 int *is_linux, 731 uint64_t (*translate_fn)(void *, uint64_t), 732 void *translate_opaque) 733 { 734 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 735 translate_fn, translate_opaque, NULL); 736 } 737 738 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 739 int *is_linux, 740 uint64_t (*translate_fn)(void *, uint64_t), 741 void *translate_opaque, AddressSpace *as) 742 { 743 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 744 translate_fn, translate_opaque, as); 745 } 746 747 /* Load a ramdisk. */ 748 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 749 { 750 return load_ramdisk_as(filename, addr, max_sz, NULL); 751 } 752 753 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 754 AddressSpace *as) 755 { 756 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 757 NULL, NULL, as); 758 } 759 760 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 761 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 762 uint8_t **buffer) 763 { 764 uint8_t *compressed_data = NULL; 765 uint8_t *data = NULL; 766 gsize len; 767 ssize_t bytes; 768 int ret = -1; 769 770 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 771 NULL)) { 772 goto out; 773 } 774 775 /* Is it a gzip-compressed file? */ 776 if (len < 2 || 777 compressed_data[0] != 0x1f || 778 compressed_data[1] != 0x8b) { 779 goto out; 780 } 781 782 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 783 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 784 } 785 786 data = g_malloc(max_sz); 787 bytes = gunzip(data, max_sz, compressed_data, len); 788 if (bytes < 0) { 789 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 790 filename); 791 goto out; 792 } 793 794 /* trim to actual size and return to caller */ 795 *buffer = g_realloc(data, bytes); 796 ret = bytes; 797 /* ownership has been transferred to caller */ 798 data = NULL; 799 800 out: 801 g_free(compressed_data); 802 g_free(data); 803 return ret; 804 } 805 806 /* Load a gzip-compressed kernel. */ 807 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 808 { 809 int bytes; 810 uint8_t *data; 811 812 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 813 if (bytes != -1) { 814 rom_add_blob_fixed(filename, data, bytes, addr); 815 g_free(data); 816 } 817 return bytes; 818 } 819 820 /* 821 * Functions for reboot-persistent memory regions. 822 * - used for vga bios and option roms. 823 * - also linux kernel (-kernel / -initrd). 824 */ 825 826 typedef struct Rom Rom; 827 828 struct Rom { 829 char *name; 830 char *path; 831 832 /* datasize is the amount of memory allocated in "data". If datasize is less 833 * than romsize, it means that the area from datasize to romsize is filled 834 * with zeros. 835 */ 836 size_t romsize; 837 size_t datasize; 838 839 uint8_t *data; 840 MemoryRegion *mr; 841 AddressSpace *as; 842 int isrom; 843 char *fw_dir; 844 char *fw_file; 845 GMappedFile *mapped_file; 846 847 bool committed; 848 849 hwaddr addr; 850 QTAILQ_ENTRY(Rom) next; 851 }; 852 853 static FWCfgState *fw_cfg; 854 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 855 856 /* 857 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 858 * rom_add_elf_program()) 859 */ 860 static void rom_free_data(Rom *rom) 861 { 862 if (rom->mapped_file) { 863 g_mapped_file_unref(rom->mapped_file); 864 rom->mapped_file = NULL; 865 } else { 866 g_free(rom->data); 867 } 868 869 rom->data = NULL; 870 } 871 872 static void rom_free(Rom *rom) 873 { 874 rom_free_data(rom); 875 g_free(rom->path); 876 g_free(rom->name); 877 g_free(rom->fw_dir); 878 g_free(rom->fw_file); 879 g_free(rom); 880 } 881 882 static inline bool rom_order_compare(Rom *rom, Rom *item) 883 { 884 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 885 (rom->as == item->as && rom->addr >= item->addr); 886 } 887 888 static void rom_insert(Rom *rom) 889 { 890 Rom *item; 891 892 if (roms_loaded) { 893 hw_error ("ROM images must be loaded at startup\n"); 894 } 895 896 /* The user didn't specify an address space, this is the default */ 897 if (!rom->as) { 898 rom->as = &address_space_memory; 899 } 900 901 rom->committed = false; 902 903 /* List is ordered by load address in the same address space */ 904 QTAILQ_FOREACH(item, &roms, next) { 905 if (rom_order_compare(rom, item)) { 906 continue; 907 } 908 QTAILQ_INSERT_BEFORE(item, rom, next); 909 return; 910 } 911 QTAILQ_INSERT_TAIL(&roms, rom, next); 912 } 913 914 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 915 { 916 if (fw_cfg) { 917 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 918 } 919 } 920 921 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 922 { 923 void *data; 924 925 rom->mr = g_malloc(sizeof(*rom->mr)); 926 memory_region_init_resizeable_ram(rom->mr, owner, name, 927 rom->datasize, rom->romsize, 928 fw_cfg_resized, 929 &error_fatal); 930 memory_region_set_readonly(rom->mr, ro); 931 vmstate_register_ram_global(rom->mr); 932 933 data = memory_region_get_ram_ptr(rom->mr); 934 memcpy(data, rom->data, rom->datasize); 935 936 return data; 937 } 938 939 int rom_add_file(const char *file, const char *fw_dir, 940 hwaddr addr, int32_t bootindex, 941 bool option_rom, MemoryRegion *mr, 942 AddressSpace *as) 943 { 944 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 945 Rom *rom; 946 int rc, fd = -1; 947 char devpath[100]; 948 949 if (as && mr) { 950 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 951 "not valid when loading a rom\n"); 952 /* We haven't allocated anything so we don't need any cleanup */ 953 return -1; 954 } 955 956 rom = g_malloc0(sizeof(*rom)); 957 rom->name = g_strdup(file); 958 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 959 rom->as = as; 960 if (rom->path == NULL) { 961 rom->path = g_strdup(file); 962 } 963 964 fd = open(rom->path, O_RDONLY | O_BINARY); 965 if (fd == -1) { 966 fprintf(stderr, "Could not open option rom '%s': %s\n", 967 rom->path, strerror(errno)); 968 goto err; 969 } 970 971 if (fw_dir) { 972 rom->fw_dir = g_strdup(fw_dir); 973 rom->fw_file = g_strdup(file); 974 } 975 rom->addr = addr; 976 rom->romsize = lseek(fd, 0, SEEK_END); 977 if (rom->romsize == -1) { 978 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 979 rom->name, strerror(errno)); 980 goto err; 981 } 982 983 rom->datasize = rom->romsize; 984 rom->data = g_malloc0(rom->datasize); 985 lseek(fd, 0, SEEK_SET); 986 rc = read(fd, rom->data, rom->datasize); 987 if (rc != rom->datasize) { 988 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 989 rom->name, rc, rom->datasize); 990 goto err; 991 } 992 close(fd); 993 rom_insert(rom); 994 if (rom->fw_file && fw_cfg) { 995 const char *basename; 996 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 997 void *data; 998 999 basename = strrchr(rom->fw_file, '/'); 1000 if (basename) { 1001 basename++; 1002 } else { 1003 basename = rom->fw_file; 1004 } 1005 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1006 basename); 1007 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1008 1009 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1010 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1011 } else { 1012 data = rom->data; 1013 } 1014 1015 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1016 } else { 1017 if (mr) { 1018 rom->mr = mr; 1019 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1020 } else { 1021 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1022 } 1023 } 1024 1025 add_boot_device_path(bootindex, NULL, devpath); 1026 return 0; 1027 1028 err: 1029 if (fd != -1) 1030 close(fd); 1031 1032 rom_free(rom); 1033 return -1; 1034 } 1035 1036 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1037 size_t max_len, hwaddr addr, const char *fw_file_name, 1038 FWCfgCallback fw_callback, void *callback_opaque, 1039 AddressSpace *as, bool read_only) 1040 { 1041 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1042 Rom *rom; 1043 MemoryRegion *mr = NULL; 1044 1045 rom = g_malloc0(sizeof(*rom)); 1046 rom->name = g_strdup(name); 1047 rom->as = as; 1048 rom->addr = addr; 1049 rom->romsize = max_len ? max_len : len; 1050 rom->datasize = len; 1051 g_assert(rom->romsize >= rom->datasize); 1052 rom->data = g_malloc0(rom->datasize); 1053 memcpy(rom->data, blob, len); 1054 rom_insert(rom); 1055 if (fw_file_name && fw_cfg) { 1056 char devpath[100]; 1057 void *data; 1058 1059 if (read_only) { 1060 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1061 } else { 1062 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1063 } 1064 1065 if (mc->rom_file_has_mr) { 1066 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1067 mr = rom->mr; 1068 } else { 1069 data = rom->data; 1070 } 1071 1072 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1073 fw_callback, NULL, callback_opaque, 1074 data, rom->datasize, read_only); 1075 } 1076 return mr; 1077 } 1078 1079 /* This function is specific for elf program because we don't need to allocate 1080 * all the rom. We just allocate the first part and the rest is just zeros. This 1081 * is why romsize and datasize are different. Also, this function takes its own 1082 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1083 */ 1084 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1085 size_t datasize, size_t romsize, hwaddr addr, 1086 AddressSpace *as) 1087 { 1088 Rom *rom; 1089 1090 rom = g_malloc0(sizeof(*rom)); 1091 rom->name = g_strdup(name); 1092 rom->addr = addr; 1093 rom->datasize = datasize; 1094 rom->romsize = romsize; 1095 rom->data = data; 1096 rom->as = as; 1097 1098 if (mapped_file && data) { 1099 g_mapped_file_ref(mapped_file); 1100 rom->mapped_file = mapped_file; 1101 } 1102 1103 rom_insert(rom); 1104 return 0; 1105 } 1106 1107 int rom_add_vga(const char *file) 1108 { 1109 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1110 } 1111 1112 int rom_add_option(const char *file, int32_t bootindex) 1113 { 1114 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1115 } 1116 1117 static void rom_reset(void *unused) 1118 { 1119 Rom *rom; 1120 1121 /* 1122 * We don't need to fill in the RAM with ROM data because we'll fill 1123 * the data in during the next incoming migration in all cases. Note 1124 * that some of those RAMs can actually be modified by the guest on ARM 1125 * so this is probably the only right thing to do here. 1126 */ 1127 if (runstate_check(RUN_STATE_INMIGRATE)) 1128 return; 1129 1130 QTAILQ_FOREACH(rom, &roms, next) { 1131 if (rom->fw_file) { 1132 continue; 1133 } 1134 if (rom->data == NULL) { 1135 continue; 1136 } 1137 if (rom->mr) { 1138 void *host = memory_region_get_ram_ptr(rom->mr); 1139 memcpy(host, rom->data, rom->datasize); 1140 } else { 1141 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1142 rom->data, rom->datasize); 1143 } 1144 if (rom->isrom) { 1145 /* rom needs to be written only once */ 1146 rom_free_data(rom); 1147 } 1148 /* 1149 * The rom loader is really on the same level as firmware in the guest 1150 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1151 * that the instruction cache for that new region is clear, so that the 1152 * CPU definitely fetches its instructions from the just written data. 1153 */ 1154 cpu_flush_icache_range(rom->addr, rom->datasize); 1155 1156 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1157 } 1158 } 1159 1160 int rom_check_and_register_reset(void) 1161 { 1162 hwaddr addr = 0; 1163 MemoryRegionSection section; 1164 Rom *rom; 1165 AddressSpace *as = NULL; 1166 1167 QTAILQ_FOREACH(rom, &roms, next) { 1168 if (rom->fw_file) { 1169 continue; 1170 } 1171 if (!rom->mr) { 1172 if ((addr > rom->addr) && (as == rom->as)) { 1173 fprintf(stderr, "rom: requested regions overlap " 1174 "(rom %s. free=0x" TARGET_FMT_plx 1175 ", addr=0x" TARGET_FMT_plx ")\n", 1176 rom->name, addr, rom->addr); 1177 return -1; 1178 } 1179 addr = rom->addr; 1180 addr += rom->romsize; 1181 as = rom->as; 1182 } 1183 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1184 rom->addr, 1); 1185 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1186 memory_region_unref(section.mr); 1187 } 1188 qemu_register_reset(rom_reset, NULL); 1189 roms_loaded = 1; 1190 return 0; 1191 } 1192 1193 void rom_set_fw(FWCfgState *f) 1194 { 1195 fw_cfg = f; 1196 } 1197 1198 void rom_set_order_override(int order) 1199 { 1200 if (!fw_cfg) 1201 return; 1202 fw_cfg_set_order_override(fw_cfg, order); 1203 } 1204 1205 void rom_reset_order_override(void) 1206 { 1207 if (!fw_cfg) 1208 return; 1209 fw_cfg_reset_order_override(fw_cfg); 1210 } 1211 1212 void rom_transaction_begin(void) 1213 { 1214 Rom *rom; 1215 1216 /* Ignore ROMs added without the transaction API */ 1217 QTAILQ_FOREACH(rom, &roms, next) { 1218 rom->committed = true; 1219 } 1220 } 1221 1222 void rom_transaction_end(bool commit) 1223 { 1224 Rom *rom; 1225 Rom *tmp; 1226 1227 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1228 if (rom->committed) { 1229 continue; 1230 } 1231 if (commit) { 1232 rom->committed = true; 1233 } else { 1234 QTAILQ_REMOVE(&roms, rom, next); 1235 rom_free(rom); 1236 } 1237 } 1238 } 1239 1240 static Rom *find_rom(hwaddr addr, size_t size) 1241 { 1242 Rom *rom; 1243 1244 QTAILQ_FOREACH(rom, &roms, next) { 1245 if (rom->fw_file) { 1246 continue; 1247 } 1248 if (rom->mr) { 1249 continue; 1250 } 1251 if (rom->addr > addr) { 1252 continue; 1253 } 1254 if (rom->addr + rom->romsize < addr + size) { 1255 continue; 1256 } 1257 return rom; 1258 } 1259 return NULL; 1260 } 1261 1262 /* 1263 * Copies memory from registered ROMs to dest. Any memory that is contained in 1264 * a ROM between addr and addr + size is copied. Note that this can involve 1265 * multiple ROMs, which need not start at addr and need not end at addr + size. 1266 */ 1267 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1268 { 1269 hwaddr end = addr + size; 1270 uint8_t *s, *d = dest; 1271 size_t l = 0; 1272 Rom *rom; 1273 1274 QTAILQ_FOREACH(rom, &roms, next) { 1275 if (rom->fw_file) { 1276 continue; 1277 } 1278 if (rom->mr) { 1279 continue; 1280 } 1281 if (rom->addr + rom->romsize < addr) { 1282 continue; 1283 } 1284 if (rom->addr > end) { 1285 break; 1286 } 1287 1288 d = dest + (rom->addr - addr); 1289 s = rom->data; 1290 l = rom->datasize; 1291 1292 if ((d + l) > (dest + size)) { 1293 l = dest - d; 1294 } 1295 1296 if (l > 0) { 1297 memcpy(d, s, l); 1298 } 1299 1300 if (rom->romsize > rom->datasize) { 1301 /* If datasize is less than romsize, it means that we didn't 1302 * allocate all the ROM because the trailing data are only zeros. 1303 */ 1304 1305 d += l; 1306 l = rom->romsize - rom->datasize; 1307 1308 if ((d + l) > (dest + size)) { 1309 /* Rom size doesn't fit in the destination area. Adjust to avoid 1310 * overflow. 1311 */ 1312 l = dest - d; 1313 } 1314 1315 if (l > 0) { 1316 memset(d, 0x0, l); 1317 } 1318 } 1319 } 1320 1321 return (d + l) - dest; 1322 } 1323 1324 void *rom_ptr(hwaddr addr, size_t size) 1325 { 1326 Rom *rom; 1327 1328 rom = find_rom(addr, size); 1329 if (!rom || !rom->data) 1330 return NULL; 1331 return rom->data + (addr - rom->addr); 1332 } 1333 1334 void hmp_info_roms(Monitor *mon, const QDict *qdict) 1335 { 1336 Rom *rom; 1337 1338 QTAILQ_FOREACH(rom, &roms, next) { 1339 if (rom->mr) { 1340 monitor_printf(mon, "%s" 1341 " size=0x%06zx name=\"%s\"\n", 1342 memory_region_name(rom->mr), 1343 rom->romsize, 1344 rom->name); 1345 } else if (!rom->fw_file) { 1346 monitor_printf(mon, "addr=" TARGET_FMT_plx 1347 " size=0x%06zx mem=%s name=\"%s\"\n", 1348 rom->addr, rom->romsize, 1349 rom->isrom ? "rom" : "ram", 1350 rom->name); 1351 } else { 1352 monitor_printf(mon, "fw=%s/%s" 1353 " size=0x%06zx name=\"%s\"\n", 1354 rom->fw_dir, 1355 rom->fw_file, 1356 rom->romsize, 1357 rom->name); 1358 } 1359 } 1360 } 1361 1362 typedef enum HexRecord HexRecord; 1363 enum HexRecord { 1364 DATA_RECORD = 0, 1365 EOF_RECORD, 1366 EXT_SEG_ADDR_RECORD, 1367 START_SEG_ADDR_RECORD, 1368 EXT_LINEAR_ADDR_RECORD, 1369 START_LINEAR_ADDR_RECORD, 1370 }; 1371 1372 /* Each record contains a 16-bit address which is combined with the upper 16 1373 * bits of the implicit "next address" to form a 32-bit address. 1374 */ 1375 #define NEXT_ADDR_MASK 0xffff0000 1376 1377 #define DATA_FIELD_MAX_LEN 0xff 1378 #define LEN_EXCEPT_DATA 0x5 1379 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1380 * sizeof(checksum) */ 1381 typedef struct { 1382 uint8_t byte_count; 1383 uint16_t address; 1384 uint8_t record_type; 1385 uint8_t data[DATA_FIELD_MAX_LEN]; 1386 uint8_t checksum; 1387 } HexLine; 1388 1389 /* return 0 or -1 if error */ 1390 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1391 uint32_t *index, const bool in_process) 1392 { 1393 /* +-------+---------------+-------+---------------------+--------+ 1394 * | byte | |record | | | 1395 * | count | address | type | data |checksum| 1396 * +-------+---------------+-------+---------------------+--------+ 1397 * ^ ^ ^ ^ ^ ^ 1398 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1399 */ 1400 uint8_t value = 0; 1401 uint32_t idx = *index; 1402 /* ignore space */ 1403 if (g_ascii_isspace(c)) { 1404 return true; 1405 } 1406 if (!g_ascii_isxdigit(c) || !in_process) { 1407 return false; 1408 } 1409 value = g_ascii_xdigit_value(c); 1410 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1411 if (idx < 2) { 1412 line->byte_count |= value; 1413 } else if (2 <= idx && idx < 6) { 1414 line->address <<= 4; 1415 line->address += g_ascii_xdigit_value(c); 1416 } else if (6 <= idx && idx < 8) { 1417 line->record_type |= value; 1418 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1419 line->data[(idx - 8) >> 1] |= value; 1420 } else if (8 + 2 * line->byte_count <= idx && 1421 idx < 10 + 2 * line->byte_count) { 1422 line->checksum |= value; 1423 } else { 1424 return false; 1425 } 1426 *our_checksum += value; 1427 ++(*index); 1428 return true; 1429 } 1430 1431 typedef struct { 1432 const char *filename; 1433 HexLine line; 1434 uint8_t *bin_buf; 1435 hwaddr *start_addr; 1436 int total_size; 1437 uint32_t next_address_to_write; 1438 uint32_t current_address; 1439 uint32_t current_rom_index; 1440 uint32_t rom_start_address; 1441 AddressSpace *as; 1442 } HexParser; 1443 1444 /* return size or -1 if error */ 1445 static int handle_record_type(HexParser *parser) 1446 { 1447 HexLine *line = &(parser->line); 1448 switch (line->record_type) { 1449 case DATA_RECORD: 1450 parser->current_address = 1451 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1452 /* verify this is a contiguous block of memory */ 1453 if (parser->current_address != parser->next_address_to_write) { 1454 if (parser->current_rom_index != 0) { 1455 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1456 parser->current_rom_index, 1457 parser->rom_start_address, parser->as); 1458 } 1459 parser->rom_start_address = parser->current_address; 1460 parser->current_rom_index = 0; 1461 } 1462 1463 /* copy from line buffer to output bin_buf */ 1464 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1465 line->byte_count); 1466 parser->current_rom_index += line->byte_count; 1467 parser->total_size += line->byte_count; 1468 /* save next address to write */ 1469 parser->next_address_to_write = 1470 parser->current_address + line->byte_count; 1471 break; 1472 1473 case EOF_RECORD: 1474 if (parser->current_rom_index != 0) { 1475 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1476 parser->current_rom_index, 1477 parser->rom_start_address, parser->as); 1478 } 1479 return parser->total_size; 1480 case EXT_SEG_ADDR_RECORD: 1481 case EXT_LINEAR_ADDR_RECORD: 1482 if (line->byte_count != 2 && line->address != 0) { 1483 return -1; 1484 } 1485 1486 if (parser->current_rom_index != 0) { 1487 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1488 parser->current_rom_index, 1489 parser->rom_start_address, parser->as); 1490 } 1491 1492 /* save next address to write, 1493 * in case of non-contiguous block of memory */ 1494 parser->next_address_to_write = (line->data[0] << 12) | 1495 (line->data[1] << 4); 1496 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1497 parser->next_address_to_write <<= 12; 1498 } 1499 1500 parser->rom_start_address = parser->next_address_to_write; 1501 parser->current_rom_index = 0; 1502 break; 1503 1504 case START_SEG_ADDR_RECORD: 1505 if (line->byte_count != 4 && line->address != 0) { 1506 return -1; 1507 } 1508 1509 /* x86 16-bit CS:IP segmented addressing */ 1510 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1511 ((line->data[2] << 8) | line->data[3]); 1512 break; 1513 1514 case START_LINEAR_ADDR_RECORD: 1515 if (line->byte_count != 4 && line->address != 0) { 1516 return -1; 1517 } 1518 1519 *(parser->start_addr) = ldl_be_p(line->data); 1520 break; 1521 1522 default: 1523 return -1; 1524 } 1525 1526 return parser->total_size; 1527 } 1528 1529 /* return size or -1 if error */ 1530 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1531 size_t hex_blob_size, AddressSpace *as) 1532 { 1533 bool in_process = false; /* avoid re-enter and 1534 * check whether record begin with ':' */ 1535 uint8_t *end = hex_blob + hex_blob_size; 1536 uint8_t our_checksum = 0; 1537 uint32_t record_index = 0; 1538 HexParser parser = { 1539 .filename = filename, 1540 .bin_buf = g_malloc(hex_blob_size), 1541 .start_addr = addr, 1542 .as = as, 1543 }; 1544 1545 rom_transaction_begin(); 1546 1547 for (; hex_blob < end; ++hex_blob) { 1548 switch (*hex_blob) { 1549 case '\r': 1550 case '\n': 1551 if (!in_process) { 1552 break; 1553 } 1554 1555 in_process = false; 1556 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1557 record_index || 1558 our_checksum != 0) { 1559 parser.total_size = -1; 1560 goto out; 1561 } 1562 1563 if (handle_record_type(&parser) == -1) { 1564 parser.total_size = -1; 1565 goto out; 1566 } 1567 break; 1568 1569 /* start of a new record. */ 1570 case ':': 1571 memset(&parser.line, 0, sizeof(HexLine)); 1572 in_process = true; 1573 record_index = 0; 1574 break; 1575 1576 /* decoding lines */ 1577 default: 1578 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1579 &record_index, in_process)) { 1580 parser.total_size = -1; 1581 goto out; 1582 } 1583 break; 1584 } 1585 } 1586 1587 out: 1588 g_free(parser.bin_buf); 1589 rom_transaction_end(parser.total_size != -1); 1590 return parser.total_size; 1591 } 1592 1593 /* return size or -1 if error */ 1594 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1595 { 1596 gsize hex_blob_size; 1597 gchar *hex_blob; 1598 int total_size = 0; 1599 1600 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1601 return -1; 1602 } 1603 1604 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1605 hex_blob_size, as); 1606 1607 g_free(hex_blob); 1608 return total_size; 1609 } 1610