xref: /openbmc/qemu/hw/core/loader.c (revision de799beb)
1 /*
2  * QEMU Executable loader
3  *
4  * Copyright (c) 2006 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  *
24  * Gunzip functionality in this file is derived from u-boot:
25  *
26  * (C) Copyright 2008 Semihalf
27  *
28  * (C) Copyright 2000-2005
29  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30  *
31  * This program is free software; you can redistribute it and/or
32  * modify it under the terms of the GNU General Public License as
33  * published by the Free Software Foundation; either version 2 of
34  * the License, or (at your option) any later version.
35  *
36  * This program is distributed in the hope that it will be useful,
37  * but WITHOUT ANY WARRANTY; without even the implied warranty of
38  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39  * GNU General Public License for more details.
40  *
41  * You should have received a copy of the GNU General Public License along
42  * with this program; if not, see <http://www.gnu.org/licenses/>.
43  */
44 
45 #include "qemu/osdep.h"
46 #include "qemu/datadir.h"
47 #include "qapi/error.h"
48 #include "qapi/qapi-commands-machine.h"
49 #include "qapi/type-helpers.h"
50 #include "trace.h"
51 #include "hw/hw.h"
52 #include "disas/disas.h"
53 #include "migration/vmstate.h"
54 #include "monitor/monitor.h"
55 #include "sysemu/reset.h"
56 #include "sysemu/sysemu.h"
57 #include "uboot_image.h"
58 #include "hw/loader.h"
59 #include "hw/nvram/fw_cfg.h"
60 #include "exec/memory.h"
61 #include "hw/boards.h"
62 #include "qemu/cutils.h"
63 #include "sysemu/runstate.h"
64 
65 #include <zlib.h>
66 
67 static int roms_loaded;
68 
69 /* return the size or -1 if error */
70 int64_t get_image_size(const char *filename)
71 {
72     int fd;
73     int64_t size;
74     fd = open(filename, O_RDONLY | O_BINARY);
75     if (fd < 0)
76         return -1;
77     size = lseek(fd, 0, SEEK_END);
78     close(fd);
79     return size;
80 }
81 
82 /* return the size or -1 if error */
83 ssize_t load_image_size(const char *filename, void *addr, size_t size)
84 {
85     int fd;
86     ssize_t actsize, l = 0;
87 
88     fd = open(filename, O_RDONLY | O_BINARY);
89     if (fd < 0) {
90         return -1;
91     }
92 
93     while ((actsize = read(fd, addr + l, size - l)) > 0) {
94         l += actsize;
95     }
96 
97     close(fd);
98 
99     return actsize < 0 ? -1 : l;
100 }
101 
102 /* read()-like version */
103 ssize_t read_targphys(const char *name,
104                       int fd, hwaddr dst_addr, size_t nbytes)
105 {
106     uint8_t *buf;
107     ssize_t did;
108 
109     buf = g_malloc(nbytes);
110     did = read(fd, buf, nbytes);
111     if (did > 0)
112         rom_add_blob_fixed("read", buf, did, dst_addr);
113     g_free(buf);
114     return did;
115 }
116 
117 int load_image_targphys(const char *filename,
118                         hwaddr addr, uint64_t max_sz)
119 {
120     return load_image_targphys_as(filename, addr, max_sz, NULL);
121 }
122 
123 /* return the size or -1 if error */
124 int load_image_targphys_as(const char *filename,
125                            hwaddr addr, uint64_t max_sz, AddressSpace *as)
126 {
127     int size;
128 
129     size = get_image_size(filename);
130     if (size < 0 || size > max_sz) {
131         return -1;
132     }
133     if (size > 0) {
134         if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) {
135             return -1;
136         }
137     }
138     return size;
139 }
140 
141 int load_image_mr(const char *filename, MemoryRegion *mr)
142 {
143     int size;
144 
145     if (!memory_access_is_direct(mr, false)) {
146         /* Can only load an image into RAM or ROM */
147         return -1;
148     }
149 
150     size = get_image_size(filename);
151 
152     if (size < 0 || size > memory_region_size(mr)) {
153         return -1;
154     }
155     if (size > 0) {
156         if (rom_add_file_mr(filename, mr, -1) < 0) {
157             return -1;
158         }
159     }
160     return size;
161 }
162 
163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size,
164                       const char *source)
165 {
166     const char *nulp;
167     char *ptr;
168 
169     if (buf_size <= 0) return;
170     nulp = memchr(source, 0, buf_size);
171     if (nulp) {
172         rom_add_blob_fixed(name, source, (nulp - source) + 1, dest);
173     } else {
174         rom_add_blob_fixed(name, source, buf_size, dest);
175         ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr));
176         *ptr = 0;
177     }
178 }
179 
180 /* A.OUT loader */
181 
182 struct exec
183 {
184   uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
185   uint32_t a_text;   /* length of text, in bytes */
186   uint32_t a_data;   /* length of data, in bytes */
187   uint32_t a_bss;    /* length of uninitialized data area, in bytes */
188   uint32_t a_syms;   /* length of symbol table data in file, in bytes */
189   uint32_t a_entry;  /* start address */
190   uint32_t a_trsize; /* length of relocation info for text, in bytes */
191   uint32_t a_drsize; /* length of relocation info for data, in bytes */
192 };
193 
194 static void bswap_ahdr(struct exec *e)
195 {
196     bswap32s(&e->a_info);
197     bswap32s(&e->a_text);
198     bswap32s(&e->a_data);
199     bswap32s(&e->a_bss);
200     bswap32s(&e->a_syms);
201     bswap32s(&e->a_entry);
202     bswap32s(&e->a_trsize);
203     bswap32s(&e->a_drsize);
204 }
205 
206 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
207 #define OMAGIC 0407
208 #define NMAGIC 0410
209 #define ZMAGIC 0413
210 #define QMAGIC 0314
211 #define _N_HDROFF(x) (1024 - sizeof (struct exec))
212 #define N_TXTOFF(x)							\
213     (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
214      (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
217 
218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
219 
220 #define N_DATADDR(x, target_page_size) \
221     (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
222      : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
223 
224 
225 int load_aout(const char *filename, hwaddr addr, int max_sz,
226               int bswap_needed, hwaddr target_page_size)
227 {
228     int fd;
229     ssize_t size, ret;
230     struct exec e;
231     uint32_t magic;
232 
233     fd = open(filename, O_RDONLY | O_BINARY);
234     if (fd < 0)
235         return -1;
236 
237     size = read(fd, &e, sizeof(e));
238     if (size < 0)
239         goto fail;
240 
241     if (bswap_needed) {
242         bswap_ahdr(&e);
243     }
244 
245     magic = N_MAGIC(e);
246     switch (magic) {
247     case ZMAGIC:
248     case QMAGIC:
249     case OMAGIC:
250         if (e.a_text + e.a_data > max_sz)
251             goto fail;
252         lseek(fd, N_TXTOFF(e), SEEK_SET);
253         size = read_targphys(filename, fd, addr, e.a_text + e.a_data);
254         if (size < 0)
255             goto fail;
256         break;
257     case NMAGIC:
258         if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
259             goto fail;
260         lseek(fd, N_TXTOFF(e), SEEK_SET);
261         size = read_targphys(filename, fd, addr, e.a_text);
262         if (size < 0)
263             goto fail;
264         ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size),
265                             e.a_data);
266         if (ret < 0)
267             goto fail;
268         size += ret;
269         break;
270     default:
271         goto fail;
272     }
273     close(fd);
274     return size;
275  fail:
276     close(fd);
277     return -1;
278 }
279 
280 /* ELF loader */
281 
282 static void *load_at(int fd, off_t offset, size_t size)
283 {
284     void *ptr;
285     if (lseek(fd, offset, SEEK_SET) < 0)
286         return NULL;
287     ptr = g_malloc(size);
288     if (read(fd, ptr, size) != size) {
289         g_free(ptr);
290         return NULL;
291     }
292     return ptr;
293 }
294 
295 #ifdef ELF_CLASS
296 #undef ELF_CLASS
297 #endif
298 
299 #define ELF_CLASS   ELFCLASS32
300 #include "elf.h"
301 
302 #define SZ		32
303 #define elf_word        uint32_t
304 #define elf_sword        int32_t
305 #define bswapSZs	bswap32s
306 #include "hw/elf_ops.h"
307 
308 #undef elfhdr
309 #undef elf_phdr
310 #undef elf_shdr
311 #undef elf_sym
312 #undef elf_rela
313 #undef elf_note
314 #undef elf_word
315 #undef elf_sword
316 #undef bswapSZs
317 #undef SZ
318 #define elfhdr		elf64_hdr
319 #define elf_phdr	elf64_phdr
320 #define elf_note	elf64_note
321 #define elf_shdr	elf64_shdr
322 #define elf_sym		elf64_sym
323 #define elf_rela        elf64_rela
324 #define elf_word        uint64_t
325 #define elf_sword        int64_t
326 #define bswapSZs	bswap64s
327 #define SZ		64
328 #include "hw/elf_ops.h"
329 
330 const char *load_elf_strerror(ssize_t error)
331 {
332     switch (error) {
333     case 0:
334         return "No error";
335     case ELF_LOAD_FAILED:
336         return "Failed to load ELF";
337     case ELF_LOAD_NOT_ELF:
338         return "The image is not ELF";
339     case ELF_LOAD_WRONG_ARCH:
340         return "The image is from incompatible architecture";
341     case ELF_LOAD_WRONG_ENDIAN:
342         return "The image has incorrect endianness";
343     case ELF_LOAD_TOO_BIG:
344         return "The image segments are too big to load";
345     default:
346         return "Unknown error";
347     }
348 }
349 
350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp)
351 {
352     int fd;
353     uint8_t e_ident_local[EI_NIDENT];
354     uint8_t *e_ident;
355     size_t hdr_size, off;
356     bool is64l;
357 
358     if (!hdr) {
359         hdr = e_ident_local;
360     }
361     e_ident = hdr;
362 
363     fd = open(filename, O_RDONLY | O_BINARY);
364     if (fd < 0) {
365         error_setg_errno(errp, errno, "Failed to open file: %s", filename);
366         return;
367     }
368     if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) {
369         error_setg_errno(errp, errno, "Failed to read file: %s", filename);
370         goto fail;
371     }
372     if (e_ident[0] != ELFMAG0 ||
373         e_ident[1] != ELFMAG1 ||
374         e_ident[2] != ELFMAG2 ||
375         e_ident[3] != ELFMAG3) {
376         error_setg(errp, "Bad ELF magic");
377         goto fail;
378     }
379 
380     is64l = e_ident[EI_CLASS] == ELFCLASS64;
381     hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr);
382     if (is64) {
383         *is64 = is64l;
384     }
385 
386     off = EI_NIDENT;
387     while (hdr != e_ident_local && off < hdr_size) {
388         size_t br = read(fd, hdr + off, hdr_size - off);
389         switch (br) {
390         case 0:
391             error_setg(errp, "File too short: %s", filename);
392             goto fail;
393         case -1:
394             error_setg_errno(errp, errno, "Failed to read file: %s",
395                              filename);
396             goto fail;
397         }
398         off += br;
399     }
400 
401 fail:
402     close(fd);
403 }
404 
405 /* return < 0 if error, otherwise the number of bytes loaded in memory */
406 ssize_t load_elf(const char *filename,
407                  uint64_t (*elf_note_fn)(void *, void *, bool),
408                  uint64_t (*translate_fn)(void *, uint64_t),
409                  void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
410                  uint64_t *highaddr, uint32_t *pflags, int big_endian,
411                  int elf_machine, int clear_lsb, int data_swab)
412 {
413     return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque,
414                        pentry, lowaddr, highaddr, pflags, big_endian,
415                        elf_machine, clear_lsb, data_swab, NULL);
416 }
417 
418 /* return < 0 if error, otherwise the number of bytes loaded in memory */
419 ssize_t load_elf_as(const char *filename,
420                     uint64_t (*elf_note_fn)(void *, void *, bool),
421                     uint64_t (*translate_fn)(void *, uint64_t),
422                     void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr,
423                     uint64_t *highaddr, uint32_t *pflags, int big_endian,
424                     int elf_machine, int clear_lsb, int data_swab,
425                     AddressSpace *as)
426 {
427     return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque,
428                         pentry, lowaddr, highaddr, pflags, big_endian,
429                         elf_machine, clear_lsb, data_swab, as, true);
430 }
431 
432 /* return < 0 if error, otherwise the number of bytes loaded in memory */
433 ssize_t load_elf_ram(const char *filename,
434                      uint64_t (*elf_note_fn)(void *, void *, bool),
435                      uint64_t (*translate_fn)(void *, uint64_t),
436                      void *translate_opaque, uint64_t *pentry,
437                      uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags,
438                      int big_endian, int elf_machine, int clear_lsb,
439                      int data_swab, AddressSpace *as, bool load_rom)
440 {
441     return load_elf_ram_sym(filename, elf_note_fn,
442                             translate_fn, translate_opaque,
443                             pentry, lowaddr, highaddr, pflags, big_endian,
444                             elf_machine, clear_lsb, data_swab, as,
445                             load_rom, NULL);
446 }
447 
448 /* return < 0 if error, otherwise the number of bytes loaded in memory */
449 ssize_t load_elf_ram_sym(const char *filename,
450                          uint64_t (*elf_note_fn)(void *, void *, bool),
451                          uint64_t (*translate_fn)(void *, uint64_t),
452                          void *translate_opaque, uint64_t *pentry,
453                          uint64_t *lowaddr, uint64_t *highaddr,
454                          uint32_t *pflags, int big_endian, int elf_machine,
455                          int clear_lsb, int data_swab,
456                          AddressSpace *as, bool load_rom, symbol_fn_t sym_cb)
457 {
458     int fd, data_order, target_data_order, must_swab;
459     ssize_t ret = ELF_LOAD_FAILED;
460     uint8_t e_ident[EI_NIDENT];
461 
462     fd = open(filename, O_RDONLY | O_BINARY);
463     if (fd < 0) {
464         perror(filename);
465         return -1;
466     }
467     if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
468         goto fail;
469     if (e_ident[0] != ELFMAG0 ||
470         e_ident[1] != ELFMAG1 ||
471         e_ident[2] != ELFMAG2 ||
472         e_ident[3] != ELFMAG3) {
473         ret = ELF_LOAD_NOT_ELF;
474         goto fail;
475     }
476 #if HOST_BIG_ENDIAN
477     data_order = ELFDATA2MSB;
478 #else
479     data_order = ELFDATA2LSB;
480 #endif
481     must_swab = data_order != e_ident[EI_DATA];
482     if (big_endian) {
483         target_data_order = ELFDATA2MSB;
484     } else {
485         target_data_order = ELFDATA2LSB;
486     }
487 
488     if (target_data_order != e_ident[EI_DATA]) {
489         ret = ELF_LOAD_WRONG_ENDIAN;
490         goto fail;
491     }
492 
493     lseek(fd, 0, SEEK_SET);
494     if (e_ident[EI_CLASS] == ELFCLASS64) {
495         ret = load_elf64(filename, fd, elf_note_fn,
496                          translate_fn, translate_opaque, must_swab,
497                          pentry, lowaddr, highaddr, pflags, elf_machine,
498                          clear_lsb, data_swab, as, load_rom, sym_cb);
499     } else {
500         ret = load_elf32(filename, fd, elf_note_fn,
501                          translate_fn, translate_opaque, must_swab,
502                          pentry, lowaddr, highaddr, pflags, elf_machine,
503                          clear_lsb, data_swab, as, load_rom, sym_cb);
504     }
505 
506  fail:
507     close(fd);
508     return ret;
509 }
510 
511 static void bswap_uboot_header(uboot_image_header_t *hdr)
512 {
513 #if !HOST_BIG_ENDIAN
514     bswap32s(&hdr->ih_magic);
515     bswap32s(&hdr->ih_hcrc);
516     bswap32s(&hdr->ih_time);
517     bswap32s(&hdr->ih_size);
518     bswap32s(&hdr->ih_load);
519     bswap32s(&hdr->ih_ep);
520     bswap32s(&hdr->ih_dcrc);
521 #endif
522 }
523 
524 
525 #define ZALLOC_ALIGNMENT	16
526 
527 static void *zalloc(void *x, unsigned items, unsigned size)
528 {
529     void *p;
530 
531     size *= items;
532     size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
533 
534     p = g_malloc(size);
535 
536     return (p);
537 }
538 
539 static void zfree(void *x, void *addr)
540 {
541     g_free(addr);
542 }
543 
544 
545 #define HEAD_CRC	2
546 #define EXTRA_FIELD	4
547 #define ORIG_NAME	8
548 #define COMMENT		0x10
549 #define RESERVED	0xe0
550 
551 #define DEFLATED	8
552 
553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen)
554 {
555     z_stream s;
556     ssize_t dstbytes;
557     int r, i, flags;
558 
559     /* skip header */
560     i = 10;
561     if (srclen < 4) {
562         goto toosmall;
563     }
564     flags = src[3];
565     if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
566         puts ("Error: Bad gzipped data\n");
567         return -1;
568     }
569     if ((flags & EXTRA_FIELD) != 0) {
570         if (srclen < 12) {
571             goto toosmall;
572         }
573         i = 12 + src[10] + (src[11] << 8);
574     }
575     if ((flags & ORIG_NAME) != 0) {
576         while (i < srclen && src[i++] != 0) {
577             /* do nothing */
578         }
579     }
580     if ((flags & COMMENT) != 0) {
581         while (i < srclen && src[i++] != 0) {
582             /* do nothing */
583         }
584     }
585     if ((flags & HEAD_CRC) != 0) {
586         i += 2;
587     }
588     if (i >= srclen) {
589         goto toosmall;
590     }
591 
592     s.zalloc = zalloc;
593     s.zfree = zfree;
594 
595     r = inflateInit2(&s, -MAX_WBITS);
596     if (r != Z_OK) {
597         printf ("Error: inflateInit2() returned %d\n", r);
598         return (-1);
599     }
600     s.next_in = src + i;
601     s.avail_in = srclen - i;
602     s.next_out = dst;
603     s.avail_out = dstlen;
604     r = inflate(&s, Z_FINISH);
605     if (r != Z_OK && r != Z_STREAM_END) {
606         printf ("Error: inflate() returned %d\n", r);
607         return -1;
608     }
609     dstbytes = s.next_out - (unsigned char *) dst;
610     inflateEnd(&s);
611 
612     return dstbytes;
613 
614 toosmall:
615     puts("Error: gunzip out of data in header\n");
616     return -1;
617 }
618 
619 /* Load a U-Boot image.  */
620 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr,
621                             int *is_linux, uint8_t image_type,
622                             uint64_t (*translate_fn)(void *, uint64_t),
623                             void *translate_opaque, AddressSpace *as)
624 {
625     int fd;
626     int size;
627     hwaddr address;
628     uboot_image_header_t h;
629     uboot_image_header_t *hdr = &h;
630     uint8_t *data = NULL;
631     int ret = -1;
632     int do_uncompress = 0;
633 
634     fd = open(filename, O_RDONLY | O_BINARY);
635     if (fd < 0)
636         return -1;
637 
638     size = read(fd, hdr, sizeof(uboot_image_header_t));
639     if (size < sizeof(uboot_image_header_t)) {
640         goto out;
641     }
642 
643     bswap_uboot_header(hdr);
644 
645     if (hdr->ih_magic != IH_MAGIC)
646         goto out;
647 
648     if (hdr->ih_type != image_type) {
649         if (!(image_type == IH_TYPE_KERNEL &&
650             hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) {
651             fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type,
652                     image_type);
653             goto out;
654         }
655     }
656 
657     /* TODO: Implement other image types.  */
658     switch (hdr->ih_type) {
659     case IH_TYPE_KERNEL_NOLOAD:
660         if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) {
661             fprintf(stderr, "this image format (kernel_noload) cannot be "
662                     "loaded on this machine type");
663             goto out;
664         }
665 
666         hdr->ih_load = *loadaddr + sizeof(*hdr);
667         hdr->ih_ep += hdr->ih_load;
668         /* fall through */
669     case IH_TYPE_KERNEL:
670         address = hdr->ih_load;
671         if (translate_fn) {
672             address = translate_fn(translate_opaque, address);
673         }
674         if (loadaddr) {
675             *loadaddr = hdr->ih_load;
676         }
677 
678         switch (hdr->ih_comp) {
679         case IH_COMP_NONE:
680             break;
681         case IH_COMP_GZIP:
682             do_uncompress = 1;
683             break;
684         default:
685             fprintf(stderr,
686                     "Unable to load u-boot images with compression type %d\n",
687                     hdr->ih_comp);
688             goto out;
689         }
690 
691         if (ep) {
692             *ep = hdr->ih_ep;
693         }
694 
695         /* TODO: Check CPU type.  */
696         if (is_linux) {
697             if (hdr->ih_os == IH_OS_LINUX) {
698                 *is_linux = 1;
699             } else if (hdr->ih_os == IH_OS_VXWORKS) {
700                 /*
701                  * VxWorks 7 uses the same boot interface as the Linux kernel
702                  * on Arm (64-bit only), PowerPC and RISC-V architectures.
703                  */
704                 switch (hdr->ih_arch) {
705                 case IH_ARCH_ARM64:
706                 case IH_ARCH_PPC:
707                 case IH_ARCH_RISCV:
708                     *is_linux = 1;
709                     break;
710                 default:
711                     *is_linux = 0;
712                     break;
713                 }
714             } else {
715                 *is_linux = 0;
716             }
717         }
718 
719         break;
720     case IH_TYPE_RAMDISK:
721         address = *loadaddr;
722         break;
723     default:
724         fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type);
725         goto out;
726     }
727 
728     data = g_malloc(hdr->ih_size);
729 
730     if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
731         fprintf(stderr, "Error reading file\n");
732         goto out;
733     }
734 
735     if (do_uncompress) {
736         uint8_t *compressed_data;
737         size_t max_bytes;
738         ssize_t bytes;
739 
740         compressed_data = data;
741         max_bytes = UBOOT_MAX_GUNZIP_BYTES;
742         data = g_malloc(max_bytes);
743 
744         bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
745         g_free(compressed_data);
746         if (bytes < 0) {
747             fprintf(stderr, "Unable to decompress gzipped image!\n");
748             goto out;
749         }
750         hdr->ih_size = bytes;
751     }
752 
753     rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as);
754 
755     ret = hdr->ih_size;
756 
757 out:
758     g_free(data);
759     close(fd);
760     return ret;
761 }
762 
763 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr,
764                 int *is_linux,
765                 uint64_t (*translate_fn)(void *, uint64_t),
766                 void *translate_opaque)
767 {
768     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
769                             translate_fn, translate_opaque, NULL);
770 }
771 
772 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr,
773                    int *is_linux,
774                    uint64_t (*translate_fn)(void *, uint64_t),
775                    void *translate_opaque, AddressSpace *as)
776 {
777     return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL,
778                             translate_fn, translate_opaque, as);
779 }
780 
781 /* Load a ramdisk.  */
782 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz)
783 {
784     return load_ramdisk_as(filename, addr, max_sz, NULL);
785 }
786 
787 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz,
788                     AddressSpace *as)
789 {
790     return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK,
791                             NULL, NULL, as);
792 }
793 
794 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */
795 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz,
796                               uint8_t **buffer)
797 {
798     uint8_t *compressed_data = NULL;
799     uint8_t *data = NULL;
800     gsize len;
801     ssize_t bytes;
802     int ret = -1;
803 
804     if (!g_file_get_contents(filename, (char **) &compressed_data, &len,
805                              NULL)) {
806         goto out;
807     }
808 
809     /* Is it a gzip-compressed file? */
810     if (len < 2 ||
811         compressed_data[0] != 0x1f ||
812         compressed_data[1] != 0x8b) {
813         goto out;
814     }
815 
816     if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) {
817         max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES;
818     }
819 
820     data = g_malloc(max_sz);
821     bytes = gunzip(data, max_sz, compressed_data, len);
822     if (bytes < 0) {
823         fprintf(stderr, "%s: unable to decompress gzipped kernel file\n",
824                 filename);
825         goto out;
826     }
827 
828     /* trim to actual size and return to caller */
829     *buffer = g_realloc(data, bytes);
830     ret = bytes;
831     /* ownership has been transferred to caller */
832     data = NULL;
833 
834  out:
835     g_free(compressed_data);
836     g_free(data);
837     return ret;
838 }
839 
840 /* Load a gzip-compressed kernel. */
841 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz)
842 {
843     int bytes;
844     uint8_t *data;
845 
846     bytes = load_image_gzipped_buffer(filename, max_sz, &data);
847     if (bytes != -1) {
848         rom_add_blob_fixed(filename, data, bytes, addr);
849         g_free(data);
850     }
851     return bytes;
852 }
853 
854 /*
855  * Functions for reboot-persistent memory regions.
856  *  - used for vga bios and option roms.
857  *  - also linux kernel (-kernel / -initrd).
858  */
859 
860 typedef struct Rom Rom;
861 
862 struct Rom {
863     char *name;
864     char *path;
865 
866     /* datasize is the amount of memory allocated in "data". If datasize is less
867      * than romsize, it means that the area from datasize to romsize is filled
868      * with zeros.
869      */
870     size_t romsize;
871     size_t datasize;
872 
873     uint8_t *data;
874     MemoryRegion *mr;
875     AddressSpace *as;
876     int isrom;
877     char *fw_dir;
878     char *fw_file;
879     GMappedFile *mapped_file;
880 
881     bool committed;
882 
883     hwaddr addr;
884     QTAILQ_ENTRY(Rom) next;
885 };
886 
887 static FWCfgState *fw_cfg;
888 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms);
889 
890 /*
891  * rom->data can be heap-allocated or memory-mapped (e.g. when added with
892  * rom_add_elf_program())
893  */
894 static void rom_free_data(Rom *rom)
895 {
896     if (rom->mapped_file) {
897         g_mapped_file_unref(rom->mapped_file);
898         rom->mapped_file = NULL;
899     } else {
900         g_free(rom->data);
901     }
902 
903     rom->data = NULL;
904 }
905 
906 static void rom_free(Rom *rom)
907 {
908     rom_free_data(rom);
909     g_free(rom->path);
910     g_free(rom->name);
911     g_free(rom->fw_dir);
912     g_free(rom->fw_file);
913     g_free(rom);
914 }
915 
916 static inline bool rom_order_compare(Rom *rom, Rom *item)
917 {
918     return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) ||
919            (rom->as == item->as && rom->addr >= item->addr);
920 }
921 
922 static void rom_insert(Rom *rom)
923 {
924     Rom *item;
925 
926     if (roms_loaded) {
927         hw_error ("ROM images must be loaded at startup\n");
928     }
929 
930     /* The user didn't specify an address space, this is the default */
931     if (!rom->as) {
932         rom->as = &address_space_memory;
933     }
934 
935     rom->committed = false;
936 
937     /* List is ordered by load address in the same address space */
938     QTAILQ_FOREACH(item, &roms, next) {
939         if (rom_order_compare(rom, item)) {
940             continue;
941         }
942         QTAILQ_INSERT_BEFORE(item, rom, next);
943         return;
944     }
945     QTAILQ_INSERT_TAIL(&roms, rom, next);
946 }
947 
948 static void fw_cfg_resized(const char *id, uint64_t length, void *host)
949 {
950     if (fw_cfg) {
951         fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length);
952     }
953 }
954 
955 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro)
956 {
957     void *data;
958 
959     rom->mr = g_malloc(sizeof(*rom->mr));
960     memory_region_init_resizeable_ram(rom->mr, owner, name,
961                                       rom->datasize, rom->romsize,
962                                       fw_cfg_resized,
963                                       &error_fatal);
964     memory_region_set_readonly(rom->mr, ro);
965     vmstate_register_ram_global(rom->mr);
966 
967     data = memory_region_get_ram_ptr(rom->mr);
968     memcpy(data, rom->data, rom->datasize);
969 
970     return data;
971 }
972 
973 int rom_add_file(const char *file, const char *fw_dir,
974                  hwaddr addr, int32_t bootindex,
975                  bool option_rom, MemoryRegion *mr,
976                  AddressSpace *as)
977 {
978     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
979     Rom *rom;
980     int rc, fd = -1;
981     char devpath[100];
982 
983     if (as && mr) {
984         fprintf(stderr, "Specifying an Address Space and Memory Region is " \
985                 "not valid when loading a rom\n");
986         /* We haven't allocated anything so we don't need any cleanup */
987         return -1;
988     }
989 
990     rom = g_malloc0(sizeof(*rom));
991     rom->name = g_strdup(file);
992     rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name);
993     rom->as = as;
994     if (rom->path == NULL) {
995         rom->path = g_strdup(file);
996     }
997 
998     fd = open(rom->path, O_RDONLY | O_BINARY);
999     if (fd == -1) {
1000         fprintf(stderr, "Could not open option rom '%s': %s\n",
1001                 rom->path, strerror(errno));
1002         goto err;
1003     }
1004 
1005     if (fw_dir) {
1006         rom->fw_dir  = g_strdup(fw_dir);
1007         rom->fw_file = g_strdup(file);
1008     }
1009     rom->addr     = addr;
1010     rom->romsize  = lseek(fd, 0, SEEK_END);
1011     if (rom->romsize == -1) {
1012         fprintf(stderr, "rom: file %-20s: get size error: %s\n",
1013                 rom->name, strerror(errno));
1014         goto err;
1015     }
1016 
1017     rom->datasize = rom->romsize;
1018     rom->data     = g_malloc0(rom->datasize);
1019     lseek(fd, 0, SEEK_SET);
1020     rc = read(fd, rom->data, rom->datasize);
1021     if (rc != rom->datasize) {
1022         fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n",
1023                 rom->name, rc, rom->datasize);
1024         goto err;
1025     }
1026     close(fd);
1027     rom_insert(rom);
1028     if (rom->fw_file && fw_cfg) {
1029         const char *basename;
1030         char fw_file_name[FW_CFG_MAX_FILE_PATH];
1031         void *data;
1032 
1033         basename = strrchr(rom->fw_file, '/');
1034         if (basename) {
1035             basename++;
1036         } else {
1037             basename = rom->fw_file;
1038         }
1039         snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir,
1040                  basename);
1041         snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1042 
1043         if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) {
1044             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true);
1045         } else {
1046             data = rom->data;
1047         }
1048 
1049         fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize);
1050     } else {
1051         if (mr) {
1052             rom->mr = mr;
1053             snprintf(devpath, sizeof(devpath), "/rom@%s", file);
1054         } else {
1055             snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr);
1056         }
1057     }
1058 
1059     add_boot_device_path(bootindex, NULL, devpath);
1060     return 0;
1061 
1062 err:
1063     if (fd != -1)
1064         close(fd);
1065 
1066     rom_free(rom);
1067     return -1;
1068 }
1069 
1070 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len,
1071                    size_t max_len, hwaddr addr, const char *fw_file_name,
1072                    FWCfgCallback fw_callback, void *callback_opaque,
1073                    AddressSpace *as, bool read_only)
1074 {
1075     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1076     Rom *rom;
1077     MemoryRegion *mr = NULL;
1078 
1079     rom           = g_malloc0(sizeof(*rom));
1080     rom->name     = g_strdup(name);
1081     rom->as       = as;
1082     rom->addr     = addr;
1083     rom->romsize  = max_len ? max_len : len;
1084     rom->datasize = len;
1085     g_assert(rom->romsize >= rom->datasize);
1086     rom->data     = g_malloc0(rom->datasize);
1087     memcpy(rom->data, blob, len);
1088     rom_insert(rom);
1089     if (fw_file_name && fw_cfg) {
1090         char devpath[100];
1091         void *data;
1092 
1093         if (read_only) {
1094             snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name);
1095         } else {
1096             snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name);
1097         }
1098 
1099         if (mc->rom_file_has_mr) {
1100             data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only);
1101             mr = rom->mr;
1102         } else {
1103             data = rom->data;
1104         }
1105 
1106         fw_cfg_add_file_callback(fw_cfg, fw_file_name,
1107                                  fw_callback, NULL, callback_opaque,
1108                                  data, rom->datasize, read_only);
1109     }
1110     return mr;
1111 }
1112 
1113 /* This function is specific for elf program because we don't need to allocate
1114  * all the rom. We just allocate the first part and the rest is just zeros. This
1115  * is why romsize and datasize are different. Also, this function takes its own
1116  * reference to "mapped_file", so we don't have to allocate and copy the buffer.
1117  */
1118 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data,
1119                         size_t datasize, size_t romsize, hwaddr addr,
1120                         AddressSpace *as)
1121 {
1122     Rom *rom;
1123 
1124     rom           = g_malloc0(sizeof(*rom));
1125     rom->name     = g_strdup(name);
1126     rom->addr     = addr;
1127     rom->datasize = datasize;
1128     rom->romsize  = romsize;
1129     rom->data     = data;
1130     rom->as       = as;
1131 
1132     if (mapped_file && data) {
1133         g_mapped_file_ref(mapped_file);
1134         rom->mapped_file = mapped_file;
1135     }
1136 
1137     rom_insert(rom);
1138     return 0;
1139 }
1140 
1141 int rom_add_vga(const char *file)
1142 {
1143     return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL);
1144 }
1145 
1146 int rom_add_option(const char *file, int32_t bootindex)
1147 {
1148     return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL);
1149 }
1150 
1151 static void rom_reset(void *unused)
1152 {
1153     Rom *rom;
1154 
1155     QTAILQ_FOREACH(rom, &roms, next) {
1156         if (rom->fw_file) {
1157             continue;
1158         }
1159         /*
1160          * We don't need to fill in the RAM with ROM data because we'll fill
1161          * the data in during the next incoming migration in all cases.  Note
1162          * that some of those RAMs can actually be modified by the guest.
1163          */
1164         if (runstate_check(RUN_STATE_INMIGRATE)) {
1165             if (rom->data && rom->isrom) {
1166                 /*
1167                  * Free it so that a rom_reset after migration doesn't
1168                  * overwrite a potentially modified 'rom'.
1169                  */
1170                 rom_free_data(rom);
1171             }
1172             continue;
1173         }
1174 
1175         if (rom->data == NULL) {
1176             continue;
1177         }
1178         if (rom->mr) {
1179             void *host = memory_region_get_ram_ptr(rom->mr);
1180             memcpy(host, rom->data, rom->datasize);
1181             memset(host + rom->datasize, 0, rom->romsize - rom->datasize);
1182         } else {
1183             address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED,
1184                                     rom->data, rom->datasize);
1185             address_space_set(rom->as, rom->addr + rom->datasize, 0,
1186                               rom->romsize - rom->datasize,
1187                               MEMTXATTRS_UNSPECIFIED);
1188         }
1189         if (rom->isrom) {
1190             /* rom needs to be written only once */
1191             rom_free_data(rom);
1192         }
1193         /*
1194          * The rom loader is really on the same level as firmware in the guest
1195          * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure
1196          * that the instruction cache for that new region is clear, so that the
1197          * CPU definitely fetches its instructions from the just written data.
1198          */
1199         cpu_flush_icache_range(rom->addr, rom->datasize);
1200 
1201         trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom);
1202     }
1203 }
1204 
1205 /* Return true if two consecutive ROMs in the ROM list overlap */
1206 static bool roms_overlap(Rom *last_rom, Rom *this_rom)
1207 {
1208     if (!last_rom) {
1209         return false;
1210     }
1211     return last_rom->as == this_rom->as &&
1212         last_rom->addr + last_rom->romsize > this_rom->addr;
1213 }
1214 
1215 static const char *rom_as_name(Rom *rom)
1216 {
1217     const char *name = rom->as ? rom->as->name : NULL;
1218     return name ?: "anonymous";
1219 }
1220 
1221 static void rom_print_overlap_error_header(void)
1222 {
1223     error_report("Some ROM regions are overlapping");
1224     error_printf(
1225         "These ROM regions might have been loaded by "
1226         "direct user request or by default.\n"
1227         "They could be BIOS/firmware images, a guest kernel, "
1228         "initrd or some other file loaded into guest memory.\n"
1229         "Check whether you intended to load all this guest code, and "
1230         "whether it has been built to load to the correct addresses.\n");
1231 }
1232 
1233 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom)
1234 {
1235     error_printf(
1236         "\nThe following two regions overlap (in the %s address space):\n",
1237         rom_as_name(rom));
1238     error_printf(
1239         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1240         last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize);
1241     error_printf(
1242         "  %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n",
1243         rom->name, rom->addr, rom->addr + rom->romsize);
1244 }
1245 
1246 int rom_check_and_register_reset(void)
1247 {
1248     MemoryRegionSection section;
1249     Rom *rom, *last_rom = NULL;
1250     bool found_overlap = false;
1251 
1252     QTAILQ_FOREACH(rom, &roms, next) {
1253         if (rom->fw_file) {
1254             continue;
1255         }
1256         if (!rom->mr) {
1257             if (roms_overlap(last_rom, rom)) {
1258                 if (!found_overlap) {
1259                     found_overlap = true;
1260                     rom_print_overlap_error_header();
1261                 }
1262                 rom_print_one_overlap_error(last_rom, rom);
1263                 /* Keep going through the list so we report all overlaps */
1264             }
1265             last_rom = rom;
1266         }
1267         section = memory_region_find(rom->mr ? rom->mr : get_system_memory(),
1268                                      rom->addr, 1);
1269         rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr);
1270         memory_region_unref(section.mr);
1271     }
1272     if (found_overlap) {
1273         return -1;
1274     }
1275 
1276     qemu_register_reset(rom_reset, NULL);
1277     roms_loaded = 1;
1278     return 0;
1279 }
1280 
1281 void rom_set_fw(FWCfgState *f)
1282 {
1283     fw_cfg = f;
1284 }
1285 
1286 void rom_set_order_override(int order)
1287 {
1288     if (!fw_cfg)
1289         return;
1290     fw_cfg_set_order_override(fw_cfg, order);
1291 }
1292 
1293 void rom_reset_order_override(void)
1294 {
1295     if (!fw_cfg)
1296         return;
1297     fw_cfg_reset_order_override(fw_cfg);
1298 }
1299 
1300 void rom_transaction_begin(void)
1301 {
1302     Rom *rom;
1303 
1304     /* Ignore ROMs added without the transaction API */
1305     QTAILQ_FOREACH(rom, &roms, next) {
1306         rom->committed = true;
1307     }
1308 }
1309 
1310 void rom_transaction_end(bool commit)
1311 {
1312     Rom *rom;
1313     Rom *tmp;
1314 
1315     QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) {
1316         if (rom->committed) {
1317             continue;
1318         }
1319         if (commit) {
1320             rom->committed = true;
1321         } else {
1322             QTAILQ_REMOVE(&roms, rom, next);
1323             rom_free(rom);
1324         }
1325     }
1326 }
1327 
1328 static Rom *find_rom(hwaddr addr, size_t size)
1329 {
1330     Rom *rom;
1331 
1332     QTAILQ_FOREACH(rom, &roms, next) {
1333         if (rom->fw_file) {
1334             continue;
1335         }
1336         if (rom->mr) {
1337             continue;
1338         }
1339         if (rom->addr > addr) {
1340             continue;
1341         }
1342         if (rom->addr + rom->romsize < addr + size) {
1343             continue;
1344         }
1345         return rom;
1346     }
1347     return NULL;
1348 }
1349 
1350 typedef struct RomSec {
1351     hwaddr base;
1352     int se; /* start/end flag */
1353 } RomSec;
1354 
1355 
1356 /*
1357  * Sort into address order. We break ties between rom-startpoints
1358  * and rom-endpoints in favour of the startpoint, by sorting the 0->1
1359  * transition before the 1->0 transition. Either way round would
1360  * work, but this way saves a little work later by avoiding
1361  * dealing with "gaps" of 0 length.
1362  */
1363 static gint sort_secs(gconstpointer a, gconstpointer b)
1364 {
1365     RomSec *ra = (RomSec *) a;
1366     RomSec *rb = (RomSec *) b;
1367 
1368     if (ra->base == rb->base) {
1369         return ra->se - rb->se;
1370     }
1371     return ra->base > rb->base ? 1 : -1;
1372 }
1373 
1374 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se)
1375 {
1376    RomSec *cand = g_new(RomSec, 1);
1377    cand->base = base;
1378    cand->se = se;
1379    return g_list_prepend(secs, cand);
1380 }
1381 
1382 RomGap rom_find_largest_gap_between(hwaddr base, size_t size)
1383 {
1384     Rom *rom;
1385     RomSec *cand;
1386     RomGap res = {0, 0};
1387     hwaddr gapstart = base;
1388     GList *it, *secs = NULL;
1389     int count = 0;
1390 
1391     QTAILQ_FOREACH(rom, &roms, next) {
1392         /* Ignore blobs being loaded to special places */
1393         if (rom->mr || rom->fw_file) {
1394             continue;
1395         }
1396         /* ignore anything finishing bellow base */
1397         if (rom->addr + rom->romsize <= base) {
1398             continue;
1399         }
1400         /* ignore anything starting above the region */
1401         if (rom->addr >= base + size) {
1402             continue;
1403         }
1404 
1405         /* Save the start and end of each relevant ROM */
1406         secs = add_romsec_to_list(secs, rom->addr, 1);
1407 
1408         if (rom->addr + rom->romsize < base + size) {
1409             secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1);
1410         }
1411     }
1412 
1413     /* sentinel */
1414     secs = add_romsec_to_list(secs, base + size, 1);
1415 
1416     secs = g_list_sort(secs, sort_secs);
1417 
1418     for (it = g_list_first(secs); it; it = g_list_next(it)) {
1419         cand = (RomSec *) it->data;
1420         if (count == 0 && count + cand->se == 1) {
1421             size_t gap = cand->base - gapstart;
1422             if (gap > res.size) {
1423                 res.base = gapstart;
1424                 res.size = gap;
1425             }
1426         } else if (count == 1 && count + cand->se == 0) {
1427             gapstart = cand->base;
1428         }
1429         count += cand->se;
1430     }
1431 
1432     g_list_free_full(secs, g_free);
1433     return res;
1434 }
1435 
1436 /*
1437  * Copies memory from registered ROMs to dest. Any memory that is contained in
1438  * a ROM between addr and addr + size is copied. Note that this can involve
1439  * multiple ROMs, which need not start at addr and need not end at addr + size.
1440  */
1441 int rom_copy(uint8_t *dest, hwaddr addr, size_t size)
1442 {
1443     hwaddr end = addr + size;
1444     uint8_t *s, *d = dest;
1445     size_t l = 0;
1446     Rom *rom;
1447 
1448     QTAILQ_FOREACH(rom, &roms, next) {
1449         if (rom->fw_file) {
1450             continue;
1451         }
1452         if (rom->mr) {
1453             continue;
1454         }
1455         if (rom->addr + rom->romsize < addr) {
1456             continue;
1457         }
1458         if (rom->addr > end || rom->addr < addr) {
1459             break;
1460         }
1461 
1462         d = dest + (rom->addr - addr);
1463         s = rom->data;
1464         l = rom->datasize;
1465 
1466         if ((d + l) > (dest + size)) {
1467             l = dest - d;
1468         }
1469 
1470         if (l > 0) {
1471             memcpy(d, s, l);
1472         }
1473 
1474         if (rom->romsize > rom->datasize) {
1475             /* If datasize is less than romsize, it means that we didn't
1476              * allocate all the ROM because the trailing data are only zeros.
1477              */
1478 
1479             d += l;
1480             l = rom->romsize - rom->datasize;
1481 
1482             if ((d + l) > (dest + size)) {
1483                 /* Rom size doesn't fit in the destination area. Adjust to avoid
1484                  * overflow.
1485                  */
1486                 l = dest - d;
1487             }
1488 
1489             if (l > 0) {
1490                 memset(d, 0x0, l);
1491             }
1492         }
1493     }
1494 
1495     return (d + l) - dest;
1496 }
1497 
1498 void *rom_ptr(hwaddr addr, size_t size)
1499 {
1500     Rom *rom;
1501 
1502     rom = find_rom(addr, size);
1503     if (!rom || !rom->data)
1504         return NULL;
1505     return rom->data + (addr - rom->addr);
1506 }
1507 
1508 typedef struct FindRomCBData {
1509     size_t size; /* Amount of data we want from ROM, in bytes */
1510     MemoryRegion *mr; /* MR at the unaliased guest addr */
1511     hwaddr xlat; /* Offset of addr within mr */
1512     void *rom; /* Output: rom data pointer, if found */
1513 } FindRomCBData;
1514 
1515 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr,
1516                         hwaddr offset_in_region, void *opaque)
1517 {
1518     FindRomCBData *cbdata = opaque;
1519     hwaddr alias_addr;
1520 
1521     if (mr != cbdata->mr) {
1522         return false;
1523     }
1524 
1525     alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region;
1526     cbdata->rom = rom_ptr(alias_addr, cbdata->size);
1527     if (!cbdata->rom) {
1528         return false;
1529     }
1530     /* Found a match, stop iterating */
1531     return true;
1532 }
1533 
1534 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size)
1535 {
1536     /*
1537      * Find any ROM data for the given guest address range.  If there
1538      * is a ROM blob then return a pointer to the host memory
1539      * corresponding to 'addr'; otherwise return NULL.
1540      *
1541      * We look not only for ROM blobs that were loaded directly to
1542      * addr, but also for ROM blobs that were loaded to aliases of
1543      * that memory at other addresses within the AddressSpace.
1544      *
1545      * Note that we do not check @as against the 'as' member in the
1546      * 'struct Rom' returned by rom_ptr(). The Rom::as is the
1547      * AddressSpace which the rom blob should be written to, whereas
1548      * our @as argument is the AddressSpace which we are (effectively)
1549      * reading from, and the same underlying RAM will often be visible
1550      * in multiple AddressSpaces. (A common example is a ROM blob
1551      * written to the 'system' address space but then read back via a
1552      * CPU's cpu->as pointer.) This does mean we might potentially
1553      * return a false-positive match if a ROM blob was loaded into an
1554      * AS which is entirely separate and distinct from the one we're
1555      * querying, but this issue exists also for rom_ptr() and hasn't
1556      * caused any problems in practice.
1557      */
1558     FlatView *fv;
1559     void *rom;
1560     hwaddr len_unused;
1561     FindRomCBData cbdata = {};
1562 
1563     /* Easy case: there's data at the actual address */
1564     rom = rom_ptr(addr, size);
1565     if (rom) {
1566         return rom;
1567     }
1568 
1569     RCU_READ_LOCK_GUARD();
1570 
1571     fv = address_space_to_flatview(as);
1572     cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused,
1573                                    false, MEMTXATTRS_UNSPECIFIED);
1574     if (!cbdata.mr) {
1575         /* Nothing at this address, so there can't be any aliasing */
1576         return NULL;
1577     }
1578     cbdata.size = size;
1579     flatview_for_each_range(fv, find_rom_cb, &cbdata);
1580     return cbdata.rom;
1581 }
1582 
1583 HumanReadableText *qmp_x_query_roms(Error **errp)
1584 {
1585     Rom *rom;
1586     g_autoptr(GString) buf = g_string_new("");
1587 
1588     QTAILQ_FOREACH(rom, &roms, next) {
1589         if (rom->mr) {
1590             g_string_append_printf(buf, "%s"
1591                                    " size=0x%06zx name=\"%s\"\n",
1592                                    memory_region_name(rom->mr),
1593                                    rom->romsize,
1594                                    rom->name);
1595         } else if (!rom->fw_file) {
1596             g_string_append_printf(buf, "addr=" TARGET_FMT_plx
1597                                    " size=0x%06zx mem=%s name=\"%s\"\n",
1598                                    rom->addr, rom->romsize,
1599                                    rom->isrom ? "rom" : "ram",
1600                                    rom->name);
1601         } else {
1602             g_string_append_printf(buf, "fw=%s/%s"
1603                                    " size=0x%06zx name=\"%s\"\n",
1604                                    rom->fw_dir,
1605                                    rom->fw_file,
1606                                    rom->romsize,
1607                                    rom->name);
1608         }
1609     }
1610 
1611     return human_readable_text_from_str(buf);
1612 }
1613 
1614 typedef enum HexRecord HexRecord;
1615 enum HexRecord {
1616     DATA_RECORD = 0,
1617     EOF_RECORD,
1618     EXT_SEG_ADDR_RECORD,
1619     START_SEG_ADDR_RECORD,
1620     EXT_LINEAR_ADDR_RECORD,
1621     START_LINEAR_ADDR_RECORD,
1622 };
1623 
1624 /* Each record contains a 16-bit address which is combined with the upper 16
1625  * bits of the implicit "next address" to form a 32-bit address.
1626  */
1627 #define NEXT_ADDR_MASK 0xffff0000
1628 
1629 #define DATA_FIELD_MAX_LEN 0xff
1630 #define LEN_EXCEPT_DATA 0x5
1631 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) +
1632  *       sizeof(checksum) */
1633 typedef struct {
1634     uint8_t byte_count;
1635     uint16_t address;
1636     uint8_t record_type;
1637     uint8_t data[DATA_FIELD_MAX_LEN];
1638     uint8_t checksum;
1639 } HexLine;
1640 
1641 /* return 0 or -1 if error */
1642 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c,
1643                          uint32_t *index, const bool in_process)
1644 {
1645     /* +-------+---------------+-------+---------------------+--------+
1646      * | byte  |               |record |                     |        |
1647      * | count |    address    | type  |        data         |checksum|
1648      * +-------+---------------+-------+---------------------+--------+
1649      * ^       ^               ^       ^                     ^        ^
1650      * |1 byte |    2 bytes    |1 byte |     0-255 bytes     | 1 byte |
1651      */
1652     uint8_t value = 0;
1653     uint32_t idx = *index;
1654     /* ignore space */
1655     if (g_ascii_isspace(c)) {
1656         return true;
1657     }
1658     if (!g_ascii_isxdigit(c) || !in_process) {
1659         return false;
1660     }
1661     value = g_ascii_xdigit_value(c);
1662     value = (idx & 0x1) ? (value & 0xf) : (value << 4);
1663     if (idx < 2) {
1664         line->byte_count |= value;
1665     } else if (2 <= idx && idx < 6) {
1666         line->address <<= 4;
1667         line->address += g_ascii_xdigit_value(c);
1668     } else if (6 <= idx && idx < 8) {
1669         line->record_type |= value;
1670     } else if (8 <= idx && idx < 8 + 2 * line->byte_count) {
1671         line->data[(idx - 8) >> 1] |= value;
1672     } else if (8 + 2 * line->byte_count <= idx &&
1673                idx < 10 + 2 * line->byte_count) {
1674         line->checksum |= value;
1675     } else {
1676         return false;
1677     }
1678     *our_checksum += value;
1679     ++(*index);
1680     return true;
1681 }
1682 
1683 typedef struct {
1684     const char *filename;
1685     HexLine line;
1686     uint8_t *bin_buf;
1687     hwaddr *start_addr;
1688     int total_size;
1689     uint32_t next_address_to_write;
1690     uint32_t current_address;
1691     uint32_t current_rom_index;
1692     uint32_t rom_start_address;
1693     AddressSpace *as;
1694     bool complete;
1695 } HexParser;
1696 
1697 /* return size or -1 if error */
1698 static int handle_record_type(HexParser *parser)
1699 {
1700     HexLine *line = &(parser->line);
1701     switch (line->record_type) {
1702     case DATA_RECORD:
1703         parser->current_address =
1704             (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address;
1705         /* verify this is a contiguous block of memory */
1706         if (parser->current_address != parser->next_address_to_write) {
1707             if (parser->current_rom_index != 0) {
1708                 rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1709                                       parser->current_rom_index,
1710                                       parser->rom_start_address, parser->as);
1711             }
1712             parser->rom_start_address = parser->current_address;
1713             parser->current_rom_index = 0;
1714         }
1715 
1716         /* copy from line buffer to output bin_buf */
1717         memcpy(parser->bin_buf + parser->current_rom_index, line->data,
1718                line->byte_count);
1719         parser->current_rom_index += line->byte_count;
1720         parser->total_size += line->byte_count;
1721         /* save next address to write */
1722         parser->next_address_to_write =
1723             parser->current_address + line->byte_count;
1724         break;
1725 
1726     case EOF_RECORD:
1727         if (parser->current_rom_index != 0) {
1728             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1729                                   parser->current_rom_index,
1730                                   parser->rom_start_address, parser->as);
1731         }
1732         parser->complete = true;
1733         return parser->total_size;
1734     case EXT_SEG_ADDR_RECORD:
1735     case EXT_LINEAR_ADDR_RECORD:
1736         if (line->byte_count != 2 && line->address != 0) {
1737             return -1;
1738         }
1739 
1740         if (parser->current_rom_index != 0) {
1741             rom_add_blob_fixed_as(parser->filename, parser->bin_buf,
1742                                   parser->current_rom_index,
1743                                   parser->rom_start_address, parser->as);
1744         }
1745 
1746         /* save next address to write,
1747          * in case of non-contiguous block of memory */
1748         parser->next_address_to_write = (line->data[0] << 12) |
1749                                         (line->data[1] << 4);
1750         if (line->record_type == EXT_LINEAR_ADDR_RECORD) {
1751             parser->next_address_to_write <<= 12;
1752         }
1753 
1754         parser->rom_start_address = parser->next_address_to_write;
1755         parser->current_rom_index = 0;
1756         break;
1757 
1758     case START_SEG_ADDR_RECORD:
1759         if (line->byte_count != 4 && line->address != 0) {
1760             return -1;
1761         }
1762 
1763         /* x86 16-bit CS:IP segmented addressing */
1764         *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) +
1765                                 ((line->data[2] << 8) | line->data[3]);
1766         break;
1767 
1768     case START_LINEAR_ADDR_RECORD:
1769         if (line->byte_count != 4 && line->address != 0) {
1770             return -1;
1771         }
1772 
1773         *(parser->start_addr) = ldl_be_p(line->data);
1774         break;
1775 
1776     default:
1777         return -1;
1778     }
1779 
1780     return parser->total_size;
1781 }
1782 
1783 /* return size or -1 if error */
1784 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob,
1785                           size_t hex_blob_size, AddressSpace *as)
1786 {
1787     bool in_process = false; /* avoid re-enter and
1788                               * check whether record begin with ':' */
1789     uint8_t *end = hex_blob + hex_blob_size;
1790     uint8_t our_checksum = 0;
1791     uint32_t record_index = 0;
1792     HexParser parser = {
1793         .filename = filename,
1794         .bin_buf = g_malloc(hex_blob_size),
1795         .start_addr = addr,
1796         .as = as,
1797         .complete = false
1798     };
1799 
1800     rom_transaction_begin();
1801 
1802     for (; hex_blob < end && !parser.complete; ++hex_blob) {
1803         switch (*hex_blob) {
1804         case '\r':
1805         case '\n':
1806             if (!in_process) {
1807                 break;
1808             }
1809 
1810             in_process = false;
1811             if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 !=
1812                     record_index ||
1813                 our_checksum != 0) {
1814                 parser.total_size = -1;
1815                 goto out;
1816             }
1817 
1818             if (handle_record_type(&parser) == -1) {
1819                 parser.total_size = -1;
1820                 goto out;
1821             }
1822             break;
1823 
1824         /* start of a new record. */
1825         case ':':
1826             memset(&parser.line, 0, sizeof(HexLine));
1827             in_process = true;
1828             record_index = 0;
1829             break;
1830 
1831         /* decoding lines */
1832         default:
1833             if (!parse_record(&parser.line, &our_checksum, *hex_blob,
1834                               &record_index, in_process)) {
1835                 parser.total_size = -1;
1836                 goto out;
1837             }
1838             break;
1839         }
1840     }
1841 
1842 out:
1843     g_free(parser.bin_buf);
1844     rom_transaction_end(parser.total_size != -1);
1845     return parser.total_size;
1846 }
1847 
1848 /* return size or -1 if error */
1849 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as)
1850 {
1851     gsize hex_blob_size;
1852     gchar *hex_blob;
1853     int total_size = 0;
1854 
1855     if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) {
1856         return -1;
1857     }
1858 
1859     total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob,
1860                                 hex_blob_size, as);
1861 
1862     g_free(hex_blob);
1863     return total_size;
1864 }
1865