1 /* 2 * QEMU Executable loader 3 * 4 * Copyright (c) 2006 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 * 24 * Gunzip functionality in this file is derived from u-boot: 25 * 26 * (C) Copyright 2008 Semihalf 27 * 28 * (C) Copyright 2000-2005 29 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. 30 * 31 * This program is free software; you can redistribute it and/or 32 * modify it under the terms of the GNU General Public License as 33 * published by the Free Software Foundation; either version 2 of 34 * the License, or (at your option) any later version. 35 * 36 * This program is distributed in the hope that it will be useful, 37 * but WITHOUT ANY WARRANTY; without even the implied warranty of 38 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 39 * GNU General Public License for more details. 40 * 41 * You should have received a copy of the GNU General Public License along 42 * with this program; if not, see <http://www.gnu.org/licenses/>. 43 */ 44 45 #include "qemu/osdep.h" 46 #include "qemu/datadir.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-commands-machine.h" 49 #include "qapi/type-helpers.h" 50 #include "trace.h" 51 #include "hw/hw.h" 52 #include "disas/disas.h" 53 #include "migration/vmstate.h" 54 #include "monitor/monitor.h" 55 #include "sysemu/reset.h" 56 #include "sysemu/sysemu.h" 57 #include "uboot_image.h" 58 #include "hw/loader.h" 59 #include "hw/nvram/fw_cfg.h" 60 #include "exec/memory.h" 61 #include "hw/boards.h" 62 #include "qemu/cutils.h" 63 #include "sysemu/runstate.h" 64 65 #include <zlib.h> 66 67 static int roms_loaded; 68 69 /* return the size or -1 if error */ 70 int64_t get_image_size(const char *filename) 71 { 72 int fd; 73 int64_t size; 74 fd = open(filename, O_RDONLY | O_BINARY); 75 if (fd < 0) 76 return -1; 77 size = lseek(fd, 0, SEEK_END); 78 close(fd); 79 return size; 80 } 81 82 /* return the size or -1 if error */ 83 ssize_t load_image_size(const char *filename, void *addr, size_t size) 84 { 85 int fd; 86 ssize_t actsize, l = 0; 87 88 fd = open(filename, O_RDONLY | O_BINARY); 89 if (fd < 0) { 90 return -1; 91 } 92 93 while ((actsize = read(fd, addr + l, size - l)) > 0) { 94 l += actsize; 95 } 96 97 close(fd); 98 99 return actsize < 0 ? -1 : l; 100 } 101 102 /* read()-like version */ 103 ssize_t read_targphys(const char *name, 104 int fd, hwaddr dst_addr, size_t nbytes) 105 { 106 uint8_t *buf; 107 ssize_t did; 108 109 buf = g_malloc(nbytes); 110 did = read(fd, buf, nbytes); 111 if (did > 0) 112 rom_add_blob_fixed("read", buf, did, dst_addr); 113 g_free(buf); 114 return did; 115 } 116 117 int load_image_targphys(const char *filename, 118 hwaddr addr, uint64_t max_sz) 119 { 120 return load_image_targphys_as(filename, addr, max_sz, NULL); 121 } 122 123 /* return the size or -1 if error */ 124 int load_image_targphys_as(const char *filename, 125 hwaddr addr, uint64_t max_sz, AddressSpace *as) 126 { 127 int size; 128 129 size = get_image_size(filename); 130 if (size < 0 || size > max_sz) { 131 return -1; 132 } 133 if (size > 0) { 134 if (rom_add_file_fixed_as(filename, addr, -1, as) < 0) { 135 return -1; 136 } 137 } 138 return size; 139 } 140 141 int load_image_mr(const char *filename, MemoryRegion *mr) 142 { 143 int size; 144 145 if (!memory_access_is_direct(mr, false)) { 146 /* Can only load an image into RAM or ROM */ 147 return -1; 148 } 149 150 size = get_image_size(filename); 151 152 if (size < 0 || size > memory_region_size(mr)) { 153 return -1; 154 } 155 if (size > 0) { 156 if (rom_add_file_mr(filename, mr, -1) < 0) { 157 return -1; 158 } 159 } 160 return size; 161 } 162 163 void pstrcpy_targphys(const char *name, hwaddr dest, int buf_size, 164 const char *source) 165 { 166 const char *nulp; 167 char *ptr; 168 169 if (buf_size <= 0) return; 170 nulp = memchr(source, 0, buf_size); 171 if (nulp) { 172 rom_add_blob_fixed(name, source, (nulp - source) + 1, dest); 173 } else { 174 rom_add_blob_fixed(name, source, buf_size, dest); 175 ptr = rom_ptr(dest + buf_size - 1, sizeof(*ptr)); 176 *ptr = 0; 177 } 178 } 179 180 /* A.OUT loader */ 181 182 struct exec 183 { 184 uint32_t a_info; /* Use macros N_MAGIC, etc for access */ 185 uint32_t a_text; /* length of text, in bytes */ 186 uint32_t a_data; /* length of data, in bytes */ 187 uint32_t a_bss; /* length of uninitialized data area, in bytes */ 188 uint32_t a_syms; /* length of symbol table data in file, in bytes */ 189 uint32_t a_entry; /* start address */ 190 uint32_t a_trsize; /* length of relocation info for text, in bytes */ 191 uint32_t a_drsize; /* length of relocation info for data, in bytes */ 192 }; 193 194 static void bswap_ahdr(struct exec *e) 195 { 196 bswap32s(&e->a_info); 197 bswap32s(&e->a_text); 198 bswap32s(&e->a_data); 199 bswap32s(&e->a_bss); 200 bswap32s(&e->a_syms); 201 bswap32s(&e->a_entry); 202 bswap32s(&e->a_trsize); 203 bswap32s(&e->a_drsize); 204 } 205 206 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 207 #define OMAGIC 0407 208 #define NMAGIC 0410 209 #define ZMAGIC 0413 210 #define QMAGIC 0314 211 #define _N_HDROFF(x) (1024 - sizeof (struct exec)) 212 #define N_TXTOFF(x) \ 213 (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) : \ 214 (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec))) 215 #define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0) 216 #define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1)) 217 218 #define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text) 219 220 #define N_DATADDR(x, target_page_size) \ 221 (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \ 222 : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size))) 223 224 225 int load_aout(const char *filename, hwaddr addr, int max_sz, 226 int bswap_needed, hwaddr target_page_size) 227 { 228 int fd; 229 ssize_t size, ret; 230 struct exec e; 231 uint32_t magic; 232 233 fd = open(filename, O_RDONLY | O_BINARY); 234 if (fd < 0) 235 return -1; 236 237 size = read(fd, &e, sizeof(e)); 238 if (size < 0) 239 goto fail; 240 241 if (bswap_needed) { 242 bswap_ahdr(&e); 243 } 244 245 magic = N_MAGIC(e); 246 switch (magic) { 247 case ZMAGIC: 248 case QMAGIC: 249 case OMAGIC: 250 if (e.a_text + e.a_data > max_sz) 251 goto fail; 252 lseek(fd, N_TXTOFF(e), SEEK_SET); 253 size = read_targphys(filename, fd, addr, e.a_text + e.a_data); 254 if (size < 0) 255 goto fail; 256 break; 257 case NMAGIC: 258 if (N_DATADDR(e, target_page_size) + e.a_data > max_sz) 259 goto fail; 260 lseek(fd, N_TXTOFF(e), SEEK_SET); 261 size = read_targphys(filename, fd, addr, e.a_text); 262 if (size < 0) 263 goto fail; 264 ret = read_targphys(filename, fd, addr + N_DATADDR(e, target_page_size), 265 e.a_data); 266 if (ret < 0) 267 goto fail; 268 size += ret; 269 break; 270 default: 271 goto fail; 272 } 273 close(fd); 274 return size; 275 fail: 276 close(fd); 277 return -1; 278 } 279 280 /* ELF loader */ 281 282 static void *load_at(int fd, off_t offset, size_t size) 283 { 284 void *ptr; 285 if (lseek(fd, offset, SEEK_SET) < 0) 286 return NULL; 287 ptr = g_malloc(size); 288 if (read(fd, ptr, size) != size) { 289 g_free(ptr); 290 return NULL; 291 } 292 return ptr; 293 } 294 295 #ifdef ELF_CLASS 296 #undef ELF_CLASS 297 #endif 298 299 #define ELF_CLASS ELFCLASS32 300 #include "elf.h" 301 302 #define SZ 32 303 #define elf_word uint32_t 304 #define elf_sword int32_t 305 #define bswapSZs bswap32s 306 #include "hw/elf_ops.h" 307 308 #undef elfhdr 309 #undef elf_phdr 310 #undef elf_shdr 311 #undef elf_sym 312 #undef elf_rela 313 #undef elf_note 314 #undef elf_word 315 #undef elf_sword 316 #undef bswapSZs 317 #undef SZ 318 #define elfhdr elf64_hdr 319 #define elf_phdr elf64_phdr 320 #define elf_note elf64_note 321 #define elf_shdr elf64_shdr 322 #define elf_sym elf64_sym 323 #define elf_rela elf64_rela 324 #define elf_word uint64_t 325 #define elf_sword int64_t 326 #define bswapSZs bswap64s 327 #define SZ 64 328 #include "hw/elf_ops.h" 329 330 const char *load_elf_strerror(ssize_t error) 331 { 332 switch (error) { 333 case 0: 334 return "No error"; 335 case ELF_LOAD_FAILED: 336 return "Failed to load ELF"; 337 case ELF_LOAD_NOT_ELF: 338 return "The image is not ELF"; 339 case ELF_LOAD_WRONG_ARCH: 340 return "The image is from incompatible architecture"; 341 case ELF_LOAD_WRONG_ENDIAN: 342 return "The image has incorrect endianness"; 343 case ELF_LOAD_TOO_BIG: 344 return "The image segments are too big to load"; 345 default: 346 return "Unknown error"; 347 } 348 } 349 350 void load_elf_hdr(const char *filename, void *hdr, bool *is64, Error **errp) 351 { 352 int fd; 353 uint8_t e_ident_local[EI_NIDENT]; 354 uint8_t *e_ident; 355 size_t hdr_size, off; 356 bool is64l; 357 358 if (!hdr) { 359 hdr = e_ident_local; 360 } 361 e_ident = hdr; 362 363 fd = open(filename, O_RDONLY | O_BINARY); 364 if (fd < 0) { 365 error_setg_errno(errp, errno, "Failed to open file: %s", filename); 366 return; 367 } 368 if (read(fd, hdr, EI_NIDENT) != EI_NIDENT) { 369 error_setg_errno(errp, errno, "Failed to read file: %s", filename); 370 goto fail; 371 } 372 if (e_ident[0] != ELFMAG0 || 373 e_ident[1] != ELFMAG1 || 374 e_ident[2] != ELFMAG2 || 375 e_ident[3] != ELFMAG3) { 376 error_setg(errp, "Bad ELF magic"); 377 goto fail; 378 } 379 380 is64l = e_ident[EI_CLASS] == ELFCLASS64; 381 hdr_size = is64l ? sizeof(Elf64_Ehdr) : sizeof(Elf32_Ehdr); 382 if (is64) { 383 *is64 = is64l; 384 } 385 386 off = EI_NIDENT; 387 while (hdr != e_ident_local && off < hdr_size) { 388 size_t br = read(fd, hdr + off, hdr_size - off); 389 switch (br) { 390 case 0: 391 error_setg(errp, "File too short: %s", filename); 392 goto fail; 393 case -1: 394 error_setg_errno(errp, errno, "Failed to read file: %s", 395 filename); 396 goto fail; 397 } 398 off += br; 399 } 400 401 fail: 402 close(fd); 403 } 404 405 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 406 ssize_t load_elf(const char *filename, 407 uint64_t (*elf_note_fn)(void *, void *, bool), 408 uint64_t (*translate_fn)(void *, uint64_t), 409 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 410 uint64_t *highaddr, uint32_t *pflags, int big_endian, 411 int elf_machine, int clear_lsb, int data_swab) 412 { 413 return load_elf_as(filename, elf_note_fn, translate_fn, translate_opaque, 414 pentry, lowaddr, highaddr, pflags, big_endian, 415 elf_machine, clear_lsb, data_swab, NULL); 416 } 417 418 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 419 ssize_t load_elf_as(const char *filename, 420 uint64_t (*elf_note_fn)(void *, void *, bool), 421 uint64_t (*translate_fn)(void *, uint64_t), 422 void *translate_opaque, uint64_t *pentry, uint64_t *lowaddr, 423 uint64_t *highaddr, uint32_t *pflags, int big_endian, 424 int elf_machine, int clear_lsb, int data_swab, 425 AddressSpace *as) 426 { 427 return load_elf_ram(filename, elf_note_fn, translate_fn, translate_opaque, 428 pentry, lowaddr, highaddr, pflags, big_endian, 429 elf_machine, clear_lsb, data_swab, as, true); 430 } 431 432 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 433 ssize_t load_elf_ram(const char *filename, 434 uint64_t (*elf_note_fn)(void *, void *, bool), 435 uint64_t (*translate_fn)(void *, uint64_t), 436 void *translate_opaque, uint64_t *pentry, 437 uint64_t *lowaddr, uint64_t *highaddr, uint32_t *pflags, 438 int big_endian, int elf_machine, int clear_lsb, 439 int data_swab, AddressSpace *as, bool load_rom) 440 { 441 return load_elf_ram_sym(filename, elf_note_fn, 442 translate_fn, translate_opaque, 443 pentry, lowaddr, highaddr, pflags, big_endian, 444 elf_machine, clear_lsb, data_swab, as, 445 load_rom, NULL); 446 } 447 448 /* return < 0 if error, otherwise the number of bytes loaded in memory */ 449 ssize_t load_elf_ram_sym(const char *filename, 450 uint64_t (*elf_note_fn)(void *, void *, bool), 451 uint64_t (*translate_fn)(void *, uint64_t), 452 void *translate_opaque, uint64_t *pentry, 453 uint64_t *lowaddr, uint64_t *highaddr, 454 uint32_t *pflags, int big_endian, int elf_machine, 455 int clear_lsb, int data_swab, 456 AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) 457 { 458 int fd, data_order, target_data_order, must_swab; 459 ssize_t ret = ELF_LOAD_FAILED; 460 uint8_t e_ident[EI_NIDENT]; 461 462 fd = open(filename, O_RDONLY | O_BINARY); 463 if (fd < 0) { 464 perror(filename); 465 return -1; 466 } 467 if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident)) 468 goto fail; 469 if (e_ident[0] != ELFMAG0 || 470 e_ident[1] != ELFMAG1 || 471 e_ident[2] != ELFMAG2 || 472 e_ident[3] != ELFMAG3) { 473 ret = ELF_LOAD_NOT_ELF; 474 goto fail; 475 } 476 #if HOST_BIG_ENDIAN 477 data_order = ELFDATA2MSB; 478 #else 479 data_order = ELFDATA2LSB; 480 #endif 481 must_swab = data_order != e_ident[EI_DATA]; 482 if (big_endian) { 483 target_data_order = ELFDATA2MSB; 484 } else { 485 target_data_order = ELFDATA2LSB; 486 } 487 488 if (target_data_order != e_ident[EI_DATA]) { 489 ret = ELF_LOAD_WRONG_ENDIAN; 490 goto fail; 491 } 492 493 lseek(fd, 0, SEEK_SET); 494 if (e_ident[EI_CLASS] == ELFCLASS64) { 495 ret = load_elf64(filename, fd, elf_note_fn, 496 translate_fn, translate_opaque, must_swab, 497 pentry, lowaddr, highaddr, pflags, elf_machine, 498 clear_lsb, data_swab, as, load_rom, sym_cb); 499 } else { 500 ret = load_elf32(filename, fd, elf_note_fn, 501 translate_fn, translate_opaque, must_swab, 502 pentry, lowaddr, highaddr, pflags, elf_machine, 503 clear_lsb, data_swab, as, load_rom, sym_cb); 504 } 505 506 fail: 507 close(fd); 508 return ret; 509 } 510 511 static void bswap_uboot_header(uboot_image_header_t *hdr) 512 { 513 #if !HOST_BIG_ENDIAN 514 bswap32s(&hdr->ih_magic); 515 bswap32s(&hdr->ih_hcrc); 516 bswap32s(&hdr->ih_time); 517 bswap32s(&hdr->ih_size); 518 bswap32s(&hdr->ih_load); 519 bswap32s(&hdr->ih_ep); 520 bswap32s(&hdr->ih_dcrc); 521 #endif 522 } 523 524 525 #define ZALLOC_ALIGNMENT 16 526 527 static void *zalloc(void *x, unsigned items, unsigned size) 528 { 529 void *p; 530 531 size *= items; 532 size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1); 533 534 p = g_malloc(size); 535 536 return (p); 537 } 538 539 static void zfree(void *x, void *addr) 540 { 541 g_free(addr); 542 } 543 544 545 #define HEAD_CRC 2 546 #define EXTRA_FIELD 4 547 #define ORIG_NAME 8 548 #define COMMENT 0x10 549 #define RESERVED 0xe0 550 551 #define DEFLATED 8 552 553 ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src, size_t srclen) 554 { 555 z_stream s; 556 ssize_t dstbytes; 557 int r, i, flags; 558 559 /* skip header */ 560 i = 10; 561 if (srclen < 4) { 562 goto toosmall; 563 } 564 flags = src[3]; 565 if (src[2] != DEFLATED || (flags & RESERVED) != 0) { 566 puts ("Error: Bad gzipped data\n"); 567 return -1; 568 } 569 if ((flags & EXTRA_FIELD) != 0) { 570 if (srclen < 12) { 571 goto toosmall; 572 } 573 i = 12 + src[10] + (src[11] << 8); 574 } 575 if ((flags & ORIG_NAME) != 0) { 576 while (i < srclen && src[i++] != 0) { 577 /* do nothing */ 578 } 579 } 580 if ((flags & COMMENT) != 0) { 581 while (i < srclen && src[i++] != 0) { 582 /* do nothing */ 583 } 584 } 585 if ((flags & HEAD_CRC) != 0) { 586 i += 2; 587 } 588 if (i >= srclen) { 589 goto toosmall; 590 } 591 592 s.zalloc = zalloc; 593 s.zfree = zfree; 594 595 r = inflateInit2(&s, -MAX_WBITS); 596 if (r != Z_OK) { 597 printf ("Error: inflateInit2() returned %d\n", r); 598 return (-1); 599 } 600 s.next_in = src + i; 601 s.avail_in = srclen - i; 602 s.next_out = dst; 603 s.avail_out = dstlen; 604 r = inflate(&s, Z_FINISH); 605 if (r != Z_OK && r != Z_STREAM_END) { 606 printf ("Error: inflate() returned %d\n", r); 607 return -1; 608 } 609 dstbytes = s.next_out - (unsigned char *) dst; 610 inflateEnd(&s); 611 612 return dstbytes; 613 614 toosmall: 615 puts("Error: gunzip out of data in header\n"); 616 return -1; 617 } 618 619 /* Load a U-Boot image. */ 620 static int load_uboot_image(const char *filename, hwaddr *ep, hwaddr *loadaddr, 621 int *is_linux, uint8_t image_type, 622 uint64_t (*translate_fn)(void *, uint64_t), 623 void *translate_opaque, AddressSpace *as) 624 { 625 int fd; 626 int size; 627 hwaddr address; 628 uboot_image_header_t h; 629 uboot_image_header_t *hdr = &h; 630 uint8_t *data = NULL; 631 int ret = -1; 632 int do_uncompress = 0; 633 634 fd = open(filename, O_RDONLY | O_BINARY); 635 if (fd < 0) 636 return -1; 637 638 size = read(fd, hdr, sizeof(uboot_image_header_t)); 639 if (size < sizeof(uboot_image_header_t)) { 640 goto out; 641 } 642 643 bswap_uboot_header(hdr); 644 645 if (hdr->ih_magic != IH_MAGIC) 646 goto out; 647 648 if (hdr->ih_type != image_type) { 649 if (!(image_type == IH_TYPE_KERNEL && 650 hdr->ih_type == IH_TYPE_KERNEL_NOLOAD)) { 651 fprintf(stderr, "Wrong image type %d, expected %d\n", hdr->ih_type, 652 image_type); 653 goto out; 654 } 655 } 656 657 /* TODO: Implement other image types. */ 658 switch (hdr->ih_type) { 659 case IH_TYPE_KERNEL_NOLOAD: 660 if (!loadaddr || *loadaddr == LOAD_UIMAGE_LOADADDR_INVALID) { 661 fprintf(stderr, "this image format (kernel_noload) cannot be " 662 "loaded on this machine type"); 663 goto out; 664 } 665 666 hdr->ih_load = *loadaddr + sizeof(*hdr); 667 hdr->ih_ep += hdr->ih_load; 668 /* fall through */ 669 case IH_TYPE_KERNEL: 670 address = hdr->ih_load; 671 if (translate_fn) { 672 address = translate_fn(translate_opaque, address); 673 } 674 if (loadaddr) { 675 *loadaddr = hdr->ih_load; 676 } 677 678 switch (hdr->ih_comp) { 679 case IH_COMP_NONE: 680 break; 681 case IH_COMP_GZIP: 682 do_uncompress = 1; 683 break; 684 default: 685 fprintf(stderr, 686 "Unable to load u-boot images with compression type %d\n", 687 hdr->ih_comp); 688 goto out; 689 } 690 691 if (ep) { 692 *ep = hdr->ih_ep; 693 } 694 695 /* TODO: Check CPU type. */ 696 if (is_linux) { 697 if (hdr->ih_os == IH_OS_LINUX) { 698 *is_linux = 1; 699 } else if (hdr->ih_os == IH_OS_VXWORKS) { 700 /* 701 * VxWorks 7 uses the same boot interface as the Linux kernel 702 * on Arm (64-bit only), PowerPC and RISC-V architectures. 703 */ 704 switch (hdr->ih_arch) { 705 case IH_ARCH_ARM64: 706 case IH_ARCH_PPC: 707 case IH_ARCH_RISCV: 708 *is_linux = 1; 709 break; 710 default: 711 *is_linux = 0; 712 break; 713 } 714 } else { 715 *is_linux = 0; 716 } 717 } 718 719 break; 720 case IH_TYPE_RAMDISK: 721 address = *loadaddr; 722 break; 723 default: 724 fprintf(stderr, "Unsupported u-boot image type %d\n", hdr->ih_type); 725 goto out; 726 } 727 728 data = g_malloc(hdr->ih_size); 729 730 if (read(fd, data, hdr->ih_size) != hdr->ih_size) { 731 fprintf(stderr, "Error reading file\n"); 732 goto out; 733 } 734 735 if (do_uncompress) { 736 uint8_t *compressed_data; 737 size_t max_bytes; 738 ssize_t bytes; 739 740 compressed_data = data; 741 max_bytes = UBOOT_MAX_GUNZIP_BYTES; 742 data = g_malloc(max_bytes); 743 744 bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size); 745 g_free(compressed_data); 746 if (bytes < 0) { 747 fprintf(stderr, "Unable to decompress gzipped image!\n"); 748 goto out; 749 } 750 hdr->ih_size = bytes; 751 } 752 753 rom_add_blob_fixed_as(filename, data, hdr->ih_size, address, as); 754 755 ret = hdr->ih_size; 756 757 out: 758 g_free(data); 759 close(fd); 760 return ret; 761 } 762 763 int load_uimage(const char *filename, hwaddr *ep, hwaddr *loadaddr, 764 int *is_linux, 765 uint64_t (*translate_fn)(void *, uint64_t), 766 void *translate_opaque) 767 { 768 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 769 translate_fn, translate_opaque, NULL); 770 } 771 772 int load_uimage_as(const char *filename, hwaddr *ep, hwaddr *loadaddr, 773 int *is_linux, 774 uint64_t (*translate_fn)(void *, uint64_t), 775 void *translate_opaque, AddressSpace *as) 776 { 777 return load_uboot_image(filename, ep, loadaddr, is_linux, IH_TYPE_KERNEL, 778 translate_fn, translate_opaque, as); 779 } 780 781 /* Load a ramdisk. */ 782 int load_ramdisk(const char *filename, hwaddr addr, uint64_t max_sz) 783 { 784 return load_ramdisk_as(filename, addr, max_sz, NULL); 785 } 786 787 int load_ramdisk_as(const char *filename, hwaddr addr, uint64_t max_sz, 788 AddressSpace *as) 789 { 790 return load_uboot_image(filename, NULL, &addr, NULL, IH_TYPE_RAMDISK, 791 NULL, NULL, as); 792 } 793 794 /* Load a gzip-compressed kernel to a dynamically allocated buffer. */ 795 int load_image_gzipped_buffer(const char *filename, uint64_t max_sz, 796 uint8_t **buffer) 797 { 798 uint8_t *compressed_data = NULL; 799 uint8_t *data = NULL; 800 gsize len; 801 ssize_t bytes; 802 int ret = -1; 803 804 if (!g_file_get_contents(filename, (char **) &compressed_data, &len, 805 NULL)) { 806 goto out; 807 } 808 809 /* Is it a gzip-compressed file? */ 810 if (len < 2 || 811 compressed_data[0] != 0x1f || 812 compressed_data[1] != 0x8b) { 813 goto out; 814 } 815 816 if (max_sz > LOAD_IMAGE_MAX_GUNZIP_BYTES) { 817 max_sz = LOAD_IMAGE_MAX_GUNZIP_BYTES; 818 } 819 820 data = g_malloc(max_sz); 821 bytes = gunzip(data, max_sz, compressed_data, len); 822 if (bytes < 0) { 823 fprintf(stderr, "%s: unable to decompress gzipped kernel file\n", 824 filename); 825 goto out; 826 } 827 828 /* trim to actual size and return to caller */ 829 *buffer = g_realloc(data, bytes); 830 ret = bytes; 831 /* ownership has been transferred to caller */ 832 data = NULL; 833 834 out: 835 g_free(compressed_data); 836 g_free(data); 837 return ret; 838 } 839 840 /* Load a gzip-compressed kernel. */ 841 int load_image_gzipped(const char *filename, hwaddr addr, uint64_t max_sz) 842 { 843 int bytes; 844 uint8_t *data; 845 846 bytes = load_image_gzipped_buffer(filename, max_sz, &data); 847 if (bytes != -1) { 848 rom_add_blob_fixed(filename, data, bytes, addr); 849 g_free(data); 850 } 851 return bytes; 852 } 853 854 /* 855 * Functions for reboot-persistent memory regions. 856 * - used for vga bios and option roms. 857 * - also linux kernel (-kernel / -initrd). 858 */ 859 860 typedef struct Rom Rom; 861 862 struct Rom { 863 char *name; 864 char *path; 865 866 /* datasize is the amount of memory allocated in "data". If datasize is less 867 * than romsize, it means that the area from datasize to romsize is filled 868 * with zeros. 869 */ 870 size_t romsize; 871 size_t datasize; 872 873 uint8_t *data; 874 MemoryRegion *mr; 875 AddressSpace *as; 876 int isrom; 877 char *fw_dir; 878 char *fw_file; 879 GMappedFile *mapped_file; 880 881 bool committed; 882 883 hwaddr addr; 884 QTAILQ_ENTRY(Rom) next; 885 }; 886 887 static FWCfgState *fw_cfg; 888 static QTAILQ_HEAD(, Rom) roms = QTAILQ_HEAD_INITIALIZER(roms); 889 890 /* 891 * rom->data can be heap-allocated or memory-mapped (e.g. when added with 892 * rom_add_elf_program()) 893 */ 894 static void rom_free_data(Rom *rom) 895 { 896 if (rom->mapped_file) { 897 g_mapped_file_unref(rom->mapped_file); 898 rom->mapped_file = NULL; 899 } else { 900 g_free(rom->data); 901 } 902 903 rom->data = NULL; 904 } 905 906 static void rom_free(Rom *rom) 907 { 908 rom_free_data(rom); 909 g_free(rom->path); 910 g_free(rom->name); 911 g_free(rom->fw_dir); 912 g_free(rom->fw_file); 913 g_free(rom); 914 } 915 916 static inline bool rom_order_compare(Rom *rom, Rom *item) 917 { 918 return ((uintptr_t)(void *)rom->as > (uintptr_t)(void *)item->as) || 919 (rom->as == item->as && rom->addr >= item->addr); 920 } 921 922 static void rom_insert(Rom *rom) 923 { 924 Rom *item; 925 926 if (roms_loaded) { 927 hw_error ("ROM images must be loaded at startup\n"); 928 } 929 930 /* The user didn't specify an address space, this is the default */ 931 if (!rom->as) { 932 rom->as = &address_space_memory; 933 } 934 935 rom->committed = false; 936 937 /* List is ordered by load address in the same address space */ 938 QTAILQ_FOREACH(item, &roms, next) { 939 if (rom_order_compare(rom, item)) { 940 continue; 941 } 942 QTAILQ_INSERT_BEFORE(item, rom, next); 943 return; 944 } 945 QTAILQ_INSERT_TAIL(&roms, rom, next); 946 } 947 948 static void fw_cfg_resized(const char *id, uint64_t length, void *host) 949 { 950 if (fw_cfg) { 951 fw_cfg_modify_file(fw_cfg, id + strlen("/rom@"), host, length); 952 } 953 } 954 955 static void *rom_set_mr(Rom *rom, Object *owner, const char *name, bool ro) 956 { 957 void *data; 958 959 rom->mr = g_malloc(sizeof(*rom->mr)); 960 memory_region_init_resizeable_ram(rom->mr, owner, name, 961 rom->datasize, rom->romsize, 962 fw_cfg_resized, 963 &error_fatal); 964 memory_region_set_readonly(rom->mr, ro); 965 vmstate_register_ram_global(rom->mr); 966 967 data = memory_region_get_ram_ptr(rom->mr); 968 memcpy(data, rom->data, rom->datasize); 969 970 return data; 971 } 972 973 int rom_add_file(const char *file, const char *fw_dir, 974 hwaddr addr, int32_t bootindex, 975 bool option_rom, MemoryRegion *mr, 976 AddressSpace *as) 977 { 978 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 979 Rom *rom; 980 int rc, fd = -1; 981 char devpath[100]; 982 983 if (as && mr) { 984 fprintf(stderr, "Specifying an Address Space and Memory Region is " \ 985 "not valid when loading a rom\n"); 986 /* We haven't allocated anything so we don't need any cleanup */ 987 return -1; 988 } 989 990 rom = g_malloc0(sizeof(*rom)); 991 rom->name = g_strdup(file); 992 rom->path = qemu_find_file(QEMU_FILE_TYPE_BIOS, rom->name); 993 rom->as = as; 994 if (rom->path == NULL) { 995 rom->path = g_strdup(file); 996 } 997 998 fd = open(rom->path, O_RDONLY | O_BINARY); 999 if (fd == -1) { 1000 fprintf(stderr, "Could not open option rom '%s': %s\n", 1001 rom->path, strerror(errno)); 1002 goto err; 1003 } 1004 1005 if (fw_dir) { 1006 rom->fw_dir = g_strdup(fw_dir); 1007 rom->fw_file = g_strdup(file); 1008 } 1009 rom->addr = addr; 1010 rom->romsize = lseek(fd, 0, SEEK_END); 1011 if (rom->romsize == -1) { 1012 fprintf(stderr, "rom: file %-20s: get size error: %s\n", 1013 rom->name, strerror(errno)); 1014 goto err; 1015 } 1016 1017 rom->datasize = rom->romsize; 1018 rom->data = g_malloc0(rom->datasize); 1019 lseek(fd, 0, SEEK_SET); 1020 rc = read(fd, rom->data, rom->datasize); 1021 if (rc != rom->datasize) { 1022 fprintf(stderr, "rom: file %-20s: read error: rc=%d (expected %zd)\n", 1023 rom->name, rc, rom->datasize); 1024 goto err; 1025 } 1026 close(fd); 1027 rom_insert(rom); 1028 if (rom->fw_file && fw_cfg) { 1029 const char *basename; 1030 char fw_file_name[FW_CFG_MAX_FILE_PATH]; 1031 void *data; 1032 1033 basename = strrchr(rom->fw_file, '/'); 1034 if (basename) { 1035 basename++; 1036 } else { 1037 basename = rom->fw_file; 1038 } 1039 snprintf(fw_file_name, sizeof(fw_file_name), "%s/%s", rom->fw_dir, 1040 basename); 1041 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1042 1043 if ((!option_rom || mc->option_rom_has_mr) && mc->rom_file_has_mr) { 1044 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, true); 1045 } else { 1046 data = rom->data; 1047 } 1048 1049 fw_cfg_add_file(fw_cfg, fw_file_name, data, rom->romsize); 1050 } else { 1051 if (mr) { 1052 rom->mr = mr; 1053 snprintf(devpath, sizeof(devpath), "/rom@%s", file); 1054 } else { 1055 snprintf(devpath, sizeof(devpath), "/rom@" TARGET_FMT_plx, addr); 1056 } 1057 } 1058 1059 add_boot_device_path(bootindex, NULL, devpath); 1060 return 0; 1061 1062 err: 1063 if (fd != -1) 1064 close(fd); 1065 1066 rom_free(rom); 1067 return -1; 1068 } 1069 1070 MemoryRegion *rom_add_blob(const char *name, const void *blob, size_t len, 1071 size_t max_len, hwaddr addr, const char *fw_file_name, 1072 FWCfgCallback fw_callback, void *callback_opaque, 1073 AddressSpace *as, bool read_only) 1074 { 1075 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1076 Rom *rom; 1077 MemoryRegion *mr = NULL; 1078 1079 rom = g_malloc0(sizeof(*rom)); 1080 rom->name = g_strdup(name); 1081 rom->as = as; 1082 rom->addr = addr; 1083 rom->romsize = max_len ? max_len : len; 1084 rom->datasize = len; 1085 g_assert(rom->romsize >= rom->datasize); 1086 rom->data = g_malloc0(rom->datasize); 1087 memcpy(rom->data, blob, len); 1088 rom_insert(rom); 1089 if (fw_file_name && fw_cfg) { 1090 char devpath[100]; 1091 void *data; 1092 1093 if (read_only) { 1094 snprintf(devpath, sizeof(devpath), "/rom@%s", fw_file_name); 1095 } else { 1096 snprintf(devpath, sizeof(devpath), "/ram@%s", fw_file_name); 1097 } 1098 1099 if (mc->rom_file_has_mr) { 1100 data = rom_set_mr(rom, OBJECT(fw_cfg), devpath, read_only); 1101 mr = rom->mr; 1102 } else { 1103 data = rom->data; 1104 } 1105 1106 fw_cfg_add_file_callback(fw_cfg, fw_file_name, 1107 fw_callback, NULL, callback_opaque, 1108 data, rom->datasize, read_only); 1109 } 1110 return mr; 1111 } 1112 1113 /* This function is specific for elf program because we don't need to allocate 1114 * all the rom. We just allocate the first part and the rest is just zeros. This 1115 * is why romsize and datasize are different. Also, this function takes its own 1116 * reference to "mapped_file", so we don't have to allocate and copy the buffer. 1117 */ 1118 int rom_add_elf_program(const char *name, GMappedFile *mapped_file, void *data, 1119 size_t datasize, size_t romsize, hwaddr addr, 1120 AddressSpace *as) 1121 { 1122 Rom *rom; 1123 1124 rom = g_malloc0(sizeof(*rom)); 1125 rom->name = g_strdup(name); 1126 rom->addr = addr; 1127 rom->datasize = datasize; 1128 rom->romsize = romsize; 1129 rom->data = data; 1130 rom->as = as; 1131 1132 if (mapped_file && data) { 1133 g_mapped_file_ref(mapped_file); 1134 rom->mapped_file = mapped_file; 1135 } 1136 1137 rom_insert(rom); 1138 return 0; 1139 } 1140 1141 int rom_add_vga(const char *file) 1142 { 1143 return rom_add_file(file, "vgaroms", 0, -1, true, NULL, NULL); 1144 } 1145 1146 int rom_add_option(const char *file, int32_t bootindex) 1147 { 1148 return rom_add_file(file, "genroms", 0, bootindex, true, NULL, NULL); 1149 } 1150 1151 static void rom_reset(void *unused) 1152 { 1153 Rom *rom; 1154 1155 QTAILQ_FOREACH(rom, &roms, next) { 1156 if (rom->fw_file) { 1157 continue; 1158 } 1159 /* 1160 * We don't need to fill in the RAM with ROM data because we'll fill 1161 * the data in during the next incoming migration in all cases. Note 1162 * that some of those RAMs can actually be modified by the guest. 1163 */ 1164 if (runstate_check(RUN_STATE_INMIGRATE)) { 1165 if (rom->data && rom->isrom) { 1166 /* 1167 * Free it so that a rom_reset after migration doesn't 1168 * overwrite a potentially modified 'rom'. 1169 */ 1170 rom_free_data(rom); 1171 } 1172 continue; 1173 } 1174 1175 if (rom->data == NULL) { 1176 continue; 1177 } 1178 if (rom->mr) { 1179 void *host = memory_region_get_ram_ptr(rom->mr); 1180 memcpy(host, rom->data, rom->datasize); 1181 memset(host + rom->datasize, 0, rom->romsize - rom->datasize); 1182 } else { 1183 address_space_write_rom(rom->as, rom->addr, MEMTXATTRS_UNSPECIFIED, 1184 rom->data, rom->datasize); 1185 address_space_set(rom->as, rom->addr + rom->datasize, 0, 1186 rom->romsize - rom->datasize, 1187 MEMTXATTRS_UNSPECIFIED); 1188 } 1189 if (rom->isrom) { 1190 /* rom needs to be written only once */ 1191 rom_free_data(rom); 1192 } 1193 /* 1194 * The rom loader is really on the same level as firmware in the guest 1195 * shadowing a ROM into RAM. Such a shadowing mechanism needs to ensure 1196 * that the instruction cache for that new region is clear, so that the 1197 * CPU definitely fetches its instructions from the just written data. 1198 */ 1199 cpu_flush_icache_range(rom->addr, rom->datasize); 1200 1201 trace_loader_write_rom(rom->name, rom->addr, rom->datasize, rom->isrom); 1202 } 1203 } 1204 1205 /* Return true if two consecutive ROMs in the ROM list overlap */ 1206 static bool roms_overlap(Rom *last_rom, Rom *this_rom) 1207 { 1208 if (!last_rom) { 1209 return false; 1210 } 1211 return last_rom->as == this_rom->as && 1212 last_rom->addr + last_rom->romsize > this_rom->addr; 1213 } 1214 1215 static const char *rom_as_name(Rom *rom) 1216 { 1217 const char *name = rom->as ? rom->as->name : NULL; 1218 return name ?: "anonymous"; 1219 } 1220 1221 static void rom_print_overlap_error_header(void) 1222 { 1223 error_report("Some ROM regions are overlapping"); 1224 error_printf( 1225 "These ROM regions might have been loaded by " 1226 "direct user request or by default.\n" 1227 "They could be BIOS/firmware images, a guest kernel, " 1228 "initrd or some other file loaded into guest memory.\n" 1229 "Check whether you intended to load all this guest code, and " 1230 "whether it has been built to load to the correct addresses.\n"); 1231 } 1232 1233 static void rom_print_one_overlap_error(Rom *last_rom, Rom *rom) 1234 { 1235 error_printf( 1236 "\nThe following two regions overlap (in the %s address space):\n", 1237 rom_as_name(rom)); 1238 error_printf( 1239 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1240 last_rom->name, last_rom->addr, last_rom->addr + last_rom->romsize); 1241 error_printf( 1242 " %s (addresses 0x" TARGET_FMT_plx " - 0x" TARGET_FMT_plx ")\n", 1243 rom->name, rom->addr, rom->addr + rom->romsize); 1244 } 1245 1246 int rom_check_and_register_reset(void) 1247 { 1248 MemoryRegionSection section; 1249 Rom *rom, *last_rom = NULL; 1250 bool found_overlap = false; 1251 1252 QTAILQ_FOREACH(rom, &roms, next) { 1253 if (rom->fw_file) { 1254 continue; 1255 } 1256 if (!rom->mr) { 1257 if (roms_overlap(last_rom, rom)) { 1258 if (!found_overlap) { 1259 found_overlap = true; 1260 rom_print_overlap_error_header(); 1261 } 1262 rom_print_one_overlap_error(last_rom, rom); 1263 /* Keep going through the list so we report all overlaps */ 1264 } 1265 last_rom = rom; 1266 } 1267 section = memory_region_find(rom->mr ? rom->mr : get_system_memory(), 1268 rom->addr, 1); 1269 rom->isrom = int128_nz(section.size) && memory_region_is_rom(section.mr); 1270 memory_region_unref(section.mr); 1271 } 1272 if (found_overlap) { 1273 return -1; 1274 } 1275 1276 qemu_register_reset(rom_reset, NULL); 1277 roms_loaded = 1; 1278 return 0; 1279 } 1280 1281 void rom_set_fw(FWCfgState *f) 1282 { 1283 fw_cfg = f; 1284 } 1285 1286 void rom_set_order_override(int order) 1287 { 1288 if (!fw_cfg) 1289 return; 1290 fw_cfg_set_order_override(fw_cfg, order); 1291 } 1292 1293 void rom_reset_order_override(void) 1294 { 1295 if (!fw_cfg) 1296 return; 1297 fw_cfg_reset_order_override(fw_cfg); 1298 } 1299 1300 void rom_transaction_begin(void) 1301 { 1302 Rom *rom; 1303 1304 /* Ignore ROMs added without the transaction API */ 1305 QTAILQ_FOREACH(rom, &roms, next) { 1306 rom->committed = true; 1307 } 1308 } 1309 1310 void rom_transaction_end(bool commit) 1311 { 1312 Rom *rom; 1313 Rom *tmp; 1314 1315 QTAILQ_FOREACH_SAFE(rom, &roms, next, tmp) { 1316 if (rom->committed) { 1317 continue; 1318 } 1319 if (commit) { 1320 rom->committed = true; 1321 } else { 1322 QTAILQ_REMOVE(&roms, rom, next); 1323 rom_free(rom); 1324 } 1325 } 1326 } 1327 1328 static Rom *find_rom(hwaddr addr, size_t size) 1329 { 1330 Rom *rom; 1331 1332 QTAILQ_FOREACH(rom, &roms, next) { 1333 if (rom->fw_file) { 1334 continue; 1335 } 1336 if (rom->mr) { 1337 continue; 1338 } 1339 if (rom->addr > addr) { 1340 continue; 1341 } 1342 if (rom->addr + rom->romsize < addr + size) { 1343 continue; 1344 } 1345 return rom; 1346 } 1347 return NULL; 1348 } 1349 1350 typedef struct RomSec { 1351 hwaddr base; 1352 int se; /* start/end flag */ 1353 } RomSec; 1354 1355 1356 /* 1357 * Sort into address order. We break ties between rom-startpoints 1358 * and rom-endpoints in favour of the startpoint, by sorting the 0->1 1359 * transition before the 1->0 transition. Either way round would 1360 * work, but this way saves a little work later by avoiding 1361 * dealing with "gaps" of 0 length. 1362 */ 1363 static gint sort_secs(gconstpointer a, gconstpointer b) 1364 { 1365 RomSec *ra = (RomSec *) a; 1366 RomSec *rb = (RomSec *) b; 1367 1368 if (ra->base == rb->base) { 1369 return ra->se - rb->se; 1370 } 1371 return ra->base > rb->base ? 1 : -1; 1372 } 1373 1374 static GList *add_romsec_to_list(GList *secs, hwaddr base, int se) 1375 { 1376 RomSec *cand = g_new(RomSec, 1); 1377 cand->base = base; 1378 cand->se = se; 1379 return g_list_prepend(secs, cand); 1380 } 1381 1382 RomGap rom_find_largest_gap_between(hwaddr base, size_t size) 1383 { 1384 Rom *rom; 1385 RomSec *cand; 1386 RomGap res = {0, 0}; 1387 hwaddr gapstart = base; 1388 GList *it, *secs = NULL; 1389 int count = 0; 1390 1391 QTAILQ_FOREACH(rom, &roms, next) { 1392 /* Ignore blobs being loaded to special places */ 1393 if (rom->mr || rom->fw_file) { 1394 continue; 1395 } 1396 /* ignore anything finishing bellow base */ 1397 if (rom->addr + rom->romsize <= base) { 1398 continue; 1399 } 1400 /* ignore anything starting above the region */ 1401 if (rom->addr >= base + size) { 1402 continue; 1403 } 1404 1405 /* Save the start and end of each relevant ROM */ 1406 secs = add_romsec_to_list(secs, rom->addr, 1); 1407 1408 if (rom->addr + rom->romsize < base + size) { 1409 secs = add_romsec_to_list(secs, rom->addr + rom->romsize, -1); 1410 } 1411 } 1412 1413 /* sentinel */ 1414 secs = add_romsec_to_list(secs, base + size, 1); 1415 1416 secs = g_list_sort(secs, sort_secs); 1417 1418 for (it = g_list_first(secs); it; it = g_list_next(it)) { 1419 cand = (RomSec *) it->data; 1420 if (count == 0 && count + cand->se == 1) { 1421 size_t gap = cand->base - gapstart; 1422 if (gap > res.size) { 1423 res.base = gapstart; 1424 res.size = gap; 1425 } 1426 } else if (count == 1 && count + cand->se == 0) { 1427 gapstart = cand->base; 1428 } 1429 count += cand->se; 1430 } 1431 1432 g_list_free_full(secs, g_free); 1433 return res; 1434 } 1435 1436 /* 1437 * Copies memory from registered ROMs to dest. Any memory that is contained in 1438 * a ROM between addr and addr + size is copied. Note that this can involve 1439 * multiple ROMs, which need not start at addr and need not end at addr + size. 1440 */ 1441 int rom_copy(uint8_t *dest, hwaddr addr, size_t size) 1442 { 1443 hwaddr end = addr + size; 1444 uint8_t *s, *d = dest; 1445 size_t l = 0; 1446 Rom *rom; 1447 1448 QTAILQ_FOREACH(rom, &roms, next) { 1449 if (rom->fw_file) { 1450 continue; 1451 } 1452 if (rom->mr) { 1453 continue; 1454 } 1455 if (rom->addr + rom->romsize < addr) { 1456 continue; 1457 } 1458 if (rom->addr > end || rom->addr < addr) { 1459 break; 1460 } 1461 1462 d = dest + (rom->addr - addr); 1463 s = rom->data; 1464 l = rom->datasize; 1465 1466 if ((d + l) > (dest + size)) { 1467 l = dest - d; 1468 } 1469 1470 if (l > 0) { 1471 memcpy(d, s, l); 1472 } 1473 1474 if (rom->romsize > rom->datasize) { 1475 /* If datasize is less than romsize, it means that we didn't 1476 * allocate all the ROM because the trailing data are only zeros. 1477 */ 1478 1479 d += l; 1480 l = rom->romsize - rom->datasize; 1481 1482 if ((d + l) > (dest + size)) { 1483 /* Rom size doesn't fit in the destination area. Adjust to avoid 1484 * overflow. 1485 */ 1486 l = dest - d; 1487 } 1488 1489 if (l > 0) { 1490 memset(d, 0x0, l); 1491 } 1492 } 1493 } 1494 1495 return (d + l) - dest; 1496 } 1497 1498 void *rom_ptr(hwaddr addr, size_t size) 1499 { 1500 Rom *rom; 1501 1502 rom = find_rom(addr, size); 1503 if (!rom || !rom->data) 1504 return NULL; 1505 return rom->data + (addr - rom->addr); 1506 } 1507 1508 typedef struct FindRomCBData { 1509 size_t size; /* Amount of data we want from ROM, in bytes */ 1510 MemoryRegion *mr; /* MR at the unaliased guest addr */ 1511 hwaddr xlat; /* Offset of addr within mr */ 1512 void *rom; /* Output: rom data pointer, if found */ 1513 } FindRomCBData; 1514 1515 static bool find_rom_cb(Int128 start, Int128 len, const MemoryRegion *mr, 1516 hwaddr offset_in_region, void *opaque) 1517 { 1518 FindRomCBData *cbdata = opaque; 1519 hwaddr alias_addr; 1520 1521 if (mr != cbdata->mr) { 1522 return false; 1523 } 1524 1525 alias_addr = int128_get64(start) + cbdata->xlat - offset_in_region; 1526 cbdata->rom = rom_ptr(alias_addr, cbdata->size); 1527 if (!cbdata->rom) { 1528 return false; 1529 } 1530 /* Found a match, stop iterating */ 1531 return true; 1532 } 1533 1534 void *rom_ptr_for_as(AddressSpace *as, hwaddr addr, size_t size) 1535 { 1536 /* 1537 * Find any ROM data for the given guest address range. If there 1538 * is a ROM blob then return a pointer to the host memory 1539 * corresponding to 'addr'; otherwise return NULL. 1540 * 1541 * We look not only for ROM blobs that were loaded directly to 1542 * addr, but also for ROM blobs that were loaded to aliases of 1543 * that memory at other addresses within the AddressSpace. 1544 * 1545 * Note that we do not check @as against the 'as' member in the 1546 * 'struct Rom' returned by rom_ptr(). The Rom::as is the 1547 * AddressSpace which the rom blob should be written to, whereas 1548 * our @as argument is the AddressSpace which we are (effectively) 1549 * reading from, and the same underlying RAM will often be visible 1550 * in multiple AddressSpaces. (A common example is a ROM blob 1551 * written to the 'system' address space but then read back via a 1552 * CPU's cpu->as pointer.) This does mean we might potentially 1553 * return a false-positive match if a ROM blob was loaded into an 1554 * AS which is entirely separate and distinct from the one we're 1555 * querying, but this issue exists also for rom_ptr() and hasn't 1556 * caused any problems in practice. 1557 */ 1558 FlatView *fv; 1559 void *rom; 1560 hwaddr len_unused; 1561 FindRomCBData cbdata = {}; 1562 1563 /* Easy case: there's data at the actual address */ 1564 rom = rom_ptr(addr, size); 1565 if (rom) { 1566 return rom; 1567 } 1568 1569 RCU_READ_LOCK_GUARD(); 1570 1571 fv = address_space_to_flatview(as); 1572 cbdata.mr = flatview_translate(fv, addr, &cbdata.xlat, &len_unused, 1573 false, MEMTXATTRS_UNSPECIFIED); 1574 if (!cbdata.mr) { 1575 /* Nothing at this address, so there can't be any aliasing */ 1576 return NULL; 1577 } 1578 cbdata.size = size; 1579 flatview_for_each_range(fv, find_rom_cb, &cbdata); 1580 return cbdata.rom; 1581 } 1582 1583 HumanReadableText *qmp_x_query_roms(Error **errp) 1584 { 1585 Rom *rom; 1586 g_autoptr(GString) buf = g_string_new(""); 1587 1588 QTAILQ_FOREACH(rom, &roms, next) { 1589 if (rom->mr) { 1590 g_string_append_printf(buf, "%s" 1591 " size=0x%06zx name=\"%s\"\n", 1592 memory_region_name(rom->mr), 1593 rom->romsize, 1594 rom->name); 1595 } else if (!rom->fw_file) { 1596 g_string_append_printf(buf, "addr=" TARGET_FMT_plx 1597 " size=0x%06zx mem=%s name=\"%s\"\n", 1598 rom->addr, rom->romsize, 1599 rom->isrom ? "rom" : "ram", 1600 rom->name); 1601 } else { 1602 g_string_append_printf(buf, "fw=%s/%s" 1603 " size=0x%06zx name=\"%s\"\n", 1604 rom->fw_dir, 1605 rom->fw_file, 1606 rom->romsize, 1607 rom->name); 1608 } 1609 } 1610 1611 return human_readable_text_from_str(buf); 1612 } 1613 1614 typedef enum HexRecord HexRecord; 1615 enum HexRecord { 1616 DATA_RECORD = 0, 1617 EOF_RECORD, 1618 EXT_SEG_ADDR_RECORD, 1619 START_SEG_ADDR_RECORD, 1620 EXT_LINEAR_ADDR_RECORD, 1621 START_LINEAR_ADDR_RECORD, 1622 }; 1623 1624 /* Each record contains a 16-bit address which is combined with the upper 16 1625 * bits of the implicit "next address" to form a 32-bit address. 1626 */ 1627 #define NEXT_ADDR_MASK 0xffff0000 1628 1629 #define DATA_FIELD_MAX_LEN 0xff 1630 #define LEN_EXCEPT_DATA 0x5 1631 /* 0x5 = sizeof(byte_count) + sizeof(address) + sizeof(record_type) + 1632 * sizeof(checksum) */ 1633 typedef struct { 1634 uint8_t byte_count; 1635 uint16_t address; 1636 uint8_t record_type; 1637 uint8_t data[DATA_FIELD_MAX_LEN]; 1638 uint8_t checksum; 1639 } HexLine; 1640 1641 /* return 0 or -1 if error */ 1642 static bool parse_record(HexLine *line, uint8_t *our_checksum, const uint8_t c, 1643 uint32_t *index, const bool in_process) 1644 { 1645 /* +-------+---------------+-------+---------------------+--------+ 1646 * | byte | |record | | | 1647 * | count | address | type | data |checksum| 1648 * +-------+---------------+-------+---------------------+--------+ 1649 * ^ ^ ^ ^ ^ ^ 1650 * |1 byte | 2 bytes |1 byte | 0-255 bytes | 1 byte | 1651 */ 1652 uint8_t value = 0; 1653 uint32_t idx = *index; 1654 /* ignore space */ 1655 if (g_ascii_isspace(c)) { 1656 return true; 1657 } 1658 if (!g_ascii_isxdigit(c) || !in_process) { 1659 return false; 1660 } 1661 value = g_ascii_xdigit_value(c); 1662 value = (idx & 0x1) ? (value & 0xf) : (value << 4); 1663 if (idx < 2) { 1664 line->byte_count |= value; 1665 } else if (2 <= idx && idx < 6) { 1666 line->address <<= 4; 1667 line->address += g_ascii_xdigit_value(c); 1668 } else if (6 <= idx && idx < 8) { 1669 line->record_type |= value; 1670 } else if (8 <= idx && idx < 8 + 2 * line->byte_count) { 1671 line->data[(idx - 8) >> 1] |= value; 1672 } else if (8 + 2 * line->byte_count <= idx && 1673 idx < 10 + 2 * line->byte_count) { 1674 line->checksum |= value; 1675 } else { 1676 return false; 1677 } 1678 *our_checksum += value; 1679 ++(*index); 1680 return true; 1681 } 1682 1683 typedef struct { 1684 const char *filename; 1685 HexLine line; 1686 uint8_t *bin_buf; 1687 hwaddr *start_addr; 1688 int total_size; 1689 uint32_t next_address_to_write; 1690 uint32_t current_address; 1691 uint32_t current_rom_index; 1692 uint32_t rom_start_address; 1693 AddressSpace *as; 1694 bool complete; 1695 } HexParser; 1696 1697 /* return size or -1 if error */ 1698 static int handle_record_type(HexParser *parser) 1699 { 1700 HexLine *line = &(parser->line); 1701 switch (line->record_type) { 1702 case DATA_RECORD: 1703 parser->current_address = 1704 (parser->next_address_to_write & NEXT_ADDR_MASK) | line->address; 1705 /* verify this is a contiguous block of memory */ 1706 if (parser->current_address != parser->next_address_to_write) { 1707 if (parser->current_rom_index != 0) { 1708 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1709 parser->current_rom_index, 1710 parser->rom_start_address, parser->as); 1711 } 1712 parser->rom_start_address = parser->current_address; 1713 parser->current_rom_index = 0; 1714 } 1715 1716 /* copy from line buffer to output bin_buf */ 1717 memcpy(parser->bin_buf + parser->current_rom_index, line->data, 1718 line->byte_count); 1719 parser->current_rom_index += line->byte_count; 1720 parser->total_size += line->byte_count; 1721 /* save next address to write */ 1722 parser->next_address_to_write = 1723 parser->current_address + line->byte_count; 1724 break; 1725 1726 case EOF_RECORD: 1727 if (parser->current_rom_index != 0) { 1728 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1729 parser->current_rom_index, 1730 parser->rom_start_address, parser->as); 1731 } 1732 parser->complete = true; 1733 return parser->total_size; 1734 case EXT_SEG_ADDR_RECORD: 1735 case EXT_LINEAR_ADDR_RECORD: 1736 if (line->byte_count != 2 && line->address != 0) { 1737 return -1; 1738 } 1739 1740 if (parser->current_rom_index != 0) { 1741 rom_add_blob_fixed_as(parser->filename, parser->bin_buf, 1742 parser->current_rom_index, 1743 parser->rom_start_address, parser->as); 1744 } 1745 1746 /* save next address to write, 1747 * in case of non-contiguous block of memory */ 1748 parser->next_address_to_write = (line->data[0] << 12) | 1749 (line->data[1] << 4); 1750 if (line->record_type == EXT_LINEAR_ADDR_RECORD) { 1751 parser->next_address_to_write <<= 12; 1752 } 1753 1754 parser->rom_start_address = parser->next_address_to_write; 1755 parser->current_rom_index = 0; 1756 break; 1757 1758 case START_SEG_ADDR_RECORD: 1759 if (line->byte_count != 4 && line->address != 0) { 1760 return -1; 1761 } 1762 1763 /* x86 16-bit CS:IP segmented addressing */ 1764 *(parser->start_addr) = (((line->data[0] << 8) | line->data[1]) << 4) + 1765 ((line->data[2] << 8) | line->data[3]); 1766 break; 1767 1768 case START_LINEAR_ADDR_RECORD: 1769 if (line->byte_count != 4 && line->address != 0) { 1770 return -1; 1771 } 1772 1773 *(parser->start_addr) = ldl_be_p(line->data); 1774 break; 1775 1776 default: 1777 return -1; 1778 } 1779 1780 return parser->total_size; 1781 } 1782 1783 /* return size or -1 if error */ 1784 static int parse_hex_blob(const char *filename, hwaddr *addr, uint8_t *hex_blob, 1785 size_t hex_blob_size, AddressSpace *as) 1786 { 1787 bool in_process = false; /* avoid re-enter and 1788 * check whether record begin with ':' */ 1789 uint8_t *end = hex_blob + hex_blob_size; 1790 uint8_t our_checksum = 0; 1791 uint32_t record_index = 0; 1792 HexParser parser = { 1793 .filename = filename, 1794 .bin_buf = g_malloc(hex_blob_size), 1795 .start_addr = addr, 1796 .as = as, 1797 .complete = false 1798 }; 1799 1800 rom_transaction_begin(); 1801 1802 for (; hex_blob < end && !parser.complete; ++hex_blob) { 1803 switch (*hex_blob) { 1804 case '\r': 1805 case '\n': 1806 if (!in_process) { 1807 break; 1808 } 1809 1810 in_process = false; 1811 if ((LEN_EXCEPT_DATA + parser.line.byte_count) * 2 != 1812 record_index || 1813 our_checksum != 0) { 1814 parser.total_size = -1; 1815 goto out; 1816 } 1817 1818 if (handle_record_type(&parser) == -1) { 1819 parser.total_size = -1; 1820 goto out; 1821 } 1822 break; 1823 1824 /* start of a new record. */ 1825 case ':': 1826 memset(&parser.line, 0, sizeof(HexLine)); 1827 in_process = true; 1828 record_index = 0; 1829 break; 1830 1831 /* decoding lines */ 1832 default: 1833 if (!parse_record(&parser.line, &our_checksum, *hex_blob, 1834 &record_index, in_process)) { 1835 parser.total_size = -1; 1836 goto out; 1837 } 1838 break; 1839 } 1840 } 1841 1842 out: 1843 g_free(parser.bin_buf); 1844 rom_transaction_end(parser.total_size != -1); 1845 return parser.total_size; 1846 } 1847 1848 /* return size or -1 if error */ 1849 int load_targphys_hex_as(const char *filename, hwaddr *entry, AddressSpace *as) 1850 { 1851 gsize hex_blob_size; 1852 gchar *hex_blob; 1853 int total_size = 0; 1854 1855 if (!g_file_get_contents(filename, &hex_blob, &hex_blob_size, NULL)) { 1856 return -1; 1857 } 1858 1859 total_size = parse_hex_blob(filename, entry, (uint8_t *)hex_blob, 1860 hex_blob_size, as); 1861 1862 g_free(hex_blob); 1863 return total_size; 1864 } 1865